Let \(\varOmega ^{K}= \{ 0=t_{0}< t_{1}<\cdots <t_{K}=T \} \) and \(\varOmega ^{N}= \{ 0=x_{0}< x_{1}<\cdots <x_{N}=X \} \). An approximation to the time-fractional derivative on \(\varOmega ^{K}\) can be obtained by the quadrature formula,
$$\begin{aligned} \frac{\partial ^{\alpha }u(x_{i},t_{j})}{\partial t^{\alpha }} & = \frac{1}{ \varGamma (1-\alpha )}\sum _{k=1}^{j} \int _{t_{k-1}}^{t_{k}} (t_{j}-s ) ^{-\alpha }\frac{\partial u(x_{i},s)}{\partial s}\,{\mathrm{d}}s \\ & \approx \frac{1}{\varGamma (2-\alpha )}\sum_{k=1}^{j} \bigl[ (t _{j}-t_{k-1} )^{1-\alpha }- (t_{j}-t_{k} )^{1-\alpha } \bigr]D_{t}^{-}u_{i}^{k}, \end{aligned}$$
where \(D_{t}^{-}u_{i}^{k}=\frac{u^{k}_{i}-u_{i}^{k-1}}{\triangle t _{k}}\) with \(\triangle t_{k}=t_{k}-t_{k-1}\).
Since the Black–Scholes differential operator becomes a convection-dominated when the volatility or the asset price is small, a piecewise uniform mesh \(\varOmega ^{N}\) is constructed as that in [3] for the spatial discretization to ensure the stability:
$$\begin{aligned} x_{i}= \textstyle\begin{cases} h, & i=1, \\ h[1+\frac{\mu }{\beta ^{*}}(i-1)], & i=2,\ldots,N, \end{cases}\displaystyle \end{aligned}$$
(3.1)
where
$$\begin{aligned} h=\frac{X}{1+\frac{\mu }{\beta ^{*}}(N-1)}. \end{aligned}$$
Then the mesh sizes \(h_{i}=x_{i}-x_{i-1}\) satisfy
$$\begin{aligned} h_{i}=\textstyle\begin{cases} h, & i=1, \\ \frac{\mu }{\beta ^{*}} h, & i=2,\ldots,N. \end{cases}\displaystyle \end{aligned}$$
(3.2)
On the piecewise uniform mesh \(\varOmega ^{N}\) we apply a central difference scheme to approximate the spatial derivatives.
Hence, combining the time discretization scheme with spatial discretization scheme we can derive the fully discretized scheme on \(\varOmega ^{N\times K}\equiv \varOmega ^{N}\times \varOmega ^{K}\) as follows:
$$\begin{aligned} & L^{N,K}U_{i}^{j}=0,\quad 1\leq i< N,\ 1\leq j \leq K, \end{aligned}$$
(3.3)
$$\begin{aligned} & U_{i}^{0}=\max (x_{i}-E,0 ), \quad0\leq i \leq N, \end{aligned}$$
(3.4)
$$\begin{aligned} & U_{0}^{j}=0,\qquad U_{N}^{j}=X-E e^{-rt_{j}},\quad 0\leq j\leq K, \end{aligned}$$
(3.5)
where \(U_{i}^{j}\) is the approximation solution of \(u(x_{i},t_{j})\),
$$\begin{aligned} L^{N,K}U_{i}^{j} ={} & \frac{1}{\varGamma (2-\alpha )} \sum_{k=1}^{j} \bigl[ (t_{j}-t_{k-1} )^{1-\alpha }- (t_{j}-t_{k} ) ^{1-\alpha } \bigr]D_{t}^{-}U_{i}^{k} \\ &{} -\frac{1}{2} \bigl(\sigma ^{j} \bigr)^{2}x_{i}^{2} \delta _{x}^{2}U _{i}^{j}-r^{j}x_{i}D^{0}_{x}U_{i}^{j}+r^{j}U_{i}^{j}, \end{aligned}$$
(3.6)
and
$$\begin{aligned} &\delta _{x}^{2}U_{i}^{j}= \frac{2}{h_{i}+h_{i+1}} \biggl(\frac{U_{i+1} ^{j}-U_{i}^{j}}{h_{i+1}}-\frac{U_{i}^{j}-U_{i-1}^{j}}{h_{i}} \biggr),\\ & D_{x}^{0}U_{i}^{j}= \frac{U_{i+1}^{j}-U_{i-1}^{j}}{h_{i}+h_{i+1}},\qquad D_{t}^{-}U_{i}^{j}= \frac{U_{i}^{j}-U_{i}^{j-1}}{\triangle t_{j}}. \end{aligned}$$
Next we show that the matrix associated with the discrete operator \(L^{N,K}\) is an M-matrix. Hence the scheme is maximum-norm stable.
Lemma 3.1
(Discrete maximum principle)
The operator
\(L^{N,K}\)defined by (3.6) on the mesh
\(\varOmega ^{N\times K}\)satisfies a discrete maximum principle, i.e. if
\(v^{j}_{i}\)is a mesh function that satisfies
\(v_{0}^{j}\geq 0,\ v^{j}_{N}\geq 0\ (0\leq j\leq K)\), \(v_{i}^{0}\geq 0\ (0\leq i \leq N) \)and
\(L^{N,K}v^{j}_{i}\geq 0 \ (1 \leq i< N,\ 0< j \leq K)\), then
\(v^{j}_{i}\geq 0\)for all
\(i,j\).
Proof
Let
$$\begin{aligned} & a_{i,i-1}^{j}=-\frac{ (\sigma ^{j} )^{2}x_{i}^{2}}{ (h_{i}+h_{i+1} )h_{i}}+ \frac{r^{j}x_{i}}{h_{i}+h_{i+1}},\qquad a_{i,i+1}^{j}=-\frac{ (\sigma ^{j} )^{2}x_{i}^{2}}{ (h _{i}+h_{i+1} )h_{i+1}}- \frac{r^{j}x_{i}}{h_{i}+h_{i+1}}, \\ & a_{i,i}^{j}=\frac{ (\sigma ^{j} )^{2}x_{i}^{2}}{h_{i}h _{i+1}}+r^{j}+ \frac{ (\triangle t_{j} )^{-\alpha }}{\varGamma (2-\alpha )},\quad 1\leq i< N,\ 1\leq j\leq K, \end{aligned}$$
and
$$\begin{aligned} a_{i,i}^{k}={}&\frac{1}{\varGamma (2-\alpha )\triangle t_{k}} \bigl[ (t _{j}-t_{k-1} )^{1-\alpha }- (t_{j}-t_{k} )^{1-\alpha } \bigr] \\ &{} -\frac{1}{\varGamma (2-\alpha )\triangle t_{k+1}} \bigl[ (t_{j}-t _{k} )^{1-\alpha }- (t_{j}-t_{k+1} )^{1-\alpha } \bigr],\quad 1\leq k\leq j-1. \end{aligned}$$
By simple calculation we have
$$\begin{aligned} a_{i,i-1}^{j} & < -\frac{ (\sigma ^{j} )^{2}x_{1}x_{i}}{(h _{i}+h_{i+1})h_{i}} + \frac{r^{j}x_{i}}{h_{i}+h_{i+1}}= \frac{ [r ^{j}h_{i}- (\sigma ^{j} )^{2} x_{1} ]x_{i}}{(h_{i}+h _{i+1})h_{i}} \\ & = \frac{ [r^{j}\frac{\mu }{\beta ^{*}}- (\sigma ^{j} ) ^{2} ]hx_{i}}{(h_{i}+h_{i+1})h_{i}}\leq 0 \end{aligned}$$
for \(2\leq i< N\). It is easy to show
$$\begin{aligned} & a_{i,i+1}^{j}< 0,\qquad a_{i,i}^{j}>0,\quad 1 \leq i< N, \ 1\leq j\leq K, \\ & a_{i,i}^{k}=\frac{1}{\varGamma (1-\alpha )} \bigl[ (t_{j}-\xi _{k} )^{-\alpha }- (t_{j}- \xi _{k+1} )^{-\alpha } \bigr] \leq 0,\quad 1\leq k\leq j-1, \end{aligned}$$
and
$$\begin{aligned} & a_{1,1}^{j}+a_{1,2}^{j}>0,\quad 1\leq j\leq K, \\ & a_{i,i-1}^{j}+a_{i,i}^{j}+a_{i,i+1}^{j}+ \sum_{k=1}^{j-1}a_{i,i} ^{k}>0,\quad 1< i< N, \ 1\leq j\leq K, \\ & a_{N-1,N-1}^{j}+a_{N-1,N}^{j}>0,\quad 1\leq j\leq K, \end{aligned}$$
where \(\xi _{k}\in (t_{k-1},t_{k})\). Hence, it is easy to see that the matrix associated with \(L^{N,K}\) is a strictly diagonally dominant L-matrix, which means that it is an M-matrix. By applying the same argument as that in [14, Lemma 3.1], it is straightforward to obtain the result of our lemma. □
The next lemma gives us a useful formula for the truncation error.
Lemma 3.2
LetUbe the solution of the difference scheme (3.3)–(3.5) andube the exact solution of problem (2.4)–(2.6). Then we have the following truncation error estimates:
$$\begin{aligned} \bigl\vert L^{N,K} \bigl(u_{i}^{j}-U_{i}^{j} \bigr) \bigr\vert \leq {}& C\max_{1\leq k \leq j} (\triangle t_{k} )^{1-\alpha } \int _{t_{k-1}}^{t _{k}} \biggl\vert \frac{\partial ^{2} u}{\partial t^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s \\ &{} +C (h_{i}+h_{i+1} ) \int _{x_{i-1}}^{x_{i+1}} \biggl(x _{i}^{2} \biggl\vert \frac{\partial ^{4}u}{\partial x^{4}}(y,t_{j}) \biggr\vert +x _{i} \biggl\vert \frac{\partial ^{3}u}{\partial x^{3}}(y,t_{j}) \biggr\vert \biggr) \,\mathrm{d}y \end{aligned}$$
for
\(1\leq i< N\)and
\(1\leq j\leq K\), whereCis a positive constant independent of the mesh.
Proof
It follows from (3.3) and (3.6) that
$$\begin{aligned} \bigl\vert L^{N,K} \bigl(u_{i}^{j}-U_{i}^{j} \bigr) \bigr\vert = {}& \bigl\vert L^{N,K}u_{i} ^{j}-Lu(x_{i},t_{j}) \bigr\vert \\ \leq {}& \frac{1}{\varGamma (1-\alpha )}\sum_{k=1}^{j} \biggl\vert \int _{t_{k-1}} ^{t_{k}} (t_{j}-s )^{-\alpha } \biggl[D_{t}^{-}u_{i}^{k}- \frac{ \partial u}{\partial s}(x_{i},s) \biggr]\,{\mathrm{d}}s \biggr\vert \\ &{} +\frac{1}{2} \bigl(\sigma ^{j} \bigr)^{2}x_{i}^{2} \biggl\vert \delta _{x}^{2}u_{i}^{j}- \frac{\partial ^{2}u}{\partial x^{2}}(x_{i},t_{j}) \biggr\vert +r ^{j}x_{i} \biggl\vert D_{x}^{0}u_{i}^{j}- \frac{\partial u}{\partial x}(x _{i},t_{j}) \biggr\vert . \end{aligned}$$
(3.7)
For \(k< j\) we use an integration by parts as that in [24] to obtain
$$\begin{aligned} & \int _{t_{k-1}}^{t_{k}} (t_{j}-s )^{-\alpha } \biggl[D _{t}^{-}u_{i}^{k}- \frac{\partial u}{\partial s}(x_{i},s) \biggr]\,{\mathrm{d}}s \\ & \quad=-\alpha \int _{t_{k-1}}^{t_{k}} (t_{j}-s )^{-\alpha -1} \bigl[ (s-t_{k-1} )D_{t}^{-}u_{i}^{k}- \bigl(u(x_{i},s)-u(x _{i},t_{k-1}) \bigr) \bigr]\,{\mathrm{d}}s \\ &\quad =-\alpha \bigl[ (\gamma _{1}-t_{k-1} )D_{t}^{-}u_{i} ^{k}- \bigl(u(x_{i},\gamma _{1})-u(x_{i},t_{k-1}) \bigr) \bigr] \int _{t_{k-1}}^{t_{k}} (t_{j}-s )^{-\alpha -1}\,{\mathrm{d}}s \\ &\quad =-\alpha (\gamma _{1}-t_{k-1} ) \biggl[ \frac{\partial u}{ \partial t}(x_{i},\gamma _{2})- \frac{\partial u}{\partial t}(x_{i}, \gamma _{3}) \biggr] \int _{t_{k-1}}^{t_{k}} (t_{j}-s )^{- \alpha -1}\,{\mathrm{d}}s, \end{aligned}$$
where we have used the mean value theorem with \(\gamma _{1},\gamma _{2}, \gamma _{3}\in (t_{k-1},t_{k} )\). Hence, applying a Taylor formula with the integral form of the remainder we can obtain
$$\begin{aligned} &\biggl\vert \int _{t_{k-1}}^{t_{k}} (t_{j}-s )^{-\alpha } \biggl[D _{t}^{-}u_{i}^{k}- \frac{\partial u}{\partial s}(x_{i},s) \biggr]\,{\mathrm{d}}s \biggr\vert \\ & \quad\leq C \triangle t_{k} \int _{t_{k-1}}^{t_{k}} \biggl\vert \frac{\partial ^{2} u}{\partial t^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s \int _{t_{k-1}} ^{t_{k}} (t_{j}-s )^{-\alpha -1}\,{\mathrm{d}}s \\ & \quad\leq C (\triangle t_{k} )^{1-\alpha } \int _{t_{k-1}} ^{t_{k}} \biggl\vert \frac{\partial ^{2} u}{\partial t^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s \end{aligned}$$
(3.8)
for \(k< j\). Similarly, we have
$$\begin{aligned} &\biggl\vert \int _{t_{j-1}}^{t_{j}} (t_{j}-s )^{-\alpha } \biggl[D _{t}^{-}u_{i}^{j}- \frac{\partial u}{\partial s}(x_{i},s) \biggr]\,{\mathrm{d}}s \biggr\vert \\ & \quad= \biggl\vert \frac{\partial u}{\partial t}(x_{i},\gamma _{4})-\frac{ \partial u}{\partial t}(x_{i},\gamma _{5}) \biggr\vert \int _{t_{j-1}}^{t _{j}} (t_{j}-s )^{-\alpha }\,{\mathrm{d}}s \\ & \quad\leq C (\triangle t_{j} )^{1-\alpha } \int _{t_{j-1}} ^{t_{j}} \biggl\vert \frac{\partial ^{2}u}{\partial t^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s, \end{aligned}$$
(3.9)
where we also have used the mean value theorem with \(\gamma _{4},\gamma _{5}\in (t_{j-1},t_{j} )\). By applying Taylor’s formulas about \(x_{i}\) we also have
$$\begin{aligned} \biggl\vert \delta _{x}^{2}u_{i}^{j}- \frac{\partial ^{2}u}{\partial x^{2}}(x _{i},t_{j}) \biggr\vert \leq C (h_{i}+h_{i+1} ) \int _{x_{i-1}} ^{x_{i+1}} \biggl\vert \frac{\partial ^{4}u}{\partial x^{4}}(y,t_{j}) \biggr\vert \,{\mathrm{d}}y \end{aligned}$$
(3.10)
and
$$\begin{aligned} \biggl\vert D_{x}^{0}u_{i}^{j}- \frac{\partial u}{\partial x}(x_{i},t_{j}) \biggr\vert \leq C (h_{i}+h_{i+1} ) \int _{x_{i-1}}^{x_{i+1}} \biggl\vert \frac{ \partial ^{3}u}{\partial x^{3}}(y,t_{j}) \biggr\vert \,{\mathrm{d}}y. \end{aligned}$$
(3.11)
Combining (3.7) with (3.8)–(3.11) we have
$$\begin{aligned} &\bigl\vert L^{N,K} \bigl(u_{i}^{j}-U_{i}^{j} \bigr) \bigr\vert \\ & \quad\leq C\max_{1\leq k \leq j} (\triangle t_{k} )^{1-\alpha } \int _{t_{k-1}}^{t _{k}} \biggl\vert \frac{\partial ^{2} u}{\partial t^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s \\ & \qquad{}+C (h_{i}+h_{i+1} ) \int _{x_{i-1}}^{x_{i+1}} \biggl(x _{i}^{2} \biggl\vert \frac{\partial ^{4}u}{\partial x^{4}}(y,t_{j}) \biggr\vert +x _{i} \biggl\vert \frac{\partial ^{3}u}{\partial x^{3}}(y,t_{j}) \biggr\vert \biggr) \,\mathrm{d}y. \end{aligned}$$
(3.12)
From this we complete the proof. □
Based on the properties of the European option [2, 3, 25] we assume that the solution u satisfies the following regularities:
$$\begin{aligned} \biggl\vert x^{2}\frac{\partial ^{4} u}{\partial x^{4}} \biggr\vert \leq C,\qquad \biggl\vert x\frac{\partial ^{3} u}{\partial x^{3}} \biggr\vert \leq C \quad\text{for } (x,t ) \in \varOmega. \end{aligned}$$
(3.13)
Then applying the maximum principle and the truncation error estimates we have the following bound.
Theorem 3.3
LetUbe the solution of difference scheme (3.3)–(3.5) andube the exact solution of problem (2.4)–(2.6). Then, under the assumption (3.13) we have the following bound:
$$\begin{aligned} \Vert u-U \Vert _{\bar{\varOmega }^{N,K}} \leq C \max_{1\leq i\leq N, 1\leq j\leq K} ( \triangle t_{j} )^{1- \alpha } \int _{t_{j-1}}^{t_{j}} \biggl\vert \frac{\partial ^{2} u}{\partial t ^{2}}(x_{i},s) \biggr\vert \,{\mathrm{d}}s +CN^{-2}, \end{aligned}$$
(3.14)
whereCis a positive constant independent of the mesh.