Below, we demonstrate some sufficient conditions for the existence of (1.1)–(1.2) coupled with weak topology.
- \((\mathbf{H_{1}})\):
For \(\{T(u)\}_{u\geq 0}\) in \(\mathbb{Y}\), there is a constant \(\mathscr {M}_{1} \geq 1 \) fulfilling \(\sup_{u\in [0,b]}\|T(u)\|\leq \mathscr {M}_{1}\).
Additionally, we require that the multivalued nonlinearity function \(\mathscr {H}:[0,b] \times \mathbb{Y}\multimap \mathbb{Y}\) possess nonempty convex and weakly compact values.
- \((\mathbf{H_{2}})\):
For all \(z \in \mathbb{Y}\), the multivalued function \(\mathscr {H}(\cdot , z):[0,b]\multimap \mathbb{Y}\) has a measurable selection.
- \((\mathbf{H_{3}})\):
\(\mathscr {H}(u ,\cdot ):\mathbb{Y}\multimap \mathbb{Y}\) is weakly sequentially closed for almost everywhere u in \([0,b]\).
- \((\mathbf{H_{4}})\):
For a real valued function \(h:[0,b] \times \mathbb{Y}\rightarrow \mathbb{Y}\), for all \(u>0\) and some constant \(\mathfrak{M}_{h} >0 \) we have \(\|h(u, \cdot ) \| \leq \mathfrak{M}_{h}\).
- \((\mathbf{H_{5}})\):
For \(\kappa _{1} \in (0,q) \), for every \(r >0 \) and a function \(\delta _{r} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) as for each \(d \in \mathbb{Y}\), \(\|d\| \leq r\):
$$ \bigl\Vert h(u,d) \bigr\Vert = \sup \bigl\{ \Vert z \Vert :z \in h(u,d) \bigr\} \leq \delta _{r} {(u)}, $$
for almost everywhere \(u \in [0,b] \).
- \((\mathbf{H_{6}})\):
For \(\kappa _{1} \in (0,q) \), for every \(r >0 \) and a function \(\mu _{r} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) as for each \(d \in \mathbb{Y}\), \(\|d\| \leq r\):
$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert = \sup \bigl\{ \Vert z \Vert :z \in \mathscr {H}(u,d) \bigr\} \leq \mu _{r} {(u)}, $$
for almost everywhere \(u \in [0,b] \).
In connection with the above consideration, we determine the solution of (1.1)–(1.2).
Definition 3.1
([56])
\(z:[0,b]\rightarrow \mathbb{Y}\) is a mild solution of (1.1)–(1.2) if the accompanying recognize \(z(0) = z_{0} \) and there is \(\chi \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\) provided \(\chi (u) \in \mathscr {H}(u, z(u)) \) on \(u \in [0,b]\) and z fulfills
$$\begin{aligned} z(u) ={}& \mathbb{T}(u) \bigl[z_{0}-h(0,z_{0}) \bigr]+h \bigl(u,z(u) \bigr)+ \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,z(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi (w)\,dw,\quad u\in [0,b], \end{aligned}$$
where
$$ \mathbb{T}(u) = \int _{0}^{\infty }\xi _{q}(\theta )T \bigl(u^{q}\theta \bigr)\,d\theta , \qquad \mathbb{S}(u)= q \int _{0}^{\infty }\theta \xi _{q}(\theta )T \bigl(u^{q} \theta \bigr)\,d\theta , $$
and, for \(\theta \in (0,\infty )\),
$$\begin{aligned}& \xi _{q}(\theta )=\frac{1}{q} \theta ^{-1-\frac{1}{q}} \overline{w}_{q} \bigl( \theta ^{-\frac{1}{q}} \bigr)\geq 0, \\& \overline{w}_{q}(\theta ) = \frac{1}{\pi }\sum _{n=1}^{\infty }(-1)^{n-1} \theta ^{-nq-1}\frac{\varGamma (nq+1)}{n!}\sin (n\pi q), \\& \int _{0}^{\infty }\xi _{q}(\theta )\,d \theta = 1. \end{aligned}$$
Remark 3.1
Obviously, for \(\nu \in [0,1]\),
$$ \int _{0}^{\infty }\theta ^{\nu }\xi _{q}(\theta )\,d\theta = \int _{0}^{ \infty }\theta ^{-q\nu } \overline{w}_{q}(\theta )\,d\theta = \frac{ \varGamma (1+\nu )}{\varGamma (1+q\nu )}. $$
Lemma 3.1
(See [56])
\(\mathbb{T}\)and
\(\mathbb{S}\)obey the subsequent assertions:
- (i)
For a constant
\(\mathscr {M}_{2}\geq 1 \), for any
\(z\in \mathbb{Y}\), fixed
\(u\geq 0\)and for the bounded linear operators
\(\mathbb{T}\)and
\(\mathbb{S}\)we have
$$\begin{aligned}& \bigl\Vert \mathbb{T}(u)z \bigr\Vert \leq \mathscr {M}_{1} \Vert z \Vert \quad \textit{and} \quad \bigl\Vert \mathbb{S}(u)z \bigr\Vert \leq \frac{q \mathscr {M}_{1}}{\varGamma (1+q)} \Vert z \Vert , \\& \bigl\Vert \mathscr {A} \mathbb{S}(u)z \bigr\Vert \leq \frac{q \mathscr {M}_{1}\mathscr {M}_{2}}{\varGamma (1+q)} \Vert z \Vert . \end{aligned}$$
- (ii)
The operators
\(\{\mathbb{T}(u),u\geq 0\}\)and
\(\{\mathbb{S}(u),u\geq 0\}\)are strongly continuous.
Construct the set \(\varUpsilon _{\wp }\), for given \(\wp \in \mathfrak {C}([0,b];\mathbb{Y}) \) as \(\varUpsilon _{\wp }= \{ \chi \in L^{\frac{1}{ \kappa _{1}}}([0,b];\mathbb{Y}):\chi (u) \in \mathscr {H}(u,\wp (u))\mbox{ for almost everywhere } u \in [0,b] \} \). \(\varUpsilon _{\wp }\) is nonempty as the next Proposition 3.1 mentions.
Proposition 3.1
(See [15, 59])
Let us assume that a multivalued map
\(\mathscr {H}:[0,b] \times \mathbb{Y}\multimap \mathbb{Y}\)obeys
\((\mathbf{H_{2}})\)–\(( \mathbf{H_{6}})\), the set
\(\varUpsilon _{\wp }\)is nonempty for any
\(\wp \in \mathfrak {C}([0,b];\mathbb{Y}) \).
We define the operator \(\varLambda : \mathfrak {C}([0,b];\mathbb{Y})\multimap \mathfrak {C}([0,b];\mathbb{Y})\) by
$$\begin{aligned} \varLambda (\wp ) =& \bigl\lbrace z\in \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr):z(u) = \mathbb{T}(u) \bigl(z _{0}-h(0,z_{0}) \bigr)+ h \bigl(u, \wp (u) \bigr) \\ &{}+ S_{1} (z) (u) + S_{2} \chi (u), \chi \in \varUpsilon _{\wp } \bigr\rbrace , \end{aligned}$$
where
$$\begin{aligned}& S_{1} :\mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr)\rightarrow \mathfrak {C} \bigl([0,b]; \mathbb{Y}\bigr), \\& S_{1} (z) = \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp (w) \bigr)\,dw, \end{aligned}$$
and
$$\begin{aligned}& S_{2} : L^{\frac{1}{\kappa _{1}}} \bigl([0,b];\mathbb{Y}\bigr)\rightarrow \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr), \\& S_{2}(\chi ) = \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi (w)\,dw. \end{aligned}$$
At first, we show that \(S_{1} \) and \(S_{2} \) are continuous.
For any \(z_{n}, z\in \mathfrak {C}([0,b];\mathbb{Y})\) and \(z_{n}\rightarrow z\) (\(n\rightarrow \infty \)), using \((\mathbf{H_{5}})\), for every \(u\in [0,b] \), we get
$$ (u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \leq 2(u-w)^{q-1} \mu _{r}(w),\quad \text{almost everywhere } w\in [0,u). $$
Also for any \(\chi _{n}, \chi \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y}) \) and \(\chi _{n}\rightarrow \chi\) (\(n\rightarrow \infty \)), using \((\mathbf{H_{6}})\), we can have, for every \(u\in [0,b] \),
$$ (u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \leq 2(u-w)^{q-1} \delta _{r}(w),\quad \text{almost everywhere } w\in [0,u). $$
Moreover, the functions
$$ \int _{0}^{u}(u-w)^{q-1} \mu _{r}(w)\,dw = \biggl[ \biggl({\frac{1-\kappa _{1}}{q- \kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \Vert \mu _{r} \Vert _{\frac{1}{\kappa _{1}}} $$
and
$$ \int _{0}^{u}(u-w)^{q-1} \delta _{r}(w)\,dw = \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1- \kappa _{1}} \Vert \delta _{r} \Vert _{\frac{1}{\kappa _{1}}} $$
becomes integrable for \(u\in [0,b]\). Taking into account the Lebesgue theorem, we conclude, as \(n\rightarrow \infty \),
$$ \int _{0}^{u}(u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \,dw\rightarrow 0\quad \text{and}\quad \int _{0}^{u}(u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \,dw\rightarrow 0. $$
Therefore
$$\begin{aligned}& \begin{aligned} \bigl\Vert S_{1}(z_{n})-S_{1}(z) \bigr\Vert &\leq \biggl\Vert \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w) \bigl(z_{n}(w)-z(w) \bigr)\,dw \biggr\Vert & \\ &\leq \frac{q\mathscr {M}_{1}\mathscr {M}_{2}}{\varGamma { (1+q)}} \int _{0}^{u}(u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \,dw\rightarrow 0, \quad \text{as } n\rightarrow \infty , \end{aligned} \\& \begin{aligned} \bigl\Vert S_{2}(\chi _{n})-S_{2}(\chi ) \bigr\Vert &\leq \biggl\Vert \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w) \bigl(\chi _{n}(w)-\chi (w) \bigr)\,dw \biggr\Vert & \\ &\leq \frac{q \mathscr {M}_{1}}{\varGamma { (1+q)}} \int _{0}^{u}(u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \,dw \rightarrow 0,\quad \text{as } n\rightarrow \infty . \end{aligned} \end{aligned}$$
It indicates that the operators \(S_{1} \) and \(S_{2} \) are continuous.
For \(n\in \mathbb {N}\), \(\varPhi _{n}\), the closed ball of radius n in \(\mathfrak {C}([0,b];\mathbb{Y}) \) described by \(\varLambda _{n} = \varLambda \mid \varPhi _{n} : \varPhi _{n}\multimap \mathfrak {C}([0,b];\mathbb{Y}) \), the limitation of Λ on \(\varPhi _{n} \). Next we illustrate the qualities of \(\varLambda _{n} \).
Proposition 3.2
\(\varLambda _{n} \)possess a weakly sequentially closed graph.
Proof
Let a sequence \(\lbrace \wp _{m}\rbrace \subset \varPhi _{n} \), \(\lbrace z_{m}\rbrace \subset \mathfrak {C}([0,b];\mathbb{Y}) \) obeying \({z_{m}} \subset \varLambda _{n}(\wp _{m}) \), for all m and \(\wp _{m}\rightharpoonup \wp \), \(z_{m}\rightharpoonup z\) in \(\mathfrak {C}([0,b];\mathbb{Y}) \); we claim \(z\in \varLambda _{n}(\wp ) \).
Since \(\wp _{m}\in \varPhi _{n} \), for each m and \(\wp _{m}(u)\rightharpoonup \wp (u) \), for every \(u\in [0,b] \), we conclude \(\|\wp (u)\| \leq \lim_{\inf _{m}\rightarrow \infty } \| \wp _{m}(u)\|\leq n \), for all u (see [19]). By \(z_{m}\in \varLambda _{n}(p_{m}) \), there is a sequence \(\lbrace \chi _{m}\rbrace \), \(\chi _{m}\in \varUpsilon _{\wp m, }\) provided for all \(u\in [0,b] \), we get
$$\begin{aligned} \begin{aligned} z_{m}(u)={}& \mathbb{T}(u) \bigl(z_{0}-h(0,z_{0}) \bigr)+ h \bigl(u,\wp _{m}(u) \bigr) + \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw. \end{aligned} \end{aligned}$$
By reference to \((\mathbf{H_{6}})\), \(\|\chi _{m}(u)\|\leq \mu _{n}(u)\), for almost everywhere u and every m. It means that \(\lbrace \chi _{m}\rbrace \) is bounded, uniformly integrable and \(\lbrace \chi _{m}(u)\rbrace \) is bounded in \(\mathbb{Y}\) for almost everywhere \(u\in [0,b]\). By the Dunford-Pettis theorem [13], we can conclude that there exist a subsequence, represented as the sequence, and functions \(g_{1}\), \(g_{2}\) provided \(z_{m}\rightharpoonup g_{1} \) in \(\mathfrak {C}([0,b];\mathbb{Y})\) and \(\chi _{m}\rightharpoonup g_{2} \) in \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\).
Therefore, we have \(S_{1} z_{m}\rightharpoonup S_{1} g_{1}\) and \(S_{2} \chi _{m}\rightharpoonup S_{2} g_{2}\). In this connection, let the linear continuous operator \(e^{\prime } : \mathbb{Y}\rightarrow \mathbb {R}\). The operators \(S_{1}\) and \(S_{2}\) are linear and continuous, therefore we have
$$ g_{1}\rightarrow e^{\prime }(S_{1} g_{1}) (u),\qquad g_{1}\in \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr), $$
is linear continuous operator on \(\mathfrak {C}([0,b];\mathbb{Y})\) to \(\mathbb{R}\) for every \(u \in [0,b]\). Also,
$$ g_{2}\rightarrow e^{\prime }(S_{2} g_{2}) (u),\qquad g_{2}\in L^{\frac{1}{\kappa _{1}}} \bigl([0,b];\mathbb{Y}\bigr), $$
is linear continuous operator on \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\) to \(\mathbb{R}\) for every \(u \in [0,b]\). By weak convergence, we get
$$\begin{aligned}& e^{\prime } \biggl( \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw+ \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw \biggr) \\& \quad \rightarrow e^{\prime } \biggl( \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)g _{1}(w)\,dw+ \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)g_{2}(w)\,dw \biggr). \end{aligned}$$
Therefore
for every \(u\in [0,b] \). This indicates that \(z_{0}(u) = z(u) \), for all \(u\in [0,b]\). Hence by Proposition 3.1, \(g_{2}(u)\in \mathscr {H}(u,\wp (u)) \), for almost everywhere \(u \in [0,b]\). □
Proposition 3.3
\(\varLambda _{n} \)is weakly compact.
Proof
At first, we show that \(\varLambda _{n}(\varPhi _{n}) \) is relatively weakly sequentially compact.
Let us consider \({\wp _{m}}\in \varPhi _{n} \) and \({z_{m}}\subset \mathfrak {C}([0,b];\mathbb{Y}) \) such that \(z_{m}\in \varLambda _{n}(\wp _{m}) \) for all m. For \(\varLambda _{n}\), there exists a sequence \(\lbrace \chi _{m} \rbrace \), \(\chi _{m}\in \varUpsilon _{\wp m} \), provided that
$$\begin{aligned} z_{m}(u)={}& \mathbb{T}(u) \bigl(z_{0}-h(0,z_{0}) \bigr)+ h \bigl(u,\wp _{m}(u) \bigr) + \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw, \end{aligned}$$
for every \(u\in [0,b]\). Therefore, by Proposition 3.2, there exist a subsequence, represented by the sequence, and functions \(g_{1}\), \(g _{2}\) provided \(z_{m}\rightharpoonup g_{1} \) in \(\mathfrak {C}([0,b];\mathbb{Y})\) and \(\chi _{m}\rightharpoonup g_{2} \) in \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\). Hence
Furthermore, by the nature of weak convergence of \({\chi _{m}}\), by \((\mathbf{H_{1}})\), we have
for all \(m\in \mathbb {N} \) and \(u\in [0,b] \). By utilizing the Proposition 3.2, we ensure that \(z_{m}\rightharpoonup l \) in \(\mathfrak {C}([0,b];\mathbb{Y}) \). Thus, \(\varLambda _{n}(\varPhi _{n}) \) is relatively weakly compact by Theorem 2.2. □
Proposition 3.4
\(\varLambda _{n} \)has convex and weakly compact values.
Proof
Fixing \(\wp \in \varPhi _{n} \), taking into account that \(\mathscr {H} \) is convex valued and the characteristics of \(\mathbb{T}(u) \) and \(\mathbb{S}(u) \), it implies that \(\varLambda _{n}(\wp ) \) is convex. By reference to Proposition 3.2 and Proposition 3.3, \(\varLambda _{n}( \wp )\) has weakly compact values. □
Next we list out the essential outcomes of this part.
Theorem 3.1
Assuming
\((\mathbf{H_{1}})\)–\((\mathbf{H_{6}})\)hold. Suppose
\((\mathbf{H_{7}})\)for a sequence of functions
\(\{ u_{n} \} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+})\)provided
$$ \sup_{ \Vert d \Vert \leq n} \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq u_{n}(u), $$
for almost everywhere
\(u\in [0,b]\), \(n\in \mathbb {N} \)with
$$ \lim_{n\rightarrow \infty }\inf \frac{ \Vert u_{n} \Vert _{\frac{1}{\kappa _{1}}}}{n} = 0. $$
(3.1)
Then (1.1)–(1.2) recognizes at least a mild solution.
Proof
We have to confirm that Λ maps \(\varPhi _{n} \) into itself for \(n\in \mathbb {N} \).
Assume by way of contradiction that there exist \(\lbrace z_{n}\rbrace \), \(\lbrace x_{n}\rbrace \) such that \(z_{n}\in \varPhi _{n}\), \(x_{n}\in \varLambda _{n}(z_{n}) \) and \(x_{n}\notin \varPhi _{n}\), for every \(n\in \mathbb {N}\). Therefore for a sequence \(\lbrace \chi _{n}\rbrace \subset L ^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\), \(\chi _{n}(w)\in \mathscr {H}(w,z_{n}(w)) \), we can have
for every \(u\in [0,b] \). By Proposition 3.3, we have
Then, for \(n\in \mathbb {N} \),
which leads to a contradiction. Therefore \(x_{n}\in \varPhi _{n} \).
Now, fix \(n\in \mathbb {N}\) such that \(\varLambda _{n}(\varPhi _{n})\subset \varPhi _{n} \). By Proposition 3.3, the set \(\mathscr {V}_{n} =\overline{ \varLambda _{n}(\varPhi _{n})}^{w} \) is weakly compact. Let \(\xi _{n} = \overline{ \operatorname{co}}(\mathscr {V}_{n}) \), be the closed convex hull of \(\mathscr {V}_{n} \). According to Theorem 2.3, \(\xi _{n} \) denotes a weakly compact set. In addition to that \(\varLambda _{n}(\varPhi _{n})\subset \varPhi _{n} \) and \(\varPhi _{n} \) is a closed convex set. Furthermore we have \(\xi _{n}\subset \varPhi _{n} \), and we have
$$ \varLambda _{n}(\xi _{n}) = \varLambda _{n} \bigl(\overline{\operatorname{co}} \bigl( \varLambda _{n}(\varPhi _{n}) \bigr) \bigr)\subseteq \varLambda _{n}(\varPhi _{n})\subseteq \overline{ \varLambda _{n}(\varPhi _{n})}^{w} = \mathscr {V}_{n}\subset \xi _{n}. $$
This shows that \(\varLambda _{n} \) possesses a weakly sequentially closed graph. As a result by utilizing Theorem 2.1, we conclude that the system (1.1)–(1.2) recognizes a solution. □
Remark 3.2
There exist \(\alpha \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) and a nondecreasing function \(\phi :[0,\infty ) \rightarrow [0,\infty )\) such that \(\|\mathscr {H}(u,d)\|\leq \alpha (u) \phi (\|d\|) \), for almost everywhere \(u\in [0,b] \) and every \(d\in \mathbb{Y}\). Then the restriction (3.1) is related to
$$ \lim_{n\rightarrow \infty }\inf \frac{\phi (n)}{n} = 0. $$
Theorem 3.2
Assume that
\((\mathbf{H_{1}})\)–\((\mathbf{H_{5}}) \)holds.
- \((\mathbf{H_{8}})\):
There exists
\(\rho \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \), for almost everywhere
\(u\in [0,b] \), for every
\(d\in \mathbb{Y}\)provided
$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq \rho (u) \bigl(1+ \Vert d \Vert \bigr) $$
and
$$ \frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q- \kappa _{1}}} \biggr) b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1- \kappa _{1}} \bigl( \mathscr {M}_{2} \mathfrak{M}_{h} + \Vert \rho \Vert _{\frac{1}{ \kappa _{1}}} \bigr)< 1, $$
(3.2)
then (1.1)–(1.2) possess at least a mild solution.
Proof
By reference to Theorem 3.1, assuming that there exist \(\lbrace z _{n}\rbrace \), \(\lbrace x_{n}\rbrace \) provided \(z_{n}\in \varPhi _{n}\), \(x _{n}\in \varLambda _{n}(z_{n}) \) and \(x_{n}\notin \varPhi _{n}\), for every \(n\in \mathbb {N} \), we get
$$\begin{aligned} n < {}& \Vert x_{n} \Vert _{0} \\ \leq{}& \mathscr {M}_{1} \Vert z_{0} \Vert +\delta _{r}(0) + \mathfrak{M}_{h}+\frac{\mathscr {M}_{1}\mathscr {M}_{2}\mathfrak{M}_{h} q}{ \varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \\ &{} +\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1- \kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \int _{0}^{b} { \bigl\vert \rho (\xi ) \bigr\vert } ^{\frac{1}{ \kappa _{1}}} \bigl(1+ \bigl\Vert z_{n}(\xi ) \bigr\Vert ^{\frac{1}{\kappa _{1}}} d \xi \bigr)^{\kappa _{1}} \\ \leq {}&\mathscr {M}_{1} \Vert z_{0} \Vert +\delta _{r}(0)+ \mathfrak{M}_{h} \\ &{}+\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \bigl( \mathscr {M}_{2} \mathfrak{M}_{h}+(1+n) \Vert \rho \Vert _{\frac{1}{\kappa _{1}}} \bigr), \quad n\in \mathbb {N}, \end{aligned}$$
which contradicts (3.2). The conclusion refers to Theorem 2.1, like Theorem 3.1. □
Theorem 3.3
Assuming that
\((\mathbf{H_{1}})\)–\((\mathbf{H_{5}})\)holds. \((\mathbf{H_{9}})\)there exist
\(\beta \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \)and a nondecreasing function
\(\varrho :[0,\infty ) \rightarrow [0, \infty )\)fulfilling
$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq \beta (u) \varrho \bigl( \Vert d \Vert \bigr), $$
for almost everywhere
\(u\in [0,b]\), \(d\in \mathbb{Y}\), and
\(\mathscr {L}>0 \)provided
$$ \frac{\mathscr {L}}{\mathscr {M}_{1} \Vert z_{0} \Vert + \delta _{r}(0) + \mathfrak{M} _{h}+\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} [ ({\frac{1-\kappa _{1}}{q-\kappa _{1}}} )b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} ]^{1- \kappa _{1}} ( \mathscr {M}_{2} \mathfrak{M}_{h} + \Vert \rho \Vert _{\frac{1}{ \kappa _{1}}} )\varrho (\mathscr {L})}>1, $$
(3.3)
then (1.1)–(1.2) possess at least a mild solution.
Proof
We have to ensure that Λ maps the ball \(\varPhi _{\mathscr {L}} \) into itself. For any \(z\in \varPhi _{\mathscr {L}}\), \(x\in \varGamma (z) \), we conclude
This indicates that (1.1)–(1.2) possess at least a mild solution. □