Skip to main content

Theory and Modern Applications

New results on Caputo fractional-order neutral differential inclusions without compactness


This article deals with existence results of Caputo fractional neutral inclusions without compactness in Banach space using weak topology. In fact, for weakly sequentially closed maps we apply fixed point theorems to obtain the existence of the solution. Furthermore, the results are manifested for fractional neutral system held by nonlocal conditions. To justify the application of the reported results an illustration is presented.

1 Introduction

The dynamical behavior of real life phenomenon are summarized by essential tools such as fractional differential equations (FDEs) in a precise manner. This aspect is the main convenience of derivatives with fractional-order versus integer-order models. FDEs and inclusions have obtained many interest for their applications in different fields, such as engineering, physics, mechanics, and mathematical modelling, because they are more practical and realistic to describe many natural phenomena. Compared with ordinary and partial differential systems, fractional differential systems have the strong prospect to modulate the real time issues with high efficiency. The goal of analyzing fractional differential systems for the above, major analysis [24, 6, 7, 12, 23, 2528, 3032, 38, 40, 42, 47, 48, 5658] had been carried out. El-Sayed and Ibrahim in [24]. were the first who considered fractional differential inclusions.

Furthermore, differential inclusions are used to model many realistic problems, arising from optimal control, economics, and so on. Recently, by using various techniques, the mild solutions together with other issues for different types of nonlinear fractional evolution inclusions have been studied in [1, 5, 1317, 21, 22, 33, 4345, 4952, 54, 55, 59].

We recall that several techniques and noncompact measures are used to achieve the outcome of the differential systems. Most of these papers, assumed the compactness of the semi group or alternatively a compactness condition on the nonlinear part (generally a measure of noncompactness). In [46], Ravichandran et al. analyzed the controllability of impulsive fractional integro-differential systems utilizing a contraction principle. Li [33] studied the controllability results for neutral impulsive inclusion systems using the Dhage fixed point theorem. The controllability for evolution inclusions without compactness was studied by Benedetti et al. [15]. To the best of our knowledge, the existence of mild solutions of Caputo fractional neutral differential inclusions without compactness has not been studied and this is the main motivation of this work, is to prove the existence of Caputo fractional neutral differential inclusions with weak topology, and without compactness. We investigate the following Caputo fractional neutral inclusion in Banach space:

$$\begin{aligned} &{}^{\mathrm{C}}D^{q}_{u} \bigl[ z(u)-h \bigl(u,z(u) \bigr) \bigr]\in \mathscr {A} z(u)+\mathscr {H} \bigl(u,z(u) \bigr), \quad \mbox{a.e. }u\in [0,b], 0< q\leq 1, \end{aligned}$$
$$\begin{aligned} & z(0)=z_{0} , \end{aligned}$$

where b is positive in nature, \(\mathscr {A}\) represents the infinitesimal generator of a \(C_{0}\)-strongly continuous semigroup \({T(u), u\geq 0,}\) defined from \(\mathscr {A}:D(\mathscr {A})\rightarrow \mathbb{Y}\). Besides, \(z(\cdot )\) assumes values in the Banach space \(\mathbb{Y}\), \(z_{0} \) is for an element of \(\mathbb{Y}\), \(\mathscr {H}:[0,b]\times \mathbb{Y}\multimap \mathbb{Y}\) denotes a multivalued map, \(h:[0,b]\times \mathbb{Y}\rightarrow \mathbb{Y}\) is equicontinuous and bounded.

The aim of this paper is to derive some sufficient conditions for the existence of neutral differential inclusions in Banach space. Furthermore, we expand the result to get the conditions for neutral differential inclusions with nonlocal conditions. In this paper another procedure is considered, it utilize the weak topology of the state space.

Considering the importance of modeling of crisis phenomena, one may extend the analysis to the existence of solutions for a three step crisis integro-differential equation. Also in order to rise the applicability of the fractional calculus, many researchers assumed a new type of fractional derivatives with different kernels. By exploiting it, one can examine the existence of solutions for high-order fractional differential equations using the Caputo–Fabrizio derivative [811, 36, 37].

The layout of this artical is as follows: The preliminaries and notations are listed in Sect. 2. The existence results are discussed in Sect. 3, and in Sect. 4 we investigate the same fractional system supported by nonlocal conditions. An illustration is offered to enhance the abstract technique.

2 Basic tools

Here, we present a few fundamental facts on fractional theory and theorems in order to use them in the manuscript.

Let \(\mathbb{Y}\) possessing \(\|\cdot \|\). For some constant \(\mathscr {M}_{1} > 0 \) provided \(\sup_{u\in [0,b]}\|T(u)\| \leq \mathscr {M}_{1} \). Let \((\mathbb{Y}, \Vert \cdot \Vert ) \) be a reflexive Banach space and \(\mathbb{Y}_{w} \) denotes \(\mathbb{Y}\) equipped with the weak topology. \(\mathfrak {C}([0,b];\mathbb{Y})\) refers the Banach space of all continuous functions from \([0,b]\) into \(\mathbb{Y}\). For \(\mathscr {D}\subset \mathbb{Y}\), \(\overline{\mathscr {D}}^{w} \) signifies the weak closure of \(\mathscr {D} \). Moreover, the bounded subset \(\mathscr {D} \) of a reflexive Banach space \(\mathbb{Y}\) is weakly relatively compact. Let us express by \(\| \cdot \| _{p} \) both the \(L^{p}([0,b]; \mathbb{Y})\)-norm and the \(L^{p}([0,b];\mathbb {R} )\)-norm and by \(\| \cdot \|_{0} \) the \(\mathfrak {C}([0,b];\mathbb{Y})\)-norm. We evoke (see [18], Theorem 4.3) that the sequence \(\lbrace \chi _{n} \rbrace \subset \mathfrak {C}([0,b];\mathbb{Y}) \) converges weakly to \(\chi \in \mathfrak {C}([0,b];\mathbb{Y}) \) if and only if

  1. (i)

    there exists \(M > 0\) such that, for every \(m \in \mathbb {N} \) and \(u \in [0,b]\), \(\| \chi _{m} (u) \| \leq M \);

  2. (ii)

    \(\chi _{m}(u) \rightharpoonup \chi (u)\), for every \(u \in [0,b]\).

In addition to that, we state some results that will be utilized further as a part of this manuscript.

Theorem 2.1

(Donal O’Regan fixed point theorem [39])

LetFbe a metrizable locally convex linear topological space andUbe a weakly compact, convex subset ofFand \(\mathbb {C}(U)\)the family of nonempty closed, convex subsets ofU. If \(G:U \rightarrow \mathbb {C}(U)\)possesses weakly sequentially closed graph thenGadmits a fixed point.

Theorem 2.2


LetΨbe a subset of the Banach space \(\mathbb{Y}\)then the subsequent affirmations are equivalent, namely:

  1. (i)

    Ψis relatively weakly compact;

  2. (ii)

    Ψis relatively weakly sequentially compact.

Remark 2.1


Let Ψ be a subset of the Banach space \(\mathbb{Y}\), then the subsequent affirmations are equivalent:

  1. (a)

    Ψ is weakly compact;

  2. (b)

    Ψ is weakly sequentially compact.

Theorem 2.3

(Krein–Smulian theorem [23, p. 434])

The convex hull of a weakly compact set in a Banach space \(\mathbb{Y}\)is weakly compact.

Theorem 2.4

(Pettis measurability theorem [41])

Let \((E, \varSigma ) \)be a measurable space, \(\mathbb{Y}\)be a separable Banach space. Then \(f:E\longrightarrow \mathbb{Y}\)is measurable if and only if, for every \(e\in E^{\prime }\), the function \(e\circ f: E\longrightarrow \mathbb{R}\)is measurable with respect toand the Borelσ-algebra in \(\mathbb{R}\).

Now we summarize the subsequent interpretations [7, 31, 32, 38, 42].

Definition 2.1

The form of the fractional integral for f is

$$ I^{\alpha } g(p)= \frac{1}{\varGamma (\alpha )} \int _{0}^{p}\frac{g(w)}{(p-w)^{1- \alpha }}\,dw, \quad p>0, \alpha >0, $$

as the right hand-side is point-wise on \([0,\infty )\) and \(\varGamma ( \alpha )=\int _{0}^{\infty }p^{\alpha -1}e^{-p}\,dp\).

Definition 2.2


The form of the R-L fractional derivative for \(g:[0, \infty )\rightarrow \mathbb{R}\) is characterized by

$$ {}^{(\text{R--L})}D_{0+}^{\alpha }g(p)=\frac{1}{\varGamma (m-\alpha )} \biggl(\frac{d}{dp} \biggr) ^{m} \int _{0}^{p} (p-w)^{m-\alpha -1}g(w)\,dw, \quad p>0, m-1< \alpha < m, $$

such that the function \(g(p)\) posses absolutely continuous derivative up to \((m-1)\).

Definition 2.3


The expression of the Caputo derivative for \(g:[0,\infty )\rightarrow \mathbb{R}\) is

$$ {}^{\mathrm{C}}D^{\alpha }g(p)= {}^{(\text{R--L})}D^{\alpha } \Biggl(g(p)-\sum_{k=0}^{m-1} \frac{p ^{k}}{k!}g^{(k)}(0) \Biggr),\quad p>0, m-1 < \alpha < m. $$

Remark 2.2

(i) If \(g(p)\in C^{m}[0,\infty )\), then

$$ {}^{\mathrm{C}}D^{\alpha }g(p)= \frac{1}{\varGamma (m-\alpha )} \int _{0}^{p} \frac{g ^{(m)}(w)}{(p-w)^{\alpha +1-m}}\,dw = I^{m-\alpha }g^{(m)}(p),\quad p>0, m-1< \alpha < m. $$

3 Existence results

Below, we demonstrate some sufficient conditions for the existence of (1.1)–(1.2) coupled with weak topology.


For \(\{T(u)\}_{u\geq 0}\) in \(\mathbb{Y}\), there is a constant \(\mathscr {M}_{1} \geq 1 \) fulfilling \(\sup_{u\in [0,b]}\|T(u)\|\leq \mathscr {M}_{1}\).

Additionally, we require that the multivalued nonlinearity function \(\mathscr {H}:[0,b] \times \mathbb{Y}\multimap \mathbb{Y}\) possess nonempty convex and weakly compact values.


For all \(z \in \mathbb{Y}\), the multivalued function \(\mathscr {H}(\cdot , z):[0,b]\multimap \mathbb{Y}\) has a measurable selection.


\(\mathscr {H}(u ,\cdot ):\mathbb{Y}\multimap \mathbb{Y}\) is weakly sequentially closed for almost everywhere u in \([0,b]\).


For a real valued function \(h:[0,b] \times \mathbb{Y}\rightarrow \mathbb{Y}\), for all \(u>0\) and some constant \(\mathfrak{M}_{h} >0 \) we have \(\|h(u, \cdot ) \| \leq \mathfrak{M}_{h}\).


For \(\kappa _{1} \in (0,q) \), for every \(r >0 \) and a function \(\delta _{r} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) as for each \(d \in \mathbb{Y}\), \(\|d\| \leq r\):

$$ \bigl\Vert h(u,d) \bigr\Vert = \sup \bigl\{ \Vert z \Vert :z \in h(u,d) \bigr\} \leq \delta _{r} {(u)}, $$

for almost everywhere \(u \in [0,b] \).


For \(\kappa _{1} \in (0,q) \), for every \(r >0 \) and a function \(\mu _{r} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) as for each \(d \in \mathbb{Y}\), \(\|d\| \leq r\):

$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert = \sup \bigl\{ \Vert z \Vert :z \in \mathscr {H}(u,d) \bigr\} \leq \mu _{r} {(u)}, $$

for almost everywhere \(u \in [0,b] \).

In connection with the above consideration, we determine the solution of (1.1)–(1.2).

Definition 3.1


\(z:[0,b]\rightarrow \mathbb{Y}\) is a mild solution of (1.1)–(1.2) if the accompanying recognize \(z(0) = z_{0} \) and there is \(\chi \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\) provided \(\chi (u) \in \mathscr {H}(u, z(u)) \) on \(u \in [0,b]\) and z fulfills

$$\begin{aligned} z(u) ={}& \mathbb{T}(u) \bigl[z_{0}-h(0,z_{0}) \bigr]+h \bigl(u,z(u) \bigr)+ \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,z(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi (w)\,dw,\quad u\in [0,b], \end{aligned}$$


$$ \mathbb{T}(u) = \int _{0}^{\infty }\xi _{q}(\theta )T \bigl(u^{q}\theta \bigr)\,d\theta , \qquad \mathbb{S}(u)= q \int _{0}^{\infty }\theta \xi _{q}(\theta )T \bigl(u^{q} \theta \bigr)\,d\theta , $$

and, for \(\theta \in (0,\infty )\),

$$\begin{aligned}& \xi _{q}(\theta )=\frac{1}{q} \theta ^{-1-\frac{1}{q}} \overline{w}_{q} \bigl( \theta ^{-\frac{1}{q}} \bigr)\geq 0, \\& \overline{w}_{q}(\theta ) = \frac{1}{\pi }\sum _{n=1}^{\infty }(-1)^{n-1} \theta ^{-nq-1}\frac{\varGamma (nq+1)}{n!}\sin (n\pi q), \\& \int _{0}^{\infty }\xi _{q}(\theta )\,d \theta = 1. \end{aligned}$$

Remark 3.1

Obviously, for \(\nu \in [0,1]\),

$$ \int _{0}^{\infty }\theta ^{\nu }\xi _{q}(\theta )\,d\theta = \int _{0}^{ \infty }\theta ^{-q\nu } \overline{w}_{q}(\theta )\,d\theta = \frac{ \varGamma (1+\nu )}{\varGamma (1+q\nu )}. $$

Lemma 3.1

(See [56])

\(\mathbb{T}\)and \(\mathbb{S}\)obey the subsequent assertions:

  1. (i)

    For a constant \(\mathscr {M}_{2}\geq 1 \), for any \(z\in \mathbb{Y}\), fixed \(u\geq 0\)and for the bounded linear operators \(\mathbb{T}\)and \(\mathbb{S}\)we have

    $$\begin{aligned}& \bigl\Vert \mathbb{T}(u)z \bigr\Vert \leq \mathscr {M}_{1} \Vert z \Vert \quad \textit{and} \quad \bigl\Vert \mathbb{S}(u)z \bigr\Vert \leq \frac{q \mathscr {M}_{1}}{\varGamma (1+q)} \Vert z \Vert , \\& \bigl\Vert \mathscr {A} \mathbb{S}(u)z \bigr\Vert \leq \frac{q \mathscr {M}_{1}\mathscr {M}_{2}}{\varGamma (1+q)} \Vert z \Vert . \end{aligned}$$
  2. (ii)

    The operators \(\{\mathbb{T}(u),u\geq 0\}\)and \(\{\mathbb{S}(u),u\geq 0\}\)are strongly continuous.

Construct the set \(\varUpsilon _{\wp }\), for given \(\wp \in \mathfrak {C}([0,b];\mathbb{Y}) \) as \(\varUpsilon _{\wp }= \{ \chi \in L^{\frac{1}{ \kappa _{1}}}([0,b];\mathbb{Y}):\chi (u) \in \mathscr {H}(u,\wp (u))\mbox{ for almost everywhere } u \in [0,b] \} \). \(\varUpsilon _{\wp }\) is nonempty as the next Proposition 3.1 mentions.

Proposition 3.1

(See [15, 59])

Let us assume that a multivalued map \(\mathscr {H}:[0,b] \times \mathbb{Y}\multimap \mathbb{Y}\)obeys \((\mathbf{H_{2}})\)\(( \mathbf{H_{6}})\), the set \(\varUpsilon _{\wp }\)is nonempty for any \(\wp \in \mathfrak {C}([0,b];\mathbb{Y}) \).

We define the operator \(\varLambda : \mathfrak {C}([0,b];\mathbb{Y})\multimap \mathfrak {C}([0,b];\mathbb{Y})\) by

$$\begin{aligned} \varLambda (\wp ) =& \bigl\lbrace z\in \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr):z(u) = \mathbb{T}(u) \bigl(z _{0}-h(0,z_{0}) \bigr)+ h \bigl(u, \wp (u) \bigr) \\ &{}+ S_{1} (z) (u) + S_{2} \chi (u), \chi \in \varUpsilon _{\wp } \bigr\rbrace , \end{aligned}$$


$$\begin{aligned}& S_{1} :\mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr)\rightarrow \mathfrak {C} \bigl([0,b]; \mathbb{Y}\bigr), \\& S_{1} (z) = \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp (w) \bigr)\,dw, \end{aligned}$$


$$\begin{aligned}& S_{2} : L^{\frac{1}{\kappa _{1}}} \bigl([0,b];\mathbb{Y}\bigr)\rightarrow \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr), \\& S_{2}(\chi ) = \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi (w)\,dw. \end{aligned}$$

At first, we show that \(S_{1} \) and \(S_{2} \) are continuous.

For any \(z_{n}, z\in \mathfrak {C}([0,b];\mathbb{Y})\) and \(z_{n}\rightarrow z\) (\(n\rightarrow \infty \)), using \((\mathbf{H_{5}})\), for every \(u\in [0,b] \), we get

$$ (u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \leq 2(u-w)^{q-1} \mu _{r}(w),\quad \text{almost everywhere } w\in [0,u). $$

Also for any \(\chi _{n}, \chi \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y}) \) and \(\chi _{n}\rightarrow \chi\) (\(n\rightarrow \infty \)), using \((\mathbf{H_{6}})\), we can have, for every \(u\in [0,b] \),

$$ (u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \leq 2(u-w)^{q-1} \delta _{r}(w),\quad \text{almost everywhere } w\in [0,u). $$

Moreover, the functions

$$ \int _{0}^{u}(u-w)^{q-1} \mu _{r}(w)\,dw = \biggl[ \biggl({\frac{1-\kappa _{1}}{q- \kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \Vert \mu _{r} \Vert _{\frac{1}{\kappa _{1}}} $$


$$ \int _{0}^{u}(u-w)^{q-1} \delta _{r}(w)\,dw = \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1- \kappa _{1}} \Vert \delta _{r} \Vert _{\frac{1}{\kappa _{1}}} $$

becomes integrable for \(u\in [0,b]\). Taking into account the Lebesgue theorem, we conclude, as \(n\rightarrow \infty \),

$$ \int _{0}^{u}(u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \,dw\rightarrow 0\quad \text{and}\quad \int _{0}^{u}(u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \,dw\rightarrow 0. $$


$$\begin{aligned}& \begin{aligned} \bigl\Vert S_{1}(z_{n})-S_{1}(z) \bigr\Vert &\leq \biggl\Vert \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w) \bigl(z_{n}(w)-z(w) \bigr)\,dw \biggr\Vert & \\ &\leq \frac{q\mathscr {M}_{1}\mathscr {M}_{2}}{\varGamma { (1+q)}} \int _{0}^{u}(u-w)^{q-1} \bigl\Vert z_{n}(w)-z(w) \bigr\Vert \,dw\rightarrow 0, \quad \text{as } n\rightarrow \infty , \end{aligned} \\& \begin{aligned} \bigl\Vert S_{2}(\chi _{n})-S_{2}(\chi ) \bigr\Vert &\leq \biggl\Vert \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w) \bigl(\chi _{n}(w)-\chi (w) \bigr)\,dw \biggr\Vert & \\ &\leq \frac{q \mathscr {M}_{1}}{\varGamma { (1+q)}} \int _{0}^{u}(u-w)^{q-1} \bigl\Vert \chi _{n}(w)-\chi (w) \bigr\Vert \,dw \rightarrow 0,\quad \text{as } n\rightarrow \infty . \end{aligned} \end{aligned}$$

It indicates that the operators \(S_{1} \) and \(S_{2} \) are continuous.

For \(n\in \mathbb {N}\), \(\varPhi _{n}\), the closed ball of radius n in \(\mathfrak {C}([0,b];\mathbb{Y}) \) described by \(\varLambda _{n} = \varLambda \mid \varPhi _{n} : \varPhi _{n}\multimap \mathfrak {C}([0,b];\mathbb{Y}) \), the limitation of Λ on \(\varPhi _{n} \). Next we illustrate the qualities of \(\varLambda _{n} \).

Proposition 3.2

\(\varLambda _{n} \)possess a weakly sequentially closed graph.


Let a sequence \(\lbrace \wp _{m}\rbrace \subset \varPhi _{n} \), \(\lbrace z_{m}\rbrace \subset \mathfrak {C}([0,b];\mathbb{Y}) \) obeying \({z_{m}} \subset \varLambda _{n}(\wp _{m}) \), for all m and \(\wp _{m}\rightharpoonup \wp \), \(z_{m}\rightharpoonup z\) in \(\mathfrak {C}([0,b];\mathbb{Y}) \); we claim \(z\in \varLambda _{n}(\wp ) \).

Since \(\wp _{m}\in \varPhi _{n} \), for each m and \(\wp _{m}(u)\rightharpoonup \wp (u) \), for every \(u\in [0,b] \), we conclude \(\|\wp (u)\| \leq \lim_{\inf _{m}\rightarrow \infty } \| \wp _{m}(u)\|\leq n \), for all u (see [19]). By \(z_{m}\in \varLambda _{n}(p_{m}) \), there is a sequence \(\lbrace \chi _{m}\rbrace \), \(\chi _{m}\in \varUpsilon _{\wp m, }\) provided for all \(u\in [0,b] \), we get

$$\begin{aligned} \begin{aligned} z_{m}(u)={}& \mathbb{T}(u) \bigl(z_{0}-h(0,z_{0}) \bigr)+ h \bigl(u,\wp _{m}(u) \bigr) + \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw. \end{aligned} \end{aligned}$$

By reference to \((\mathbf{H_{6}})\), \(\|\chi _{m}(u)\|\leq \mu _{n}(u)\), for almost everywhere u and every m. It means that \(\lbrace \chi _{m}\rbrace \) is bounded, uniformly integrable and \(\lbrace \chi _{m}(u)\rbrace \) is bounded in \(\mathbb{Y}\) for almost everywhere \(u\in [0,b]\). By the Dunford-Pettis theorem [13], we can conclude that there exist a subsequence, represented as the sequence, and functions \(g_{1}\), \(g_{2}\) provided \(z_{m}\rightharpoonup g_{1} \) in \(\mathfrak {C}([0,b];\mathbb{Y})\) and \(\chi _{m}\rightharpoonup g_{2} \) in \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\).

Therefore, we have \(S_{1} z_{m}\rightharpoonup S_{1} g_{1}\) and \(S_{2} \chi _{m}\rightharpoonup S_{2} g_{2}\). In this connection, let the linear continuous operator \(e^{\prime } : \mathbb{Y}\rightarrow \mathbb {R}\). The operators \(S_{1}\) and \(S_{2}\) are linear and continuous, therefore we have

$$ g_{1}\rightarrow e^{\prime }(S_{1} g_{1}) (u),\qquad g_{1}\in \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr), $$

is linear continuous operator on \(\mathfrak {C}([0,b];\mathbb{Y})\) to \(\mathbb{R}\) for every \(u \in [0,b]\). Also,

$$ g_{2}\rightarrow e^{\prime }(S_{2} g_{2}) (u),\qquad g_{2}\in L^{\frac{1}{\kappa _{1}}} \bigl([0,b];\mathbb{Y}\bigr), $$

is linear continuous operator on \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\) to \(\mathbb{R}\) for every \(u \in [0,b]\). By weak convergence, we get

$$\begin{aligned}& e^{\prime } \biggl( \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw+ \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw \biggr) \\& \quad \rightarrow e^{\prime } \biggl( \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)g _{1}(w)\,dw+ \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)g_{2}(w)\,dw \biggr). \end{aligned}$$



for every \(u\in [0,b] \). This indicates that \(z_{0}(u) = z(u) \), for all \(u\in [0,b]\). Hence by Proposition 3.1, \(g_{2}(u)\in \mathscr {H}(u,\wp (u)) \), for almost everywhere \(u \in [0,b]\). □

Proposition 3.3

\(\varLambda _{n} \)is weakly compact.


At first, we show that \(\varLambda _{n}(\varPhi _{n}) \) is relatively weakly sequentially compact.

Let us consider \({\wp _{m}}\in \varPhi _{n} \) and \({z_{m}}\subset \mathfrak {C}([0,b];\mathbb{Y}) \) such that \(z_{m}\in \varLambda _{n}(\wp _{m}) \) for all m. For \(\varLambda _{n}\), there exists a sequence \(\lbrace \chi _{m} \rbrace \), \(\chi _{m}\in \varUpsilon _{\wp m} \), provided that

$$\begin{aligned} z_{m}(u)={}& \mathbb{T}(u) \bigl(z_{0}-h(0,z_{0}) \bigr)+ h \bigl(u,\wp _{m}(u) \bigr) + \int _{0}^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,\wp _{m}(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi _{m}(w)\,dw, \end{aligned}$$

for every \(u\in [0,b]\). Therefore, by Proposition 3.2, there exist a subsequence, represented by the sequence, and functions \(g_{1}\), \(g _{2}\) provided \(z_{m}\rightharpoonup g_{1} \) in \(\mathfrak {C}([0,b];\mathbb{Y})\) and \(\chi _{m}\rightharpoonup g_{2} \) in \(L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\). Hence


Furthermore, by the nature of weak convergence of \({\chi _{m}}\), by \((\mathbf{H_{1}})\), we have


for all \(m\in \mathbb {N} \) and \(u\in [0,b] \). By utilizing the Proposition 3.2, we ensure that \(z_{m}\rightharpoonup l \) in \(\mathfrak {C}([0,b];\mathbb{Y}) \). Thus, \(\varLambda _{n}(\varPhi _{n}) \) is relatively weakly compact by Theorem 2.2. □

Proposition 3.4

\(\varLambda _{n} \)has convex and weakly compact values.


Fixing \(\wp \in \varPhi _{n} \), taking into account that \(\mathscr {H} \) is convex valued and the characteristics of \(\mathbb{T}(u) \) and \(\mathbb{S}(u) \), it implies that \(\varLambda _{n}(\wp ) \) is convex. By reference to Proposition 3.2 and Proposition 3.3, \(\varLambda _{n}( \wp )\) has weakly compact values. □

Next we list out the essential outcomes of this part.

Theorem 3.1

Assuming \((\mathbf{H_{1}})\)\((\mathbf{H_{6}})\)hold. Suppose \((\mathbf{H_{7}})\)for a sequence of functions \(\{ u_{n} \} \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+})\)provided

$$ \sup_{ \Vert d \Vert \leq n} \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq u_{n}(u), $$

for almost everywhere \(u\in [0,b]\), \(n\in \mathbb {N} \)with

$$ \lim_{n\rightarrow \infty }\inf \frac{ \Vert u_{n} \Vert _{\frac{1}{\kappa _{1}}}}{n} = 0. $$

Then (1.1)(1.2) recognizes at least a mild solution.


We have to confirm that Λ maps \(\varPhi _{n} \) into itself for \(n\in \mathbb {N} \).

Assume by way of contradiction that there exist \(\lbrace z_{n}\rbrace \), \(\lbrace x_{n}\rbrace \) such that \(z_{n}\in \varPhi _{n}\), \(x_{n}\in \varLambda _{n}(z_{n}) \) and \(x_{n}\notin \varPhi _{n}\), for every \(n\in \mathbb {N}\). Therefore for a sequence \(\lbrace \chi _{n}\rbrace \subset L ^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\), \(\chi _{n}(w)\in \mathscr {H}(w,z_{n}(w)) \), we can have


for every \(u\in [0,b] \). By Proposition 3.3, we have


Then, for \(n\in \mathbb {N} \),


which leads to a contradiction. Therefore \(x_{n}\in \varPhi _{n} \).

Now, fix \(n\in \mathbb {N}\) such that \(\varLambda _{n}(\varPhi _{n})\subset \varPhi _{n} \). By Proposition 3.3, the set \(\mathscr {V}_{n} =\overline{ \varLambda _{n}(\varPhi _{n})}^{w} \) is weakly compact. Let \(\xi _{n} = \overline{ \operatorname{co}}(\mathscr {V}_{n}) \), be the closed convex hull of \(\mathscr {V}_{n} \). According to Theorem 2.3, \(\xi _{n} \) denotes a weakly compact set. In addition to that \(\varLambda _{n}(\varPhi _{n})\subset \varPhi _{n} \) and \(\varPhi _{n} \) is a closed convex set. Furthermore we have \(\xi _{n}\subset \varPhi _{n} \), and we have

$$ \varLambda _{n}(\xi _{n}) = \varLambda _{n} \bigl(\overline{\operatorname{co}} \bigl( \varLambda _{n}(\varPhi _{n}) \bigr) \bigr)\subseteq \varLambda _{n}(\varPhi _{n})\subseteq \overline{ \varLambda _{n}(\varPhi _{n})}^{w} = \mathscr {V}_{n}\subset \xi _{n}. $$

This shows that \(\varLambda _{n} \) possesses a weakly sequentially closed graph. As a result by utilizing Theorem 2.1, we conclude that the system (1.1)–(1.2) recognizes a solution. □

Remark 3.2

There exist \(\alpha \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \) and a nondecreasing function \(\phi :[0,\infty ) \rightarrow [0,\infty )\) such that \(\|\mathscr {H}(u,d)\|\leq \alpha (u) \phi (\|d\|) \), for almost everywhere \(u\in [0,b] \) and every \(d\in \mathbb{Y}\). Then the restriction (3.1) is related to

$$ \lim_{n\rightarrow \infty }\inf \frac{\phi (n)}{n} = 0. $$

Theorem 3.2

Assume that \((\mathbf{H_{1}})\)\((\mathbf{H_{5}}) \)holds.


There exists \(\rho \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \), for almost everywhere \(u\in [0,b] \), for every \(d\in \mathbb{Y}\)provided

$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq \rho (u) \bigl(1+ \Vert d \Vert \bigr) $$


$$ \frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q- \kappa _{1}}} \biggr) b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1- \kappa _{1}} \bigl( \mathscr {M}_{2} \mathfrak{M}_{h} + \Vert \rho \Vert _{\frac{1}{ \kappa _{1}}} \bigr)< 1, $$

then (1.1)(1.2) possess at least a mild solution.


By reference to Theorem 3.1, assuming that there exist \(\lbrace z _{n}\rbrace \), \(\lbrace x_{n}\rbrace \) provided \(z_{n}\in \varPhi _{n}\), \(x _{n}\in \varLambda _{n}(z_{n}) \) and \(x_{n}\notin \varPhi _{n}\), for every \(n\in \mathbb {N} \), we get

$$\begin{aligned} n < {}& \Vert x_{n} \Vert _{0} \\ \leq{}& \mathscr {M}_{1} \Vert z_{0} \Vert +\delta _{r}(0) + \mathfrak{M}_{h}+\frac{\mathscr {M}_{1}\mathscr {M}_{2}\mathfrak{M}_{h} q}{ \varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \\ &{} +\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1- \kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \int _{0}^{b} { \bigl\vert \rho (\xi ) \bigr\vert } ^{\frac{1}{ \kappa _{1}}} \bigl(1+ \bigl\Vert z_{n}(\xi ) \bigr\Vert ^{\frac{1}{\kappa _{1}}} d \xi \bigr)^{\kappa _{1}} \\ \leq {}&\mathscr {M}_{1} \Vert z_{0} \Vert +\delta _{r}(0)+ \mathfrak{M}_{h} \\ &{}+\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} \biggl[ \biggl({\frac{1-\kappa _{1}}{q-\kappa _{1}}} \biggr)b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} \biggr]^{1-\kappa _{1}} \bigl( \mathscr {M}_{2} \mathfrak{M}_{h}+(1+n) \Vert \rho \Vert _{\frac{1}{\kappa _{1}}} \bigr), \quad n\in \mathbb {N}, \end{aligned}$$

which contradicts (3.2). The conclusion refers to Theorem 2.1, like Theorem 3.1. □

Theorem 3.3

Assuming that \((\mathbf{H_{1}})\)\((\mathbf{H_{5}})\)holds. \((\mathbf{H_{9}})\)there exist \(\beta \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb {R}_{+}) \)and a nondecreasing function \(\varrho :[0,\infty ) \rightarrow [0, \infty )\)fulfilling

$$ \bigl\Vert \mathscr {H}(u,d) \bigr\Vert \leq \beta (u) \varrho \bigl( \Vert d \Vert \bigr), $$

for almost everywhere \(u\in [0,b]\), \(d\in \mathbb{Y}\), and \(\mathscr {L}>0 \)provided

$$ \frac{\mathscr {L}}{\mathscr {M}_{1} \Vert z_{0} \Vert + \delta _{r}(0) + \mathfrak{M} _{h}+\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} [ ({\frac{1-\kappa _{1}}{q-\kappa _{1}}} )b^{\frac{q-\kappa _{1}}{1-\kappa _{1}}} ]^{1- \kappa _{1}} ( \mathscr {M}_{2} \mathfrak{M}_{h} + \Vert \rho \Vert _{\frac{1}{ \kappa _{1}}} )\varrho (\mathscr {L})}>1, $$

then (1.1)(1.2) possess at least a mild solution.


We have to ensure that Λ maps the ball \(\varPhi _{\mathscr {L}} \) into itself. For any \(z\in \varPhi _{\mathscr {L}}\), \(x\in \varGamma (z) \), we conclude


This indicates that (1.1)–(1.2) possess at least a mild solution. □

4 Nonlocal conditions

The active desire for analyzing fractional systems with nonlocal problems comes mainly from theoretical physics. The outcomes regarding the existence of Cauchy problems using nonlocal conditions were firstly investigated by Byszewski [20]. Many papers [13, 21, 34, 35, 53] have acknowledged the facts of the existence, controllability and uniqueness for varied nonlinear fractional systems and abstract differential systems. Motivated by the above discussions, this part deals with the existence of (1.1)–(1.2) as

$$\begin{aligned} &{}^{\mathrm{C}}D^{q}_{t} \bigl[ z(u)-h \bigl(u,z(u) \bigr) \bigr]\in \mathscr {A}z(u)+\mathscr {H} \bigl(u,z(u) \bigr),\quad u\in [0,b], \end{aligned}$$
$$\begin{aligned} & z(0)+\varphi (z)=z_{0} , \end{aligned}$$

where \(\varphi : \mathfrak {C}([0,b];\mathbb{Y})\rightarrow \mathbb{Y}\) fulfills the following conditions:


For some constant \(\mathscr {N}>0 \) provided \(\|\varphi (z)\|\leq \mathscr {N}\), \(z \in \mathfrak {C}([0,b];\mathbb{Y}) \).


There is a constant \(\mathscr {L}>0 \) and

$$\begin{aligned}& \frac{\mathscr {L}}{\mathscr {M}_{1} \Vert z_{0} \Vert +\mathscr {N}+\delta _{r}(0)+ \mathfrak{M}_{h}+\frac{\mathscr {M}_{1}q}{\varGamma { (1+q)}} [ ( {\frac{1-\kappa _{1}}{q-\kappa _{1}}} )b^{\frac{q-\kappa _{1}}{1- \kappa _{1}}} ]^{1-\kappa _{1}} ( \mathscr {M}_{2} \mathfrak{M}_{h}+ \Vert \rho \Vert _{\frac{1}{\kappa _{1}}} )\varrho (\mathscr {L})} \\& \quad >1. \end{aligned}$$

In order to show the high accuracy, we always refer the nonlocal condition in the place of initial condition \(z(0) = z_{0}\). Particularly, \(\varphi (z) \) can be formulated as

$$ \varphi (z)=\sum_{i=1}^{n} K_{i} z(t_{i}), $$

where \(K_{i} \) (\(i= 1,2,3,\ldots,n\)) are constants and \(0< t_{1}< t_{2}<\cdots<t _{n}\leq b \).

Definition 4.1

\(z :[0,b] \rightarrow \mathbb{Y}\) is called the mild solution of the neutral fractional differential model (4.1)–(4.2) if the accompanying recognize \(z(0)+ \varphi (z) = z_{0} \) and there exists \(\chi \in L^{\frac{1}{\kappa _{1}}}([0,b];\mathbb{Y})\) provided \(\chi (u) \in \mathscr {H}(u, z(u)) \) on \(u \in [0,b]\) and z satisfies

$$\begin{aligned} z(u) ={}& \mathbb{T}(u) \bigl[z_{0}-\varphi (z)-h(0,z_{0}) \bigr]+h \bigl(u,z(u) \bigr)+ \int _{0} ^{u}(u-w)^{q-1}\mathscr {A} \mathbb{S}(u-w)h \bigl(w,z(w) \bigr)\,dw \\ &{} + \int _{0}^{u}(u-w)^{q-1} \mathbb{S}(u-w)\chi (w)\,dw,\quad u\in [0,b], \end{aligned}$$

such that \(\mathbb {T}(u)\) and \(\mathbb {S}(u)\) are defined as in Definition 3.1.

Theorem 4.1

If Theorem 3.1, Theorem 3.2and Theorem 3.3hold, and in addition hypotheses \((\mathbf{H_{10}})\)and \((\mathbf{H_{11}})\)hold, then the neutral fractional system with inclusion (4.1)(4.2) has at least a mild solution.


We introduce the solution operator \(\varLambda :\mathfrak {C}([0,b];\mathbb{Y})\multimap \mathfrak {C}([0,b];\mathbb{Y}) \) as

$$\begin{aligned} \varLambda (\wp ) =& \bigl\lbrace z\in \mathfrak {C} \bigl([0,b];\mathbb{Y}\bigr):z(u) = \mathbb{T} \bigl(z _{0}-\varphi (z)-h(0,z_{0}) \bigr)+ h \bigl(u,\wp (u) \bigr) \\ &{}+ S_{1}(z) (u) + S_{2}( \chi ) (u) \bigr\rbrace . \end{aligned}$$

It should be noted that we recognize that Λ possesses a fixed point by employing the techniques utilized in Theorems corresponding to initial conditions. The proof is similar, therefore we omitted it. □

5 An example

Let us consider the model:

$$\begin{aligned}& {}^{\mathrm{C}} D_{u}^{q} \biggl[v(u,y) + \int _{0}^{\pi }k(\theta ,y)v(u,\theta )\,d\theta \biggr] \in \frac{\partial ^{2}}{\partial y^{2}}v(u,y)+s \bigl(u,v(u,y) \bigr),\quad u\in I=[0, \pi ], \\& v(u,0)= v(u,\pi )= 0, \end{aligned}$$
$$\begin{aligned}& v(0,y)= 0,\quad 0< y< \pi , \end{aligned}$$

where \(0< q\leq 1\), construct \(\mathbb{Y}=L^{2}(0,\pi )\) and \(\mathscr {A}: D(\mathscr {A})\subseteq \mathbb{Y}\rightarrow \mathbb{Y}\) by \(\mathscr {A}z = z''\), together \(D(\mathscr {A})=\{z\in \mathbb{Y}:y''\in \mathbb{Y}\}\), are absolutely continuous. Obviously \(\mathscr {A}\) is the infinitesimal generator of \(\{T(u), u\ge 0\}\) in \(\mathbb{Y}\) and generates the strongly continuous semi group \(T(u) \). Additionally, \(\mathscr {A}\) has eigenvalues in the form of \(-n^{2}, n\in \mathbb {N}\), and it can be denoted as

$$ \mathscr {A}z=\sum_{n=1}^{\infty }n^{2} \langle z,z_{n}\rangle ,\quad z\in D(\mathscr {A}), $$

and \(z_{n}(x)=\sqrt{\frac{2}{\pi }}\sin (nx)\), \(n=1,2,3,\ldots\) , represents the set of eigenvectors of \(\mathscr {A}\) which are orthonormal. Also for any \(z\in \mathbb{Y}\),

$$ T(u)z=\sum_{n=1}^{\infty }e^{-n^{2}} u\langle z,z_{n}\rangle z_{n}. $$

Clearly, \(T(u)\) fulfills \((\mathbf{H_{1}})\). Define \(h:[0,\pi ] \times \mathbb{Y}\rightarrow \mathbb{Y}\) by

$$ h(v) (z)= \int _{0}^{\pi }k(\theta ,z) v(u,\theta ) \,d \theta , $$

where the continuous function \(k: [0,\pi ]\times [0, \pi ]\longrightarrow \mathbb{R}\) provided \(\Vert k(\cdot , z) \Vert \leq 1\), for each \(z\in [0,\pi ]\) and \(v(u)(z)= v(u,z)\), \(\mathscr {H}(u,z(u)) z =s(u,v(u,z)) \). With a suitable choice of \(\mathscr {A}\), \(\mathscr {H}\), h, the above said system can be equivalent to (1.1)–(1.2), that is,

$$\begin{aligned} & z(0)+\varphi (z)=z_{0} . \end{aligned}$$

Besides assuming \(\mathscr {H}\), h satisfies the concerned hypotheses. As a result, (5.1)–(5.2) has at least a mild solution on \([0,b]\).

6 Conclusion

This manuscript addresses the existence of Caputo fractional neutral inclusions without compactness in a Banach space by using weak topology. Further, the results are derived for fractional neutral system where nonlocal conditions hold. Our theorem guarantees the effectiveness of the existence, which is the result of the system concerned.


  1. Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ. 246, 3834–3863 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21, 661–681 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Ali Dokuyucu, M., Celik, E., Bulut, H., Baskonus, H.M.: Cancer treatment model with the Caputo–Fabrizio fractional derivative. Eur. Phys. J. Plus 133, 1–6 (2018)

    Article  Google Scholar 

  4. Alzabut, J.O., Abdeljawad, T., Baleanu, D.: Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra competition model. J. Comput. Anal. Appl. 25, 89–898 (2018)

    MathSciNet  Google Scholar 

  5. Anastassiou, G.A., Argyros, I.K.: Approximating fixed points with applications in fractional calculus. J. Comput. Anal. Appl. 21, 1225–1242 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Anguraj, A., Kanjanadevi, S., Baleanu, D.: On mild solution of abstract neutral fractional order impulsive differential equations with infinite delay. J. Comput. Anal. Appl. 24, 1232–1244 (2018)

    MathSciNet  Google Scholar 

  7. Baleanu, D., Gunvenc, Z.B., Tenreiro Machado, J.A.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin (2010)

    Book  Google Scholar 

  8. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Baleanu, D., Mousalou, A., Rezapour, S.: A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baleanu, D., Mousalou, A., Rezapour, S.: The extended fractional Caputo–Fabrizio derivative of order \(0\leq \sigma <1\) on \(C_{\mathbb{R}}[0,1]\) and the existence of solutions for two higher-order series-type differential equations. Adv. Differ. Equ. 2018, 255 (2018)

    Article  MATH  Google Scholar 

  11. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019)

    Article  MathSciNet  Google Scholar 

  12. Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos Solitons Fractals 116, 136–145 (2018)

    Article  MathSciNet  Google Scholar 

  13. Benchohra, M., Gatsori, E.P., Ntouyas, S.K.: Controllability results for semilinear evolution inclusions with nonlocal conditions. J. Optim. Theory Appl. 118, 493–513 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benedetti, I., Malaguti, L., Taddei, V.: Semilinear differential inclusions via weak topologies. J. Math. Anal. Appl. 368, 90–102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benedetti, I., Obukhovskii, V., Taddei, V.: Controllability for systems governed by semilinear evolution inclusion without compactness. Nonlinear Differ. Equ. Appl. 21, 795–812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benedetti, I., Obukhovskii, V., Zecca, P.: Controllability for impulsive semilinear differential inclusions in a Banach space with a non-compact semigroup. Discuss. Math., Differ. Incl. Control Optim. 31, 39–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benedetti, I., Rubbioni, P.: Existence of solutions on compact and non-compact intervals for semilinear impulsive differential inclusions with delay. Topol. Methods Nonlinear Anal. 32, 227–245 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Bochner, S., Taylor, A.E.: Linear functionals on certain spaces of abstractly valued functions. Ann. Math. 39, 913–944 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezis, H.: Analyse Foctionelle, Théorie et Applications. Masson, Paris (1983)

    MATH  Google Scholar 

  20. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, Y.K., Nieto, J.J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30, 227–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Debbouche, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62, 1442–1450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dunford, N., Schwartz, J.T.: Linear Operators. Wiley, New York (1998)

    MATH  Google Scholar 

  24. El-Sayed, A.M.A., Ibrahim, A.G.: Set-valued integral equations of arbitrary (fractional) order. Appl. Math. Comput. 118, 113–121 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Gambo, Y.Y., Ameen, R., Jarad, F., Abdeljawad, T.: Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives. Adv. Differ. Equ. 2018, 134 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jothimani, K., Kaliraj, K., Hammouch, Z., Ravichandran, C.: New results on controllability in the framework of fractional integro-differential equations with nondense domain. Eur. Phys. J. Plus 134, 441 (2019)

    Article  Google Scholar 

  28. Jothimani, K., Valliammal, N., Ravichandran, C.: Existence result for a neutral fractional integro-differential equation with state dependent delay. J. Appl. Nonlinear Dyn. 7, 371–381 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  30. Khan, H., Khan, A., Abdeljawad, T., Alkhazzan, A.: Existence results in Banach space for a nonlinear impulsive system. Adv. Differ. Equ. 2019, 18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  32. Lakshmikantham, V., Leela, S., Vasundhara Devi, J.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  33. Li, Y.: Controllability of nonlinear neutral fractional impulsive differential inclusions in Banach spaces. Adv. Differ. Equ. 2014, 234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, H., Liao, C.W., Pang, C.T.: Existence of some semilinear nonlocal functional differential equations of neutral type. Abstr. Appl. Anal. 2013, Article ID 503656 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Machado, J.A., Ravichandran, C., Rivero, M., Trujillo, J.J.: Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions. Fixed Point Theory Appl. 2013, 66 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Melike Aydogan, S., Baleanu, D., Mousalou, A., Rezapour, S.: On approximate solutions for two higher-order Caputo–Fabrizio fractional integro-differential equations. Adv. Differ. Equ. 2017, 221 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Melike Aydogan, S., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  39. O’Regan, D.: Fixed point theorems for weakly sequentially closed maps. Trans. Am. Math. Soc. 44, 277–304 (1938)

    Article  Google Scholar 

  40. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  41. Pettis, B.J.: On the integration in vector spaces. Arch. Math. 36, 61–70 (2000)

    Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  43. Ravichandran, C., Baleanu, D.: Existence results for fractional functional integro-differential evolution equations with infinite delay in Banach spaces. Adv. Differ. Equ. 2013, 215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ravichandran, C., Baleanu, D.: On the controllability of fractional functional integro-differential systems with infinite delay in a Banach spaces. Adv. Differ. Equ. 2013, 291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ravichandran, C., Jothimani, K., Baskonus, H.M., Valliammal, N.: New results on nondensely characterized integro-differential equations with fractional order. Eur. Phys. J. Plus 133, 109 (2018)

    Article  Google Scholar 

  46. Ravichandran, C., Trujillo, J.J.: Controllability of impulsive fractional functional integro-differential equations in Banach spaces. J. Funct. Spaces 2013, Article ID 812501 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Ravichandran, C., Valliammal, N., Nieto, J.J.: New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. J. Franklin Inst. 356, 1535–1565 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shiri, B., Baleanu, D.: System of fractional differential algebraic equations with applications. Chaos Solitons Fractals 120, 203–212 (2019)

    Article  MathSciNet  Google Scholar 

  49. Valliammal, N., Ravichandran, C.: Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. Nonlinear Stud. 25, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Valliammal, N., Ravichandran, C., Park, J.H.: On the controllability of fractional neutral integro-differential delay equations with nonlocal conditions. Math. Methods Appl. Sci. 40, 5044–5055 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vijayakumar, V.: Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille–Yosida operators. Int. J. Control 92, 2210–2222 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vijayakumar, V., Murugesu, R.: Controllability for a class of second-order evolution differential inclusions without compactness. Appl. Anal. 98, 1367–1385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Vijayakumar, V., Ravichandran, C., Murugesu, R.: Nonlocal controllability of mixed Volterra–Fredholm type fractional semilinear integro-differential inclusions in Banach spaces. Dyn. Contin. Discrete Impuls. Syst. 20, 485–502 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Vijayakumar, V., Ravichandran, C., Murugesu, R.: Approximate controllability for a class of fractional neutral integro-differential inclusions with state-dependent delay. Nonlinear Stud. 20, 511–530 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal., Real World Appl. 12, 3642–3653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  57. Zhou, Y.: Fractional Evolution Equations and Inclusions, Analysis and Control. Elsevier/Academic Press, London (2016)

    MATH  Google Scholar 

  58. Zhou, Y.: Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. (2017).

    Article  Google Scholar 

  59. Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4, 507–524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references


This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations



All authors have equally made contributions to this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

There does not exist any competing interest regarding this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqudah, M.A., Ravichandran, C., Abdeljawad, T. et al. New results on Caputo fractional-order neutral differential inclusions without compactness. Adv Differ Equ 2019, 528 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: