In this section, the quadratic convergence of successive approximation sequences is proved by the quasilinearization method.
Theorem 3.1
Set
\(\varOmega=\{(t, u)\in J\times R: y_{0}(t)\leq u(t)\leq z_{0}(t)\}\), \(\varOmega_{1}=[y_{0}(0),z_{0}(0)]\), and
\(\varOmega _{2}=[y_{0}(T),z_{0}(T)]\). Assume that the following conditions hold.
- \((A_{3.1})\):
\(y_{0}\), \(z_{0}\)are coupled lower and upper solutions of Eq. (1.1), and
\(y_{0}(t)\leq z_{0}(t)\)onJ;
- \((A_{3.2})\):
\(f_{x}\in C(\varOmega, R)\), \(g_{x}, g_{y}\in C(\varOmega_{1}\times\varOmega_{2}, R)\), \(f_{x}<0\), \(f_{y}<0\), \(f_{z}<0\), \(0<{g_{y}}<{g_{x}}<1\);
- \((A_{3.3})\):
\(f_{xx}, f_{xy}, f_{yy}\in C(\varOmega, R)\), \(g_{xx}, g_{xy}, g_{yy}\in C(\varOmega_{1}\times\varOmega_{2}, R)\), \(f_{xx}\geq0\), \(f_{xy}\geq0\), \(f_{xz}\geq0\), \(f_{yy}\geq0\), \(f_{zz}\geq 0\), \(f_{yz}\geq0\), \(g_{xx}\leq0\), \(g_{xy}\leq0\), \(g_{yy}\leq0\).
If
$$\begin{aligned}[b] &\int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) +f_{y} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr)+k_{0}Tf_{z} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \bigr\} \,dt\hspace{-24pt}\\&\quad\geq-1,\end{aligned} $$
(3.1)
then there exist the monotone sequences
\(\{y_{n}(t)\}\)and
\(\{z_{n}(t)\}\)converging uniformly to the unique solutionxof Eq. (1.1) and the convergence is quadratic, that is,
$$ \begin{gathered} \max_{t\in J} \bigl\vert x(t)-y_{n+1}(t) \bigr\vert \leq d_{1} \max _{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{2} \max_{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \\ \max_{t\in J} \bigl\vert x(t)-z_{n+1}(t) \bigr\vert \leq d_{3} \max_{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{4} \max _{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \end{gathered} $$
where the coefficients
\(d_{1}\), \(d_{2}\), \(d_{3}\), and
\(d_{4}\)are nonnegative constants.
Proof
Consider the following problems:
$$\begin{aligned}& \textstyle\begin{cases} y_{n+1}'(t)=f (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) +f_{x} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [y_{n+1}(t) \\ \phantom{y_{n+1}'(t)=}{}-y_{n}(t) ]+f_{y} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [y_{n+1}(\theta)-y_{n}(\theta) ] \\ \phantom{y_{n+1}'(t)=}{}+f_{z} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [(Sy_{n+1}) (t)-(Sy_{n}) (t) ], \quad t\in J, \\ 0=g (y_{n}(0), z_{n}(T) )+g_{x} (y_{n}(0), y_{n}(T) ) [y_{n+1}(0)-y_{n}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n}(0), z_{n}(T) ) [z_{n+1}(T)-z_{n}(T) ], \end{cases}\displaystyle \end{aligned}$$
(3.2)
$$\begin{aligned}& \textstyle\begin{cases} z_{n+1}'(t)=f (t, z_{n}(t), z_{n} (\theta(t) ), (Sz_{n}) (t) )+f_{x} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [z_{n+1}(t) \\ \phantom{z_{n+1}'(t)=}{}-z_{n}(t) ]+f_{y} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [z_{n+1}(\theta)-z_{n}(\theta) ] \\ \phantom{z_{n+1}'(t)=}{}+f_{z} (t, y_{n}(t), y_{n} (\theta(t) ), (Sy_{n}) (t) ) [(Sz_{n+1}) (t)-(Sz_{n}) (t) ], \quad t\in J, \\ 0=g (z_{n}(0), y_{n}(T) )+g_{x} (y_{n}(0), y_{n}(T) ) [z_{n+1}(0)-z_{n}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n}(0), z_{n}(T) ) [y_{n+1}(T)-y_{n}(T) ], \end{cases}\displaystyle \end{aligned}$$
(3.3)
in which \(n=0, 1, \dots\). By the mean value theorem, we conclude that
$$ \begin{aligned} g(\bar{\alpha}, \beta)-g(\alpha, \bar{\beta})&=g(\bar{ \alpha}, \beta) -g(\alpha, \beta)+g(\alpha, \beta)-g(\alpha, \bar{\beta}) \\ &\leq g_{x}(\delta_{1}, \beta)[\bar{\alpha}- \alpha]-g_{y}(\alpha, \delta_{2})[\bar{\beta}-\beta], \end{aligned} $$
where \(\alpha(0)\leq\delta_{1}\leq\bar{\alpha}(0)\), \(\beta(T)\leq\delta _{2}\leq\bar{\beta}(T)\). Note that
$$\begin{aligned} &f \bigl(t,\bar{\gamma}(t), \bar{\gamma}(\theta), (S\bar{\gamma}) (t) \bigr)-f \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \\ &\quad=f_{x} \bigl(t, \delta_{3}, \bar{\gamma}(\theta), (S\bar{ \gamma}) (t) \bigr) \bigl[\bar {\gamma}(t)-\gamma(t) \bigr] +f_{y} \bigl(t, \gamma(t), \delta_{4}, (S\bar{\gamma}) (t) \bigr) \bigl[\bar{ \gamma }( \theta)-\gamma(\theta) \bigr] \\ &\quad\quad+f_{z} \bigl(t, \gamma(t), \gamma(\theta), \delta_{5} \bigr) \bigl[(S\bar{\gamma }) (t)-(S\gamma) (t) \bigr] \\ &\quad\geq f_{x} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[\bar{\gamma }(t)-\gamma(t) \bigr] +f_{y} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[\bar{\gamma}(\theta )-\gamma(\theta) \bigr] \\ &\quad\quad{}+f_{z} \bigl(t, \gamma(t), \gamma(\theta), (S\gamma) (t) \bigr) \bigl[(S\bar{\gamma }) (t)-(S\gamma) (t) \bigr], \end{aligned}$$
where \(\gamma(t) \leq\delta_{3}\leq\bar{\gamma}(t)\), \(\gamma(\theta)\leq\delta_{4}\leq\bar{\gamma}(\theta)\), \((S\gamma)(t)\leq\delta_{5}\leq(S\bar{\gamma})(t)\), and
$$\begin{aligned} & \int^{T}_{0}\bigl\{ f_{x} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr) +f_{y} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr)+k_{0}Tf_{z} \bigl(t, z_{n}, z_{n}(\theta), (Sz_{n}) (t) \bigr) \bigr\} \,dt \\ &\quad\geq \int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) +f_{y} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) \\ &\quad\quad+k_{0}Tf_{z} \bigl(t, y_{n}, y_{n}(\theta), (Sy_{n}) (t) \bigr) \bigr\} \,dt \\ &\quad \geq \int^{T}_{0} \bigl\{ f_{x} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) +f_{y} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \\ &\quad\quad+k_{0}Tf_{z} \bigl(t, y_{0}, y_{0}(\theta), (Sy_{0}) (t) \bigr) \bigr\} \,dt \\ &\quad\geq-1. \end{aligned}$$
Using Lemma 2.3 and mathematical induction, we can deduce that
$$ y_{0}(t)\leq y_{1}(t)\leq\cdots\leq y_{n}(t) \leq z_{n}(t)\leq\cdots\leq z_{1}(t)\leq z_{0}(t), \quad n=0, 1, \ldots , t\in J. $$
Thus, the sequences \(\{y_{n}\}\) and \(\{z_{n}\}\) are uniformly bounded and equicontinuous on J.
$$\begin{aligned} \bigl\vert y_{n}(t)-y_{n}(s) \bigr\vert ={}& \biggl\vert y_{n}(0)+ \int_{0}^{t} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \\ &- \biggl\{ y_{n}(0)+ \int_{0}^{s} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \biggr\} \biggr\vert \\ ={}& \biggl\vert \int_{s}^{t} \bigl\{ f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\} \,d\varphi \biggr\vert \\ \leq{}& \int^{t}_{s} \bigl\vert f \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \\ &+f_{x} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\varphi) \\ &-y_{n}(\varphi) \bigr]+f_{y} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi ) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[y_{n+1}(\theta)-y_{n}( \theta) \bigr] \\ &+f_{z} \bigl(\varphi, y_{n}(\varphi), y_{n} \bigl(\theta(\varphi) \bigr), (Sy_{n}) (\varphi) \bigr) \bigl[(Sy_{n+1}) (\varphi)-(Sy_{n}) (\varphi) \bigr] \bigr\vert \,d\varphi \\ \leq{}&M \vert t-s \vert . \end{aligned}$$
By virtue of Arzelà–Ascoli theorem, there exist the subsequences \(\{y_{n_{k}}\}\) and \(\{z_{n_{k}}\}\) converging uniformly on J to some continuous functions y and z, respectively, and
$$\begin{aligned}& \textstyle\begin{cases} y_{n_{k+1}}'(t)=f (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) +f_{x} (t, y_{n_{k}}(t), y_{n_{k}} ( \theta(t) ), (Sy_{n_{k}}) (t) ) [y_{n_{k+1}}(t) \\ \phantom{y_{n_{k+1}}'(t)=}{}-y_{n_{k}}(t) ]+f_{y} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [y_{n_{k+1}}(\theta)-y_{n_{k}}(\theta) ] \\ \phantom{y_{n_{k+1}}'(t)=}{}+f_{z} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [(Sy_{n_{k+1}}) (t)-(Sy_{n_{k}}) (t) ], \quad t\in J, \\ 0=g (y_{n_{k}}(0), z_{n_{k}}(T) )+g_{x} (y_{n_{k}}(0), y_{n_{k}}(T) ) [y_{n_{k+1}}(0)-y_{n_{k}}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n_{k}}(0), z_{n_{k}}(T) ) [z_{n_{k+1}}(T)-z_{n_{k}}(T) ], \end{cases}\displaystyle \\& \textstyle\begin{cases} z_{n_{k+1}}'(t)=f (t, z_{n_{k}}(t), z_{n_{k}} (\theta(t) ), (Sz_{n_{k}}) (t) )+f_{x} (t, y_{n_{k}}(t), y_{n_{k}} ( \theta(t) ), (Sy_{n_{k}}) (t) ) [z_{n_{k+1}}(t) \\ \phantom{z_{n_{k+1}}'(t)=}{}-z_{n_{k}}(t) ]+f_{y} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [z_{n_{k+1}}(\theta)-z_{n_{k}}(\theta) ] \\ \phantom{z_{n_{k+1}}'(t)=}{}+f_{z} (t, y_{n_{k}}(t), y_{n_{k}} (\theta(t) ), (Sy_{n_{k}}) (t) ) [(Sz_{n_{k+1}}) (t)-(Sz_{n_{k}}) (t) ], \quad t\in J, \\ 0=g (z_{n_{k}}(0), y_{n_{k}}(T) )+g_{x} (y_{n_{k}}(0), y_{n_{k}}(T) ) [z_{n_{k+1}}(0)-z_{n_{k}}(0) ] \\ \phantom{0=}{}+g_{y} (y_{n_{k}}(0), z_{n_{k}}(T) ) [y_{n_{k+1}}(T)-y_{n_{k}}(T) ], \end{cases}\displaystyle \end{aligned}$$
when \(n_{k}\rightarrow\infty\), y and z satisfy the equations
$$ \textstyle\begin{cases} y'(t)=f (t, y(t), y (\theta(t) ), (Sy) (t) ), \quad t\in J, \\ 0=g (y(0), z(T) ), \end{cases} $$
and
$$ \textstyle\begin{cases} z'(t) =f (t, z(t), z ( \theta(t) ), (Sz) (t) ), \quad t\in J, \\ 0=g (z(0), y(T) ). \end{cases} $$
Thus, \(y, z\in C^{1}(J, R)\) are coupled solutions of Eq. (1.1).
Now, we prove that \(y=z\) is a unique solution of Eq. (1.1). Clearly, \(y(t)\leq z(t)\). Let \(p(t)=z(t)-y(t)\). Then
$$\begin{aligned} p'(t)={}& f \bigl(t, z(t), z \bigl(\theta(t) \bigr), (Sz) (t) \bigr)-f \bigl(t, y(t), y \bigl(\theta(t) \bigr), (Sy) (t) \bigr) \\ ={}& f_{x} \bigl(t, \xi_{1}, z \bigl(\theta(t) \bigr), (Sz) (t) \bigr)p(t)+f_{y} \bigl(t, y(t), \xi _{2}, (Sz) (t) \bigr)p( \theta) \\ &+f_{z} \bigl(t, y(t), y \bigl(\theta(t) \bigr), \xi_{3} \bigr) (Sp) (t), \end{aligned}$$
where \(y(t)\leq\xi_{1}\leq z(t)\), \(y(\theta(t))\leq\xi_{2}\leq z(\theta (t))\), \((Sy)(t)\leq\xi_{3}\leq(Sz)(t)\), and
$$\begin{aligned} g \bigl(z(0), y(T) \bigr)-g \bigl(y(0), z(T) \bigr) &\leq N_{1} \bigl[z(0)-y(0) \bigr]-N_{2} \bigl[z(T)-y(T) \bigr] \\ &= N_{1} p(0)-N_{2} p(T). \end{aligned}$$
In view of (2.1), we get \(p(0)\leq({N_{2}}/{N_{1}})p(T)\). An application of Lemma 2.2 yields \(p(t)\leq0\), that is, \(z(t)\leq y(t)\). Hence, we have \(y(t)= z(t)\).
Let \(x\in[y_{0}, z_{0}]\) be any solution of Eq. (1.1). It is not difficult to prove that \(y_{n}(t)\leq x(t)\leq z_{n}(t)\). Letting \(n\rightarrow\infty\), then \(y(t)= z(t)=x(t)\), it means that \(\{y_{n_{k}}\}\) and \(\{z_{n_{k}}\}\) converge to the unique solution x of Eq. (1.1).
Finally, we prove the quadratic convergence of \(\{y_{n}\}\) and \(\{ z_{n}\}\) to x. Let \(p_{n+1}(t)= x(t)-y_{n+1}(t)\geq0\) and \(q_{n+1}(t)= z_{n+1}(t)-x(t)\geq0\). Then
$$\begin{aligned} p_{n+1}'(t) ={}&f_{x} \bigl(t, \rho_{1}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}(t)+f_{y} \bigl(t, y_{n}(t), \rho_{2}, (Sx) (t) \bigr) p_{n}( \theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{3} \bigr) (Sp_{n}) (t) \\ &-f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n}(t) \\ &-f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n}(\theta) \\ &-f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n}) (t) \\ &+f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n+1}(t) \\ &+f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) p_{n+1}(\theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n+1}) (t) \\ \leq{}& f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}^{2}(t) \\ &+f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr)p_{n}(t)p_{n}(\theta) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{6} \bigr)p_{n}(t) (Sp_{n}) (t) \\ &+f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr)p_{n}^{2}(\theta) \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \rho_{8} \bigr) p_{n}(\theta ) (Sp_{n}) (t) \\ &+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n})^{2}(t) \\ &+f_{x} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr)p_{n+1}(t) \\ &+f_{y} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) p_{n+1}(\theta) \\ &+f_{z} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n+1}) (t) \\ \leq{}& f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)p_{n}^{2}(t) + \frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr) \bigl[ p_{n}^{2}(t) \\ &+ p_{n}^{2}(\theta) \bigr]+ \frac{1}{2}f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{6} \bigr) \bigl[p_{n}^{2}(t)+(Sp_{n})^{2}(t) \bigr] \\ &+f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr)p_{n}^{2}(\theta)+\frac {1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \bigl[p_{n}^{2}(\theta ) \\ &+(Sp_{n})^{2}(t) \bigr]+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), (Sy_{n}) (t) \bigr) (Sp_{n})^{2}(t) \\ \leq{}& \biggl\{ f_{xx} \bigl(t, \rho_{4}, x \bigl(\theta(t) \bigr), (Sx) (t) \bigr)+ \frac {1}{2}f_{xy} \bigl(t,y_{n}(t), \rho_{5},(Sx) (t) \bigr) \\ &+ \frac{1}{2}f_{xz} \bigl(t,y_{n}(t),y_{n} \bigl(\theta(t) \bigr),\rho_{6} \bigr) \biggr\} p_{n}^{2}(t)+ \biggl\{ f_{yy} \bigl(t, y_{n}(t), \rho_{7}, (Sx) (t) \bigr) \\ &+\frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \rho_{5}, (Sx) (t) \bigr)+\frac {1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \biggr\} p_{n}^{2}(\theta) \\ &+ \biggl\{ f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), (Sy_{n}) (t) \bigr) +\frac {1}{2}f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{6} \bigr) \\ &+\frac{1}{2}f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \rho_{8} \bigr) \biggr\} (Sp_{n})^{2}(t) \\ \leq{}& D_{0}p_{n}^{2}(t)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(t), \end{aligned}$$
where \(y_{n}(t)\leq\rho_{4}\leq\rho_{1}\leq x(t)\), \(y_{n}(\theta)\leq \rho_{5}\leq x(\theta)\), \((Sy_{n})(t)\leq\rho_{3}, \rho_{6}, \rho_{8}\leq(Sx)(t)\), \(y_{n}(\theta)\leq\rho_{7}\leq\rho_{2}\leq x(\theta)\). Hence, we conclude that
$$ \begin{aligned}[b] p_{n+1}(t)&\leq p_{n+1}(0)+ \int^{t}_{0} \bigl\{ D_{0}p_{n}^{2}(s)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(s) \bigr\} \,ds \\ &\leq p_{n+1}(0)+ \int^{T}_{0} \bigl\{ D_{0}p_{n}^{2}(s)+D_{1}p_{n}^{2}( \theta)+D_{2}(Sp_{n})^{2}(s) \bigr\} \,ds \\ &\leq p_{n+1}(0)+C_{0}\max_{t\in J} p_{n}^{2}(t), \end{aligned} $$
(3.4)
where \(C_{0}=T[D_{0}+D_{1}+D_{2}T^{2}k_{0}^{2}]\). Moreover, we obtain
$$\begin{aligned} 0={}&g \bigl(x(0), x(T) \bigr)-g \bigl(y_{n}(0), z_{n}(T) \bigr)-g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[-p_{n+1}(0)+p_{n}(0) \bigr] \\ &-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[q_{n+1}(T)-q_{n}(T) \bigr] \\ ={}&g_{x} \bigl(\delta_{1}, x(T) \bigr)p_{n}(0)-g_{y} \bigl(y_{n}(0), \delta _{2} \bigr)q_{n}(T)-g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[-p_{n+1}(0) \\ &+p_{n}(0) \bigr]-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[q_{n+1}(T)-q_{n}(T) \bigr] \end{aligned}$$
and
$$\begin{aligned} &g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)p_{n+1}(0)\\ &\quad= \bigl[g_{y} \bigl(y_{n}(0), \delta _{2} \bigr)-g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigr]q_{n}(T) \\ &\quad\quad+ \bigl[g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)-g_{x} \bigl(\delta_{1}, x(T) \bigr) \bigr]p_{n}(0)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T) \\ &\quad=-g_{yy} \bigl(y_{n}(0), \delta_{3} \bigr)q_{n}^{2}(T)-g_{xx} \bigl( \delta_{4}, x(T) \bigr)p_{n}^{2}(0)-g_{xy} \bigl(y_{n}(0), \delta_{5} \bigr)p_{n}(T)p_{n}(0) \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T), \end{aligned}$$
where \(y_{n}(0)\leq\delta_{4}\leq\delta_{1}\leq x(0)\), \(x(T)\leq\delta _{2}\leq\delta_{3}\leq z_{n}(T)\). Therefore, we deduce that
$$ \begin{aligned}[b] p_{n+1}(0)&\leq B_{0}q_{n}^{2}(T)+B_{1}p_{n}^{2}(0)+B_{2}p_{n}^{2}(T)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)q_{n+1}(T) \\ &\leq B_{0}\max_{t\in J} q_{n}^{2}(t)+B_{1} \max_{t\in J} p_{n}^{2}(t)+B_{2} \max_{t\in J} p_{n}^{2}(t)+ \frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}q_{n+1}(T) \\ &\leq C_{1}\max_{t\in J} p_{n}^{2}(t)+C_{2} \max_{t\in J} q_{n}^{2}(t)+C_{1}^{0}q_{n+1}(T), \end{aligned} $$
(3.5)
where
$$\begin{gathered} B_{0}=-\frac{g_{yy}(y_{n}(0),\delta_{3})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{1}=-\frac{g_{xx}(\delta_{4}, x(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \\ B_{2}=-\frac{1}{2}\frac{g_{xy}(y_{n}(0), \delta_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad C_{1}=B_{1}+B_{2}, \qquad C_{2}=B_{0}, \qquad C_{1}^{0}= \frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}.\end{gathered} $$
In a similar way, we can arrive at
$$\begin{aligned} q_{n+1}'(t) \leq{}& f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr)q_{n}(t) \bigl(q_{n}(t)+p_{n}(t) \bigr) \\ &+f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)q_{n}(t) \bigl(q_{n}(\theta )+p_{n}(\theta) \bigr) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi _{6} \bigr)q_{n}(t) \bigl[(Sq_{n}) (t)+(Sp_{n}) (t) \bigr] \\ &+f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr)q_{n}(\theta)p_{n}(t) \\ &+f_{yy} \bigl(t, y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr)q_{n}(\theta) \bigl[p_{n}( \theta )+q_{n}(\theta) \bigr] \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{9} \bigr)q_{n}(\theta ) \bigl[(Sp_{n}) (t)+(Sq_{n}) (t) \bigr] \\ &+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta(t) \bigr), \xi_{3} \bigr)p_{n}(t) (Sq_{n}) (t) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr)p_{n}(\theta) (Sq_{n}) (t) \\ &+f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi _{12} \bigr) \bigl[(Sp_{n}) (t)+(Sq_{n}) (t) \bigr](Sq_{n}) (t) \\ \leq{}& \biggl\{ \frac{3}{2}f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr)+f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr) \\ &+f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{6} \bigr) \biggr\} q_{n}^{2}(t)+ \frac {1}{2} \bigl\{ f_{xx} \bigl(t, \xi_{4}, z_{n} \bigl(\theta(t) \bigr), (Sz_{n}) (t) \bigr) \\ &+f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr)+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta (t) \bigr), \xi_{3} \bigr) \bigr\} p_{n}^{2}(t) \\ &+ \biggl\{ \frac{1}{2}f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)+\frac {1}{2}f_{yx} \bigl(t, \xi_{7}, \xi_{2}, (Sz_{n}) (t) \bigr) \\ &+\frac{3}{2}f_{yy} \bigl(t,y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr)+f_{yx} \bigl(t, \xi _{7}, \xi_{2}, (Sz_{n}) (t) \bigr) \biggr\} q_{n}^{2}(\theta) \\ &+\frac{1}{2} \bigl\{ f_{xy} \bigl(t, y_{n}(t), \xi_{5}, (Sz_{n}) (t) \bigr)+f_{yy} \bigl(t, y_{n}(t), \xi_{8}, (Sz_{n}) (t) \bigr) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr) \bigr\} p_{n}^{2}(\theta) + \frac{1}{2} \bigl\{ f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{6} \bigr) \\ &+f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{9} \bigr)+f_{zx} \bigl(t, \xi_{10}, x \bigl(\theta(t) \bigr), \xi_{3} \bigr) \\ &+f_{zy} \bigl(t, y_{n}(t), \xi_{11}, \xi_{3} \bigr)+3f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{12} \bigr) \bigr\} (Sq_{n})^{2}(t) \\ &+\frac{1}{2} \bigl\{ f_{xz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{6} \bigr) +f_{yz} \bigl(t, y_{n}(t), y_{n} \bigl(\theta(t) \bigr), \xi_{9} \bigr) \\ & +f_{zz} \bigl(t, y_{n}(t), y_{n} \bigl( \theta(t) \bigr), \xi_{12} \bigr) \bigr\} (Sp_{n})^{2}(t) \\ \leq{}& D_{3}q_{n}^{2}(t)+D_{4}p_{n}^{2}(t)+D_{5}q_{n}^{2}( \theta )+D_{6}p_{n}^{2}(\theta)+D_{7}(Sq_{n})^{2}(t) +D_{8}(Sp_{n})^{2}(t) \end{aligned}$$
and
$$ \begin{aligned} [b]q_{n+1}(t)\leq{}& q_{n+1}(0)+ \int^{T}_{0} \bigl\{ D_{3}q_{n}^{2}(s)+D_{4}p_{n}^{2}(s)+D_{5}q_{n}^{2}( \theta )+D_{6}p_{n}^{2}(\theta) \\ &+D_{7}(Sq_{n})^{2}(s)+D_{8}(Sp_{n})^{2}(s) \bigr\} \,ds \\ \leq{}& q_{n+1}(0)+\max_{t\in J} p_{n}^{2}(t)T \bigl[D_{4}+D_{6}+D_{8}T^{2}k_{0}^{2} \bigr]+\max_{t\in J} q_{n}^{2}(t)T \bigl[D_{3} \\ &+D_{5}+D_{7}T^{2}k_{0}^{2} \bigr] \\ ={}&q_{n+1}(0)+C_{3}\max_{t\in J} p_{n}^{2}(t)+C_{4}\max_{t\in J} q_{n}^{2}(t), \end{aligned} $$
(3.6)
where \(C_{3}=T[D_{4}+D_{6}+D_{8}T^{2}k_{0}^{2}]\), \(C_{4}=T[D_{3}+D_{5}+D_{7}T^{2}k_{0}^{2}]\), \(y_{n}(t)\leq\xi_{4}\leq\xi_{1}\), \(y_{n}(\theta)\leq\xi_{5}\leq z_{n}(\theta)\), \(x(t)\leq\xi_{1}\leq z_{n}(t)\), \((Sy_{n})(t)\leq\xi_{6},\xi_{9}\leq (Sz_{n})(t)\), \(x(\theta)\leq\xi_{2}\leq z_{n}(\theta)\), \(y_{n}(t)\leq\xi_{7},\xi _{10}\leq x(t)\), \((Sx)(t)\leq\xi_{3}\leq(Sz_{n})(t)\), \(y_{n}(\theta)\leq\xi_{8}\leq\xi_{2}\), \(y_{n}(\theta)\leq\xi_{11}\leq x(\theta)\), \((Sy_{n})(t)\leq\xi _{12}\leq\xi_{3}\). Meanwhile, we have
$$\begin{aligned} 0={}&{-}g \bigl(x(0), x(T) \bigr)+g \bigl(z_{n}(0), y_{n}(T) \bigr)+g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[q_{n+1}(0)-q_{n}(0) \bigr] \\ &+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[-p_{n+1}(T)+p_{n}(T) \bigr] \\ ={}&g_{x}\bigl(\alpha_{1}, y_{n}(T) \bigr)q_{n}(0)-g_{y} \bigl(x(0), \alpha_{2} \bigr)p_{n}(T) \\ &+g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr) \bigl[q_{n+1}(0)-q_{n}(0) \bigr]+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr) \bigl[-p_{n+1}(T)+p_{n}(T) \bigr] \end{aligned}$$
and
$$\begin{aligned} &g_{x} \bigl(y_{n}(0), y_{n}(T) \bigr)q_{n+1}(0)\\ &\quad\leq-g_{xx} \bigl(\alpha_{3}, y_{n}(T) \bigr)q_{n}(0) \bigl[q_{n}(0)+p_{n}(0) \bigr] \\ &\qquad-g_{yy} \bigl(y(0), \alpha_{5} \bigr)p_{n}(T) \bigl[q_{n}(T)+p_{n}(T) \bigr]+g_{yx} \bigl(\alpha _{4}, \alpha_{2}(T) \bigr)p_{n}(T)p_{n}(0) \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T) \\ &\quad\leq-g_{xx} \bigl(\alpha_{3}, y_{n}(T) \bigr)q_{n}(0) \bigl[q_{n}(0)+p_{n}(0) \bigr]-g_{yy} \bigl(y(0), \alpha_{5} \bigr) p_{n}(T) \bigl[q_{n}(T)+p_{n}(T) \bigr] \\ &\qquad+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T). \end{aligned}$$
Hence, we conclude that
$$ \begin{aligned}[b] q_{n+1}(0) \leq{}& B_{3}q_{n}^{2}(T)+B_{4}q_{n}^{2}(0)+B_{5}p_{n}^{2}(0)+B_{6}p_{n}^{2}(T)+g_{y} \bigl(y_{n}(0), z_{n}(T) \bigr)p_{n+1}(T) \\ \leq{}& B_{3}\max_{t\in J} q_{n}^{2}(t)+B_{4} \max_{t\in J} q_{n}^{2}(t)+B_{5} \max_{t\in J} p_{n}^{2}(t) +B_{6} \max_{t\in J} p_{n}^{2}(t) \\ &+\frac{g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}p_{n+1}(T) \\ \leq{}& C_{5}\max_{t\in J} p_{n}^{2}(t)+C_{6} \max_{t\in J} q_{n}^{2}(t)+C_{2}^{0}p_{n+1}(T), \end{aligned} $$
(3.7)
where
$$\begin{gathered} B_{3}=-\frac{1}{2}\frac{g_{yy}(y(0), \alpha_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{4}=- \frac{3}{2}\frac{g_{xx}(\alpha_{3}, y_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \\ B_{5}=-\frac{1}{2} \frac{g_{xx}(\alpha_{3}, y_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}, \qquad B_{6}=-\frac{3}{2}\frac{g_{yy}(y(0), \alpha_{5})}{g_{x}(y_{n}(0), y_{n}(T))}, \\ C_{5}=B_{5}+B_{6}, \qquad C_{6}=B_{3}+B_{4}, \qquad C_{2}^{0}=\frac {g_{y}(y_{n}(0), z_{n}(T))}{g_{x}(y_{n}(0), y_{n}(T))}.\end{gathered} $$
It follows from (3.4)–(3.7) that
$$ \begin{gathered} p_{n+1}(0)\leq C^{1}_{1}p_{n}^{2}(t)+C^{1}_{2}q_{n}^{2}(t), \\ q_{n+1}(0)\leq C^{1}_{3}p_{n}^{2}(t)+C^{1}_{4}q_{n}^{2}(t), \end{gathered} $$
(3.8)
where
$$\begin{gathered} C^{1}_{1}=\frac {1}{(1-C^{0}_{2})(1-C^{0}_{1})} \bigl[C^{0}_{1}C^{0}_{2}C_{0}+C^{0}_{1}C_{5}+C^{0}_{1}C_{3}+C_{1} \bigr], \\ C^{1}_{2}=\frac {1}{(1-C^{0}_{2})(1-C^{0}_{1})} \bigl[C^{0}_{1}C_{2}+C^{0}_{1}C_{4}+C_{6} \bigr], \\ C^{1}_{3}=C_{5}+C^{1}_{2}C^{0}_{2}+C_{0}C^{0}_{2}, \qquad C^{1}_{4}=C_{6}+C^{1}_{2}C^{0}_{2}.\end{gathered} $$
By virtue of (3.4), (3.6), and (3.8), we see that
$$ \begin{gathered} \max_{t\in J} \bigl\vert x(t)-y_{n+1}(t) \bigr\vert \leq d_{1} \max _{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{2} \max_{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \\ \max_{t\in J} \bigl\vert x(t)-z_{n+1}(t) \bigr\vert \leq d_{3} \max_{t\in J} \bigl\vert x(t)-y_{n}(t) \bigr\vert ^{2}+d_{4} \max _{t\in J} \bigl\vert x(t)-z_{n}(t) \bigr\vert ^{2}, \end{gathered} $$
where \(d_{1}=C^{1}_{1}+C_{0}\), \(d_{2}=C^{1}_{2}\), \(d_{3}=C^{1}_{3}+C_{3}\), \(d_{4}=C^{1}_{4}+C_{4}\). This completes the proof. □