In this section, we prove existence and uniqueness of solutions for a system of Hilfer–Hadamard sequential fractional differential equations with boundary conditions (1) and (2). The following lemma concerns a linear variant of system (1) and (2).
Lemma 3.1
Let
\(h_{1}, h_{2}\in C([1,e], {\mathbb {R}})\). Then
\(u,v\in C([1,e], {\mathbb {R}})\)are solutions of the system of fractional differential equations
$$ \textstyle\begin{cases} ({}_{H}D^{\alpha_{1},\beta_{1}}_{1^{+}}+k_{1} {}_{H}D^{\alpha _{1}-1,\beta_{1}}_{1^{+}})u(t)=h_{1}(t),\quad 1 < \alpha_{1} \leq2, t \in [1,e], \\ ({}_{H}D^{\alpha_{2},\beta_{2}}_{1^{+}}+k_{2} {}_{H}D^{\alpha _{2}-1,\beta_{2}}_{1^{+}})v(t)=h_{2}(t),\quad 1 < \alpha_{2} \leq2, t \in[1,e], \end{cases} $$
(5)
supplemented with the boundary conditions (2) if and only if
$$\begin{aligned} u(t)={}& A_{1}(\log t)^{\gamma_{1}-1}+k_{1} \biggl[(\log t)^{\gamma _{1}-1} \int_{1}^{e}\frac{u(s)}{s}\,ds- \int_{1}^{t}\frac{u(s)}{s}\, ds \biggr] \\ &+\frac{1}{\varGamma(\alpha_{1})} \biggl[ \int_{1}^{t} \biggl(\log \frac{t}{s} \biggr)^{\alpha_{1}-1}\frac{h_{1}(s)}{s}\,ds-(\log t)^{\gamma_{1}-1} \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha _{1}-1}\frac{h_{1}(s)}{s}\,ds \biggr] \end{aligned}$$
(6)
and
$$\begin{aligned} v(t)={}& A_{2}(\log t)^{\gamma_{2}-1}+k_{2} \biggl[(\log t)^{\gamma _{2}-1} \int_{1}^{e}\frac{v(s)}{s}\,ds- \int_{1}^{t}\frac{v(s)}{s}\, ds \biggr] \\ &+\frac{1}{\varGamma(\alpha_{2})} \biggl[ \int_{1}^{t} \biggl(\log \frac{t}{s} \biggr)^{\alpha_{2}-1}\frac{h_{2}(s)}{s}\,ds-(\log t)^{\gamma_{2}-1} \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha _{2}-1}\frac{h_{2}(s)}{s}\,ds \biggr]. \end{aligned}$$
(7)
Proof
From the first equation of (5), we have
$$\begin{aligned} {}_{H}D^{\alpha_{1},\beta_{1}}_{1^{+}}u(t)+k_{1} {}_{H}D^{\alpha _{1}-1,\beta_{1}}_{1^{+}}u(t)=h_{1}(t). \end{aligned}$$
(8)
Taking the Hadamard fractional integral of order \(\alpha_{1}\) to both sides of (8), we get
$$\begin{aligned} {}_{H}I^{\alpha_{1}}_{1^{+}} {}_{H}D^{\alpha_{1},\beta _{1}}_{1^{+}}u(t)+k_{1} {}_{H}I^{\alpha_{1}}_{1^{+}} {}_{H}D^{\alpha _{1}-1,\beta_{1}}_{1^{+}}u(t)= {}_{H}I^{\alpha_{1}}_{1^{+}}h_{1}(t). \end{aligned}$$
By Theorem 2.6, one has
$$\begin{aligned}& u(t)-\frac{\delta({}_{H}I^{2-\gamma_{1}}_{1^{+}}u)(1)}{\varGamma (\gamma_{1})}(\log t)^{\gamma_{1}-1}-\frac{({}_{H}I^{2-\gamma _{1}}_{1^{+}}u)(1)}{\varGamma(\gamma_{1}-1)}( \log t)^{\gamma _{1}-2}+k_{1} {}_{H}I^{\alpha_{1}}_{1^{+}} {}_{H}D^{\alpha _{1}-1,\beta_{1}}_{1^{+}}u(t) \\& \quad= {}_{H}I^{\alpha_{1}}_{1^{+}}h_{1}(t). \end{aligned}$$
(9)
From equation (9), by Definition 2.4, we get
$$\begin{aligned} u(t)-\frac{\delta({}_{H}I^{2-\gamma_{1}}_{1^{+}}u)(1)}{\varGamma (\gamma_{1})}(\log t)^{\gamma_{1}-1}-\frac{({}_{H}I^{2-\gamma _{1}}_{1^{+}}u)(1)}{\varGamma(\gamma_{1}-1)}( \log t)^{\gamma _{1}-2}+k_{1} {}_{H}I_{1^{+}}u(t)= {}_{H}I^{\alpha_{1}}_{1^{+}}h_{1}(t). \end{aligned}$$
(10)
Equation (10) can be written as follows:
$$\begin{aligned} u(t)={}&c_{0}(\log t)^{\gamma_{1}-1}+c_{1}(\log t)^{\gamma _{1}-2} \\ &-k_{1} \int_{1}^{t}\frac{u(s)}{s}\,ds+ \frac{1}{\varGamma (\alpha_{1})} \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{h_{1}(s)}{s}\,ds. \end{aligned}$$
(11)
In a similar way, one can obtain
$$\begin{aligned} v(t)={}&d_{0}(\log t)^{\gamma_{2}-1}+d_{1}(\log t)^{\gamma _{2}-2} \\&-k_{2} \int_{1}^{t}\frac{v(s)}{s}\,ds+ \frac{1}{\varGamma (\alpha_{2})} \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{2}-1}\frac{h_{2}(s)}{s}\,ds, \end{aligned}$$
(12)
where \(c_{0}\), \(c_{1}\), \(d_{0}\), and \(d_{1}\) are arbitrary constants. Now, boundary conditions (2) together with (11), (12) yield
$$\begin{aligned} u(1)&=c_{0}(\log1)^{\gamma_{1}-1}+\frac{c_{1}}{(\log t)^{2-\gamma _{1}}} \\ &\quad-k_{1} \int_{1}^{1}\frac{u(s)}{s}\,ds+ \frac{1}{\varGamma (\alpha_{1})} \int_{1}^{1} \biggl(\log\frac{1}{s} \biggr)^{\alpha _{1}-1}\frac{h_{1}(s)}{s}\,ds \\&=0, \\ v(1)&=d_{0}(\log1)^{\gamma_{2}-1}+\frac{d_{1}}{(\log t)^{2-\gamma _{2}}} \\ &\quad-k_{2} \int_{1}^{1}\frac{v(s)}{s}\,ds+ \frac{1}{\varGamma (\alpha_{2})} \int_{1}^{1} \biggl(\log\frac{1}{s} \biggr)^{\alpha _{2}-1}\frac{h_{2}(s)}{s}\,ds \\&=0, \end{aligned}$$
(13)
from which we have \(c_{1}=0\) and \(d_{1}=0\). Equations (13) can be written as
$$\begin{aligned} u(t)=c_{0}(\log t)^{\gamma_{1}-1}-k_{1} \int_{1}^{t}\frac{u(s)}{s}\, ds+ \frac{1}{\varGamma(\alpha_{1})} \int_{1}^{t} \biggl(\log\frac {t}{s} \biggr)^{\alpha_{1}-1}\frac{h_{1}(s)}{s}\,ds \end{aligned}$$
(14)
and
$$\begin{aligned} v(t)=d_{0}(\log t)^{\gamma_{2}-1}-k_{2} \int_{1}^{t}\frac{v(s)}{s}\, ds+ \frac{1}{\varGamma(\alpha_{2})} \int_{1}^{t} \biggl(\log\frac {t}{s} \biggr)^{\alpha_{2}-1}\frac{h_{2}(s)}{s}\,ds. \end{aligned}$$
(15)
Next, boundary conditions (2) together with (14), (15) yield
$$\begin{aligned}& u(e)=c_{0}(\log e)^{\gamma_{1}-1}-k_{1} \int_{1}^{e}\frac{u(s)}{s}\, ds+ \frac{1}{\varGamma(\alpha_{1})} \int_{1}^{e} \biggl(\log\frac {e}{s} \biggr)^{\alpha_{1}-1}\frac{h_{1}(s)}{s}\,ds=A_{1}, \\& v(e)=d_{0}(\log e)^{\gamma_{2}-1}-k_{2} \int_{1}^{e}\frac{v(s)}{s}\, ds+ \frac{1}{\varGamma(\alpha_{2})} \int_{1}^{e} \biggl(\log\frac {e}{s} \biggr)^{\alpha_{2}-1}\frac{h_{2}(s)}{s}\,ds=A_{2}, \end{aligned}$$
from which we have
$$\begin{aligned}& c_{0}= A_{1}+k_{1} \int_{1}^{e}\frac{u(s)}{s}\,ds- \frac{1}{\varGamma (\alpha_{1})} \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha _{1}-1}\frac{h_{1}(s)}{s}\,ds, \\& d_{0}= A_{2}+k_{2} \int_{1}^{e}\frac{v(s)}{s}\,ds- \frac{1}{\varGamma (\alpha_{2})} \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha _{2}-1}\frac{h_{2}(s)}{s}\,ds. \end{aligned}$$
Substituting the values of \(c_{0}\), \(c_{1}\), \(d_{0}\), and \(d_{1}\) in (11) and (12), we get integral equations (6) and (7). The converse follows by direct computation. This completes the proof. □
Let us introduce the Banach space \(X=C([1,e])\) endowed with the norm defined by \(\lVert u\rVert:={\max_{t \in [ {1,e} ]}} \vert {u ( t )} \vert \). Thus, the product space \(X\times X\) equipped with the norm \(\lVert(u,v)\rVert=\lVert u\rVert +\lVert v\rVert\) is a Banach space. In view of Lemma 3.1, we define an operator \(\mathcal{T}:X\times X\to X\times X\) by
$$\begin{aligned} \mathcal{T}(u,v) (t)=\bigl(\mathcal{T}_{1}(u,v) (t), \mathcal{T}_{2}(u,v) (t)\bigr), \end{aligned}$$
(16)
where
$$\begin{aligned} \mathcal{T}_{1}(u,v) (t)={}& A_{1}(\log t)^{\gamma_{1}-1}+k_{1} \biggl[(\log t)^{\gamma_{1}-1} \int_{1}^{e}\frac{u(s)}{s}\,ds- \int _{1}^{t}\frac{u(s)}{s}\,ds \biggr] \\ &+ \frac{1}{\varGamma(\alpha _{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{f(s,u(s),v(s))}{s}\,ds \\ &-(\log t)^{\gamma_{1}-1} \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac {f(s,u(s),v(s))}{s}\,ds \biggr] \end{aligned}$$
(17)
and
$$\begin{aligned} \mathcal{T}_{2}(u,v) (t)={}& A_{2}(\log t)^{\gamma_{2}-1}+k_{2} \biggl[(\log t)^{\gamma_{2}-1} \int_{1}^{e}\frac{v(s)}{s}\,ds- \int _{1}^{t}\frac{v(s)}{s}\,ds \biggr] \\ &+ \frac{1}{\varGamma(\alpha _{2})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{2}-1}\frac{g(s,u(s),v(s))}{s}\,ds \\ &-(\log t)^{\gamma_{2}-1} \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{2}-1}\frac {g(s,u(s),v(s))}{s}\,ds \biggr]. \end{aligned}$$
(18)
We need the following hypotheses in the sequel:
- \((H_{1})\):
Assume that there exist real constants \(m_{i}, n_{i}\ge0\) (\(i=1,2\)) and \(m_{0}>0\), \(n_{0}>0\) such that, for all \(t\in [1,e]\), \(x_{i}\in\mathbb{R}\), \(i=1, 2\),
$$\begin{aligned}& \bigl\vert f(t,x_{1},x_{2}) \bigr\vert \leq m_{0}+m_{1} \vert x_{1} \vert +m_{2} \vert x_{2} \vert , \\& \bigl\vert g(t,x_{1},x_{2}) \bigr\vert \leq n_{0}+n_{1} \vert x_{1} \vert +n_{2} \vert x_{2} \vert . \end{aligned}$$
- \((H_{2})\):
There exist positive constants L, L̄, such that, for all \(t\in[1,e]\), \(u_{i}, v_{i}\in\mathbb{R}\), \(i=1,2\),
$$\begin{aligned}& \bigl\vert f(t,u_{1},u_{2})-f(t,v_{1},v_{2}) \bigr\vert \leq L\bigl( \vert u_{1}-v_{1} \vert + \vert u_{2}-v_{2} \vert \bigr), \\& \bigl\vert g(t,u_{1},u_{2})-g(t,v_{1},v_{2}) \bigr\vert \leq\bar{L}\bigl( \vert u_{1}-v_{1} \vert + \vert u_{2}-v_{2} \vert \bigr). \end{aligned}$$
Existence result via Leray–Schauder alternative
In the first theorem, we prove an existence result based on the Leray–Schauder alternative.
Theorem 3.2
Assume that
\((H_{1})\)holds. In addition it is assumed that
\(\max\{ Q_{1},Q_{2}\}<1\), where
$$Q_{1}:=2 \biggl(k_{1}+\frac{m_{1}}{\varGamma(\alpha_{1}+1)}+ \frac {n_{1}}{\varGamma(\alpha_{2}+1)} \biggr),\qquad Q_{2}:=2 \biggl(k_{2}+ \frac {m_{2}}{\varGamma(\alpha_{1}+1)}+\frac{n_{2}}{\varGamma(\alpha_{2}+1)} \biggr). $$
Then system (1)–(2) has at least one solution on
\([1,e]\).
Proof
We will use the Leray–Schauder alternative to prove that \(\mathcal {T}\), defined by (16), has a fixed point. We divide the proof into two steps.
Step I: We show that the operator \(\mathcal{T}:X\times X\to X\times X\), defined by (16), is completely continuous.
First we show that \(\mathcal{T}\) is continuous. Let \(\{(u_{n},v_{n})\} \) be a sequence such that \((u_{n},v_{n})\to(u,v)\) in \(X\times X\). Then, for each \(t\in[1,e]\), we have
$$\begin{aligned}& \bigl\vert \mathcal{T}_{1}(u_{n},v_{n}) (t)- \mathcal{T}_{1}(u,v) (t) \bigr\vert \\& \quad\leq k_{1} \biggl[ \bigl\vert (\log t)^{\gamma_{1}-1} \bigr\vert \biggl\vert \int_{1}^{e}\frac {(u_{n}(s)-u(s))}{s}\,ds \biggr\vert + \biggl\vert \int_{1}^{t}\frac {(u_{n}(s)-u(s))}{s}\,ds \biggr\vert \biggr] \\& \qquad{}+\frac{1}{\varGamma(\alpha_{1})} \biggl[ \biggl\vert \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha_{1}-1}\frac {(f(s,u_{n}(s),v_{n}(s))-f(s,u(s),v(s)))}{s}\,ds \biggr\vert \\& \qquad{}+ \bigl\vert (\log t)^{\gamma_{1}-1} \bigr\vert \biggl\vert \int_{1}^{e} \biggl(\log\frac {e}{s} \biggr)^{\alpha_{1}-1}\frac {(f(s,u_{n}(s),v_{n}(s))-f(s,u(s),v(s)))}{s}\,ds \biggr\vert \biggr] \\& \quad\leq k_{1} \biggl[ \int_{1}^{e}\frac{ \vert u_{n}(s)-u(s) \vert }{s}\,ds+ \int _{1}^{t}\frac{ \vert u_{n}(s)-u(s) \vert }{s}\,ds \biggr] \\& \qquad{}+\frac{1}{\varGamma(\alpha_{1})} \biggl[ \int_{1}^{t} \biggl(\log \frac{t}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u_{n}(s),v_{n}(s))-f(s,u(s),v(s)) \vert }{s}\,ds \\& \qquad{}+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u_{n}(s),v_{n}(s))-f(s,u(s),v(s)) \vert }{s}\,ds \biggr]. \end{aligned}$$
Since f is continuous, we get
$$\begin{aligned} \bigl\vert f\bigl(s,u_{n}(s),v_{n}(s)\bigr)-f \bigl(s,u(s),v(s)\bigr) \bigr\vert \to0 \quad \text{as }(u_{n},v_{n}) \to(u,v). \end{aligned}$$
Then
$$\begin{aligned} \bigl\lVert \mathcal{T}_{1}(u_{n},v_{n})- \mathcal{T}_{1}(u,v)\bigr\rVert \to0 \quad\text{as } (u_{n},v_{n}) \to(u,v). \end{aligned}$$
(19)
In the same way, we obtain
$$\begin{aligned} \bigl\lVert \mathcal{T}_{2}(u_{n},v_{n})- \mathcal{T}_{2}(u,v)\bigr\rVert \to0 \quad\text{as } (u_{n},v_{n}) \to(u,v). \end{aligned}$$
(20)
It follows from (19) and (20) that \(\lVert\mathcal {T}(u_{n},v_{n})-\mathcal{T}(u,v)\rVert\to0\) as \((u_{n},v_{n})\to(u,v)\). Hence \(\mathcal{T}\) is continuous.
Now we show that \(\mathcal{T}\) is compact. Let \(\varOmega\subset X\times X\) be bounded. Then there exist positive constants \(L_{1}\) and \(L_{2}\) such that \(|f(t,u(t),v(t))|\leq L_{1}\), \(|g(t,u(t),v(t))|\leq L_{2}\), \(\forall (u,v)\in\varOmega\). Let \((u,v)\in\varOmega\). Then there exists M such that \(\lVert(u,v)\rVert=\lVert u\rVert+\lVert v\rVert\leq M\), \(\forall(u,v)\in\varOmega\). We have
$$\begin{aligned}& \bigl\vert \mathcal{T}_{1}(u,v) (t) \bigr\vert \\& \quad\leq A_{1}+k_{1} \biggl[ \int_{1}^{e}\frac{ \vert u(s) \vert }{s}\,ds+ \int _{1}^{t}\frac{ \vert u(s) \vert }{s}\,ds \biggr] \\& \qquad{}+ \frac{1}{\varGamma(\alpha _{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ \vert f(s,u(s),v(s)) \vert }{s}\,ds+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u(s),v(s)) \vert }{s}\,ds \biggr] \\& \quad\leq A_{1}+k_{1} \biggl[ \int_{1}^{e}\frac{\max_{s\in [1,e]} \vert u(s) \vert }{s}\,ds+ \int_{1}^{t}\frac{\max_{s\in[1,e]} \vert u(s) \vert }{s}\, ds \biggr] \\& \qquad{}+ \frac{L_{1}}{\varGamma(\alpha_{1})} \biggl[ \int _{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha_{1}-1}\frac{ds}{s}+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac {ds}{s} \biggr] \\& \quad\leq A_{1}+k_{1}\lVert u\rVert\bigl[1+(\log e)\bigr]+ \frac{L_{1}}{\varGamma (\alpha_{1}+1)}\bigl[(\log e)^{\alpha_{1}}+1\bigr], \end{aligned}$$
which, on taking the norm for \(t\in[1,e]\), yields
$$ \bigl\lVert \mathcal{T}_{1}(u_{n},v_{n})\bigr\rVert \leq A_{1}+2 \biggl[k_{1}\lVert u\rVert+ \frac{L_{1}}{\varGamma(\alpha_{1}+1)} \biggr]. $$
In the same way, we obtain
$$\begin{aligned} \bigl\lVert \mathcal{T}_{2}(u_{n},v_{n})\bigr\rVert \leq A_{2}+2 \biggl[k_{2}\lVert v\rVert+ \frac{L_{2}}{\varGamma(\alpha_{2}+1)} \biggr]. \end{aligned}$$
It follows that
$$\begin{aligned} \bigl\lVert \mathcal{T}(u,v)\bigr\rVert &\leq A_{1}+A_{2}+2 \biggl[k_{1}\lVert u\rVert+k_{2}\lVert v\rVert + \frac{L_{1}}{\varGamma(\alpha_{1}+1)}+\frac{L_{2}}{\varGamma (\alpha_{2}+1)} \biggr] \\ &\leq A_{1}+A_{2}+2 \biggl[M(k_{1}+k_{2})+ \frac{L_{1}}{\varGamma (\alpha_{1}+1)}+\frac{L_{2}}{\varGamma(\alpha_{2}+1)} \biggr]. \end{aligned}$$
This mean that there is \(P=A_{1}+A_{2}+2 [M(k_{1}+k_{2})+\frac {L_{1}}{\varGamma(\alpha_{1}+1)}+\frac{L_{2}}{\varGamma(\alpha _{2}+1)} ]\) such that \(\lVert\mathcal{T}(u,v)\rVert\leq P\). Hence \(\mathcal{T}\) is uniformly bounded.
Finally we show that \(\mathcal{T}\) is equicontinuous. Let \(t, t_{0}\in[1,e]\) with \(t_{0}< t\). Then we have
$$\begin{aligned}& \bigl\vert \mathcal{T}_{1}(u,v) (t)- \mathcal{T}_{1}(u,v) (t_{0}) \bigr\vert \\& \quad\leq A_{1}\bigl[(\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma _{1}-1} \bigr] \\& \qquad{} +k_{1} \biggl[\bigl((\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma _{1}-1}\bigr) \int_{1}^{e}\frac{ \vert u(s) \vert }{s}\,ds+ \int_{t_{0}}^{t}\frac{ \vert u(s) \vert }{s}\,ds \biggr] \\& \qquad{} + \frac{1}{\varGamma (\alpha_{1})} \biggl[ \int_{1}^{t_{0}} \biggl( \biggl(\log\frac {t}{s} \biggr)^{\alpha_{1}-1}- \biggl(\log\frac{t_{0}}{s} \biggr)^{\alpha_{1}-1} \biggr) \frac{ \vert f(s,u(s),v(s)) \vert }{s}\,ds \\& \qquad{}+ \int_{t_{0}}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ \vert f(s,u(s),v(s)) \vert }{s}\,ds \\& \qquad{}+\bigl((\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma_{1}-1}\bigr) \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u(s),v(s)) \vert }{s}\,ds \biggr] \\& \quad\le A_{1}\bigl[(\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma _{1}-1} \bigr] \\& \qquad{}+k_{1} \bigl[\lVert u\rVert\bigl((\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma_{1}-1}\bigr)+\lVert u\rVert(\log t-\log t_{0}) \bigr] \\& \qquad{} +\frac{L_{1}}{\varGamma(\alpha_{1})} \biggl[ \int_{1}^{t_{0}} \biggl(\log\frac{t}{s} \biggr)^{\alpha_{1}-1}\frac{ds}{s}- \int _{1}^{t_{0}} \biggl(\log\frac{t_{0}}{s} \biggr)^{\alpha_{1}-1}\frac {ds}{s}+ \int_{t_{0}}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ds}{s} \\& \qquad{}+\bigl((\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma_{1}-1}\bigr) \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac {ds}{s} \biggr] \\& \quad\le A_{1}\bigl[(\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma _{1}-1} \bigr] \\& \qquad{}+k_{1}M \bigl[\bigl((\log t)^{\gamma_{1}-1}-(\log t_{0})^{\gamma _{1}-1}\bigr)+(\log t-\log t_{0}) \bigr] \\& \qquad{}+\frac{L_{1}}{\varGamma(\alpha_{1}+1)} \bigl[\bigl((\log t)^{\gamma _{1}-1}-(\log t_{0})^{\gamma_{1}-1}\bigr)+\bigl((\log t)^{\alpha_{1}}-(\log t_{0})^{\alpha_{1}}\bigr) \bigr] \end{aligned}$$
(21)
and
$$\begin{aligned}& \bigl\vert \mathcal{T}_{2}(u,v) (t)- \mathcal{T}_{2}(u,v) (t_{0}) \bigr\vert \\& \quad\leq A_{2}\bigl[(\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma _{2}-1} \bigr] \\& \qquad{}+k_{2} \biggl[\bigl((\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma _{2}-1}\bigr) \int_{1}^{e}\frac{ \vert v(s) \vert }{s}\,ds+ \int_{t_{0}}^{t}\frac{ \vert v(s) \vert }{s}\,ds \biggr] \\& \qquad{}+ \frac{1}{\varGamma (\alpha_{2})} \biggl[ \int_{1}^{t_{0}} \biggl( \biggl(\log\frac {t}{s} \biggr)^{\alpha_{2}-1}- \biggl(\log\frac{t_{0}}{s} \biggr)^{\alpha_{2}-1} \biggr) \frac{ \vert g(s,u(s),v(s)) \vert }{s}\,ds \\& \qquad{}+ \int_{t_{0}}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{2}-1}\frac{ \vert g(s,u(s),v(s)) \vert }{s}\,ds \\& \qquad{}+\bigl((\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma_{2}-1}\bigr) \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{2}-1}\frac { \vert g(s,u(s),v(s)) \vert }{s}\,ds \biggr] \\& \quad\le A_{2}\bigl[(\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma _{2}-1} \bigr] \\& \qquad{}+k_{2} \bigl[\lVert v\rVert\bigl((\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma_{2}-1}\bigr)+\lVert v\rVert(\log t-\log t_{0}) \bigr] \\& \qquad{}+\frac{L_{2}}{\varGamma(\alpha_{2})} \biggl[ \int_{1}^{t_{0}} \biggl(\log\frac{t}{s} \biggr)^{\alpha_{2}-1}\frac{ds}{s}- \int _{1}^{t_{0}} \biggl(\log\frac{t_{0}}{s} \biggr)^{\alpha_{2}-1}\frac {ds}{s}+ \int_{t_{0}}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{2}-1}\frac{ds}{s} \\& \qquad{}+\bigl((\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma_{2}-1}\bigr) \int _{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{2}-1}\frac {ds}{s} \biggr] \\& \quad\le A_{2}\bigl[(\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma _{2}-1} \bigr] \\& \qquad{}+k_{2}M \bigl[\bigl((\log t)^{\gamma_{2}-1}-(\log t_{0})^{\gamma _{2}-1}\bigr)+(\log t-\log t_{0}) \bigr] \\& \qquad{}+\frac{L_{2}}{\varGamma(\alpha_{2}+1)} \bigl[\bigl((\log t)^{\gamma _{2}-1}-(\log t_{0})^{\gamma_{2}-1}\bigr)+\bigl((\log t)^{\alpha_{2}}-(\log t_{0})^{\alpha_{2}}\bigr) \bigr]. \end{aligned}$$
(22)
Take \(t\to t_{0}\), from (21) and (22), we have
$$\begin{aligned} \bigl\vert \mathcal{T}_{1}(u,v) (t)-\mathcal{T}_{1}(u,v) (t_{0}) \bigr\vert \to0 \quad\text{and}\quad \bigl\vert \mathcal{T}_{2}(u,v) (t)-\mathcal{T}_{2}(u,v) (t_{0}) \bigr\vert \to0\quad \text{as } t\to t_{0}. \end{aligned}$$
Hence \(\mathcal {T}\) is equicontinuous. By Arzelá–Ascoli theorem, we get that \(\mathcal{T}(\varOmega)\) is compact, that is, \(\mathcal{T}\) is compact on Ω. Therefore \(\mathcal{T}\) is completely continuous.
Step II: We show that the set \({\varepsilon}=\{(u,v)\in X\times X \mid(u,v)=\lambda\mathcal{T}(u,v), 0\leq\lambda\leq1\}\) is bounded.
Let \((u,v)\in{\varepsilon}\), then \((u,v)=\lambda\mathcal{T}(u,v)\). For any \(t\in[1,e]\), we have \(u(t)=\lambda\mathcal{T}_{1}(u,v)(t)\), \(v(t)=\lambda\mathcal{T}_{2}(u,v)(t)\). Then, in view of assumption \((H_{1})\), we obtain
$$\begin{aligned} \bigl\vert u(t) \bigr\vert \leq{}& \bigl\vert \mathcal{T}_{1}(u,v) (t) \bigr\vert \\ \leq{}& A_{1}+k_{1} \biggl[ \int_{1}^{e}\frac{ \vert u(s) \vert }{s}\,ds+ \int _{1}^{t}\frac{ \vert u(s) \vert }{s}\,ds \biggr] \\ &+ \frac{1}{\varGamma(\alpha _{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ \vert f(s,u(s),v(s)) \vert }{s}\,ds\\ &+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u(s),v(s)) \vert }{s}\,ds \biggr] \\ \leq{}& A_{1}+k_{1} \biggl[\lVert u\rVert \int_{1}^{e}\frac {ds}{s}+\lVert u\rVert \int_{1}^{t}\frac{ds}{s} \biggr] \\ &+ \frac {(m_{0}+m_{1}\lVert u\rVert+m_{2}\lVert v\rVert)}{\varGamma(\alpha _{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ds}{s} + \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac {ds}{s} \biggr] \\ \leq{}& A_{1}+k_{1}\lVert u\rVert \bigl[1+(\log e) \bigr]+ \frac {(m_{0}+m_{1}\lVert u\rVert+m_{2}\lVert v\rVert)}{\varGamma(\alpha _{1}+1)}\bigl[(\log e)^{\alpha_{1}}+1\bigr], \end{aligned}$$
which, on taking maximum for \(t\in[1,e]\), yields
$$\begin{aligned} \lVert u\rVert\leq A_{1}+2k_{1}\lVert u \rVert+2 \biggl(\frac {m_{0}+m_{1}\lVert u\rVert+m_{2}\lVert v\rVert}{\varGamma(\alpha _{1}+1)} \biggr). \end{aligned}$$
(23)
In a similar manner, one can obtain
$$\begin{aligned} \lVert v\rVert\leq A_{2}+2k_{2}\lVert v \rVert+2 \biggl(\frac {n_{0}+n_{1}\lVert u\rVert+n_{2}\lVert v\rVert}{\varGamma(\alpha _{2}+1)} \biggr). \end{aligned}$$
(24)
From (23) and (24), we have
$$\begin{aligned} \bigl\lVert (u,v)\bigr\rVert ={}&\lVert u\rVert+\lVert v\rVert \\ \leq{}&A_{1}+A_{2}+\frac{2m_{0}}{\varGamma(\alpha_{1}+1)}+\frac {2n_{0}}{\varGamma(\alpha_{2}+1)} \\ &+2 \biggl(k_{1}+\frac{m_{1}}{\varGamma(\alpha_{1}+1)}+\frac{n_{1}}{\varGamma (\alpha_{2}+1)} \biggr) \Vert u \Vert \\ &+2 \biggl(k_{2}+\frac{m_{2}}{\varGamma(\alpha _{1}+1)}+\frac{n_{2}}{\varGamma(\alpha_{2}+1)} \biggr) \Vert v \Vert \\ \le{}&A_{1}+A_{2}+\frac{2m_{0}}{\varGamma(\alpha_{1}+1)}+\frac {2n_{0}}{\varGamma(\alpha_{2}+1)}+\max \{Q_{1},Q_{2}\} \bigl\Vert (u,v) \bigr\Vert , \end{aligned}$$
and consequently,
$$\bigl\lVert (u,v)\bigr\rVert \le\frac{ A_{1}+A_{2}+\frac{2m_{0}}{\varGamma(\alpha _{1}+1)}+\frac{2n_{0}}{\varGamma(\alpha_{2}+1)}}{1-\max\{Q_{1},Q_{2}\}}. $$
Therefore the set ε is bounded. By Theorem 2.7, we get that the operator \(\mathcal{T}\) has at least one fixed point. Therefore, problem (1)–(2) has at least one solution on \([1,e]\). □
Existence and uniqueness result via the Banach fixed point theorem
Next, we prove an existence and uniqueness result based on the Banach contraction mapping principle.
Theorem 3.3
Assume that
\((H_{2})\)holds. Then system (1)–(2) has a unique solution on
\([1,e]\)provided that
$$\begin{aligned} \mu:=2 \biggl(k_{1}+k_{2}+ \frac{L}{\varGamma(\alpha_{1}+1)}+\frac{\bar{L}}{\varGamma(\alpha_{2}+1)} \biggr)< 1. \end{aligned}$$
(25)
Proof
We will use the Banach fixed point theorem to prove that \(\mathcal {T}\), defined by (16), has a unique fixed point. Fixing \(N_{1}=\max_{t\in[1,e]}|f(t,0,0)| < \infty\), \(N_{2}=\max_{t\in [1,e]}|g(t,0,0)| < \infty\) and using assumption \((H_{2})\), we obtain
$$ \begin{gathered} \bigl\vert f\bigl(t,u(t),v(t)\bigr) \bigr\vert = \bigl\vert f\bigl(t,u(t),v(t)\bigr)-f(t,0,0)+f(t,0,0) \bigr\vert \leq L\bigl( \Vert u \Vert + \Vert v \Vert \bigr)+N_{1}, \\ \bigl\vert g\bigl(t,u(t),v(t)\bigr) \bigr\vert = \bigl\vert g \bigl(t,u(t),v(t)\bigr)-g(t,0,0)+g(t,0,0) \bigr\vert \le\bar{L}\bigl( \Vert u \Vert + \Vert v \Vert \bigr)+N_{2}.\end{gathered} $$
(26)
We choose
$$r\geq\frac{ A_{1}+A_{2}+2 (\frac{N_{1}}{\varGamma(\alpha_{1}+1)}+\frac {N_{2}}{\varGamma(\alpha_{2}+1)} )}{ 1-2 (k_{1}+k_{2}+\frac {L}{\varGamma(\alpha_{1}+1)}+\frac{\bar{L}}{\varGamma(\alpha _{2}+1)} )}. $$
We divide the proof into two steps.
Step I : First we show that \(\mathcal{T}(B_{r})\subset B_{r}\), where \(B_{r}=\{(u,v)\in X\times X:\lVert(u,v)\rVert\leq r\}\).
Let \((u,v)\in B_{r}\). Then, using (26), we obtain
$$\begin{aligned} \bigl\vert \mathcal{T}_{1}(u,v) (t) \bigr\vert \leq{}& A_{1}+k_{1} \biggl[ \int_{1}^{e}\frac { \vert u(s) \vert }{s}\,ds+ \int_{1}^{t}\frac{ \vert u(s) \vert }{s}\,ds \biggr] \\ &+ \frac {1}{\varGamma(\alpha_{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac {t}{s} \biggr)^{\alpha_{1}-1}\frac{ \vert f(s,u(s),v(s)) \vert }{s}\,ds\\ &+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u(s),v(s)) \vert }{s}\,ds \biggr] \\ \leq{}& A_{1}+k_{1} \biggl[ \int_{1}^{e}\frac{\max_{s\in [1,e]} \vert u(s) \vert }{s}\,ds+ \int_{1}^{t}\frac{\max_{s\in[1,e]} \vert u(s) \vert }{s}\, ds \biggr]\\ &+ \frac{L(\lVert u\rVert+\lVert v\rVert)+N_{1}}{\varGamma (\alpha_{1})} \biggl[ \int_{1}^{t} \biggl(\log\frac{t}{s} \biggr)^{\alpha _{1}-1}\frac{ds}{s}+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac{ds}{s} \biggr] \\ \leq{}& A_{1}+2k_{1}r+\frac{2}{\varGamma(\alpha_{1}+1)}(Lr+N_{1}), \end{aligned}$$
which, on taking the norm for \(t\in[1,e]\), yields
$$\begin{aligned} \bigl\lVert \mathcal{T}_{1}(u,v)\bigr\rVert \leq A_{1}+2k_{1}r+ \frac{2}{\varGamma (\alpha_{1}+1)}(Lr+N_{1}). \end{aligned}$$
In the same way, one has
$$\begin{aligned} \bigl\lVert \mathcal{T}_{2}(u,v)\bigr\rVert \leq A_{2}+2k_{2}r+ \frac{2}{\varGamma (\alpha_{2}+1)}(\bar{L}r+N_{2}). \end{aligned}$$
Then we have
$$\begin{aligned} \bigl\lVert \mathcal{T}(u,v)\bigr\rVert \leq{}&A_{1}+A_{2}+2(k_{1}+k_{2})r\\ &+2 \biggl(\frac {L}{\varGamma(\alpha_{1}+1)}+\frac{\bar{L}}{\varGamma(\alpha _{2}+1)} \biggr)r+2 \biggl( \frac{N_{1}}{\varGamma(\alpha_{1}+1)}+\frac {N_{2}}{\varGamma(\alpha_{2}+1)} \biggr) \\ \leq{}& r. \end{aligned}$$
Thus \(\lVert\mathcal{T}(u,v)\rVert\leq r\), that is, \(\mathcal {T}(u,v)\in B_{r}\). Hence \(\mathcal{T}(B_{r})\subset B_{r}\).
Step II : We show that the operator \(\mathcal{T}\) is a contraction.
Let \((u_{2},v_{2}), (u_{1},v_{1})\in X\times X\). Then, for any \(t\in [1,e]\), we have
$$\begin{aligned}& \bigl\vert \mathcal{T}_{1}(u_{2},v_{2}) (t)- \mathcal{T}_{1}(u_{1},v_{1}) (t) \bigr\vert \\ & \quad\leq k_{1} \biggl[ \int_{1}^{e}\frac{ \vert u_{2}(s)-u_{1}(s) \vert }{s}\,ds+ \int _{1}^{t}\frac{ \vert u_{2}(s)-u_{1}(s) \vert }{s}\,ds \biggr] \\ & \qquad{}+\frac{1}{\varGamma(\alpha_{1})} \biggl[ \int_{1}^{t} \biggl(\log \frac{t}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u_{2}(s),v_{2}(s))-f(s,u_{1}(s),v_{1}(s)) \vert }{s}\,ds \\ & \qquad{}+ \int_{1}^{e} \biggl(\log\frac{e}{s} \biggr)^{\alpha_{1}-1}\frac { \vert f(s,u_{2}(s),v_{2}(s))-f(s,u_{1}(s),v_{1}(s)) \vert }{s}\,ds \biggr] \\ & \quad\le2k_{1} \Vert u_{2}-u_{1} \Vert + \frac{2L}{\varGamma(\alpha_{1}+1)}\bigl( \Vert u_{2}-u_{1} \Vert + \Vert v_{2}-v_{1} \Vert \bigr) \\ & \quad\le2k_{1}\bigl( \Vert u_{2}-u_{1} \Vert + \Vert v_{2}-v_{1} \Vert \bigr)+\frac{2L}{\varGamma(\alpha _{1}+1)}\bigl( \Vert u_{2}-u_{1} \Vert + \Vert v_{2}-v_{1} \Vert \bigr), \end{aligned}$$
which, on taking the norm for \(t\in[1,e]\), yields
$$\begin{aligned} \bigl\lVert \mathcal{T}_{1}(u_{2},v_{2})- \mathcal {T}_{1}(u_{1},v_{1})\bigr\rVert \leq \biggl(2k_{1}+\frac{2L}{\varGamma(\alpha _{1}+1)} \biggr) \bigl( \Vert u_{2}-u_{1} \Vert + \Vert v_{2}-v_{1} \Vert \bigr). \end{aligned}$$
(27)
Similarly,
$$\begin{aligned} \bigl\lVert \mathcal{T}_{2}(u_{2},v_{2})- \mathcal {T}_{2}(u_{1},v_{1})\bigr\rVert \leq \biggl(2k_{2}+\frac{2\bar{L}}{\varGamma (\alpha_{1}+1)} \biggr) \bigl( \Vert u_{2}-u_{1} \Vert + \Vert v_{2}-v_{1} \Vert \bigr). \end{aligned}$$
(28)
It follows from (27) and (28) that \(\lVert\mathcal {T}(u_{2},v_{2})-\mathcal{T}(u_{1},v_{1})\rVert\leq\mu(\lVert u_{2}-u_{1}\rVert+\lVert v_{2}-v_{1}\rVert)\), which, in view of (25), shows that the operator \(\mathcal{T}\) is a contraction. From Steps I and II, by Theorem 2.8, we get that the operator \(\mathcal{T}\) has a unique fixed point. Therefore system (1)–(2) has a unique solution on \([1,e]\). □