In this section we shall discuss the concept of solution to problem (1.1) by fractional resolvent method and give its existence theorem without Lipschitz assumptions to nonlinear item f. Let r be a finite positive constant and set \(W_{r}=\{x \in C_{1-\alpha }(J,X):\|x\|_{C_{1-\alpha } }\leq r\}\). For brevity, we define the integral operator H by \((Hx)(t)= \int _{0}^{t} h(t,s,x(s)) \,\mathrm{d}s\), \(x\in C_{1-\alpha }(J,X)\). We give the following hypotheses on fractional integrodifferential system (1.1).
- (H1)
\(\{t^{1-\alpha } S_{\alpha }(t), t>0 \}\) is equicontinuous and compact.
- (H2)
The function \(h:\Delta \times X\rightarrow X\) satisfies the following:
- (1)
For a.e. \((t,s)\in \Delta \), the function \(h(t,s,\cdot ):X \rightarrow X\) is continuous and for all \(x\in X\), the function \(h(\cdot ,\cdot ,x):\Delta \rightarrow X\) is strongly measurable;
- (2)
There exists \(m\in \mathbb{R^{+}}\) such that \(\|h(t,s,x)\| \leq m\|x\|\).
- (H3)
The function \(f:J\times X\times X \rightarrow X\) satisfies the following:
- (1)
\(f(t,\cdot ,\cdot )\) is continuous for a.e. \(t\in [0,b]\) and \(f(\cdot ,x,y):[0,b]\rightarrow X\) is measurable for all \(x, y\in X\);
- (2)
For a.e. \(t\in [0,b]\) and \(x,y\in X\),
$$ \bigl\Vert f(t,x,y) \bigr\Vert \leq \theta (t)+\rho t^{1-\alpha }\bigl( \Vert x \Vert + \Vert y \Vert \bigr), $$
where \(\theta (t)\in L^{p}(J,X)\), \(p>\frac{1}{\alpha }\) and \(0<\rho <\frac{\alpha ^{2}}{Mb\alpha +Mb^{2}m}\).
Lemma 3.1
Let
\(f\in L^{p}(J,X)\), \(p>\frac{1}{\alpha }\)and hypothesis (H1) be satisfied. Then the convolution
$$ (S_{\alpha }*f) (t)= \int _{0}^{t} S_{\alpha }(t-s)f(s) \, \mathrm{d}s,\quad t\in J', $$
exists and defines a continuous function on
\(J'\).
Proof
From Proposition 1.3.4 in [35], we know that \(S_{\alpha }(t-\cdot )f(\cdot )\) is measurable on \((0,t)\). Moreover, we have
$$\begin{aligned} \bigl\Vert (S_{\alpha } * f ) (t) \bigr\Vert =& \biggl\Vert \int _{0}^{t} \bigl((t-s)^{1-\alpha } S_{\alpha }(t-s) \bigr)\cdot (t-s)^{ \alpha -1} f(s) \,\mathrm{d} s \biggr\Vert \\ \leq & M \int _{0}^{t} \bigl\Vert (t-s)^{\alpha -1} f(s) \bigr\Vert \,\mathrm{d} s \\ \leq & M \Vert f \Vert _{L^{p}} \biggl( \int _{0}^{t} \bigl((t-s)^{\alpha -1} \bigr)^{ \frac{p}{p-1}} \,\mathrm{d} s \biggr)^{\frac{p-1}{p}} \\ \leq & M \Vert f \Vert _{L^{p}} \biggl(\biggl( \frac{p-1}{\alpha p-1}\biggr)t^{\frac{ \alpha p-1}{p-1}} \biggr)^{\frac{p-1}{p}} \\ \leq & M \Vert f \Vert _{L^{p}} b^{\alpha -\frac{1}{p}} \biggl( \frac{p-1}{ \alpha p-1} \biggr)^{1-\frac{1}{p}}, \end{aligned}$$
which shows that \(S_{\alpha } * f\) exists.
Next we show that \(S_{\alpha } * f \in C(J',X)\). Let \(0<\varepsilon <t _{1}<t_{2} \leq b\), then we have
$$\begin{aligned}& \bigl\Vert (S_{\alpha } * f ) (t_{2})- (S_{\alpha } * f ) (t _{1}) \bigr\Vert \\& \quad = \biggl\Vert \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f(s) \,\mathrm{d}s- \int _{0}^{t_{1}} S_{\alpha }(t_{1}-s)f(s) \,\mathrm{d}s \biggr\Vert \\& \quad \leq \biggl\Vert \int _{0}^{t_{1}-\varepsilon } \bigl[(t_{2}-s)^{1-\alpha }S_{\alpha }(t_{2}-s)-(t_{1}-s)^{1-\alpha }S_{\alpha }(t_{1}-s) \bigr] \cdot (t_{2}-s)^{\alpha -1}f(s) \,\mathrm{d}s \biggr\Vert \\& \qquad {}+ \biggl\Vert \int _{t_{1}-\varepsilon }^{t_{1}} \bigl[(t_{2}-s)^{1-\alpha }S_{\alpha }(t_{2}-s)-(t_{1}-s)^{1-\alpha }S_{\alpha }(t_{1}-s) \bigr] \cdot (t_{2}-s)^{\alpha -1}f(s) \,\mathrm{d}s \biggr\Vert \\& \qquad {}+ \biggl\Vert \int _{0}^{t_{1}} (t_{1}-s)^{1-\alpha }S_{\alpha }(t_{1}-s) \cdot \bigl[(t_{2}-s)^{\alpha -1}- (t_{1}-s)^{\alpha -1} \bigr]f(s) \,\mathrm{d}s \biggr\Vert \\& \qquad {}+ \biggl\Vert \int _{t_{1}}^{t_{2}} (t_{2}-s)^{1-\alpha }S_{\alpha }(t _{2}-s)\cdot (t_{2}-s)^{\alpha -1}f(s) \, \mathrm{d}s \biggr\Vert \\& \quad \leq \sup_{s\in [0,t_{1}-\varepsilon ]} \bigl\Vert (t_{2}-s)^{1-\alpha }S _{\alpha }(t_{2}-s)-(t_{1}-s)^{1-\alpha }S_{\alpha }(t_{1}-s) \bigr\Vert \cdot \Vert f \Vert _{L^{p}} b^{\alpha -\frac{1}{p}} \biggl( \frac{p-1}{\alpha p-1} \biggr) ^{1-\frac{1}{p}} \\& \qquad {}+2M \Vert f \Vert _{L^{p}}\cdot \biggl(\frac{p-1}{\alpha p-1} \biggr)^{1- \frac{1}{p}} \bigl[(t_{2}-t_{1}+\varepsilon )^{\frac{\alpha p-1}{p-1}} - (t_{2}-t_{1})^{\frac{\alpha p-1}{p-1}} \bigr]^{1-\frac{1}{p}} \\& \qquad {}+ M \Vert f \Vert _{L^{p}} \biggl( \int _{0}^{t_{1}} \bigl[ (t_{2}-s ) ^{\alpha -1}- (t_{1}-s )^{\alpha -1} \bigr]^{ \frac{p}{p-1}} \,\mathrm{d} s \biggr)^{1-\frac{1}{p}} \\& \qquad {}+ M \Vert f \Vert _{L^{p}} \biggl(\frac{p-1}{\alpha p-1} \biggr)^{1- \frac{1}{p}} (t_{2}-t_{1} )^{\alpha -\frac{1}{p}}. \end{aligned}$$
(3.1)
Then due to the equicontinuity of \(\{t^{1-\alpha } S_{\alpha }(t),t>0 \}\), Lemma 2.7 and the arbitrariness of ε, we get
$$ \bigl\Vert (S_{\alpha }*f) (t_{2})- (S_{\alpha }*f) (t_{1}) \bigr\Vert \rightarrow 0, \quad \text{as } t_{1}\rightarrow t_{2}, $$
which shows that \((S_{\alpha }*f)(t)\) is continuous on \((0,b]\). □
Lemma 3.2
Suppose that conditions (H1)–(H3) are satisfied. Then
\(x\in C_{1- \alpha }(J,X)\)is a solution to problem (1.1) if and only ifxsatisfies
$$ x(t)=S_{\alpha }(t) x_{0}+ \int _{0}^{t} S_{\alpha }(t-s)f\bigl(s, x(s),Hx(s)\bigr) \,\mathrm{d} s,\quad t \in J'. $$
(3.2)
Proof
By Lemma 2.4(b), we know that, for \(t>0\),
$$ g_{\alpha }(t)=S_{\alpha }(t)-(A g_{\alpha }* S_{\alpha }) (t). $$
Let \(x(\cdot )\) be a solution to problem (1.1). Then we have
$$\begin{aligned} g_{\alpha }* x =& (S_{\alpha }-A g_{\alpha }* S_{\alpha }) * x \\ =& S_{\alpha }*x-S_{\alpha }*(A g_{\alpha }* x) \\ =& S_{\alpha }*(x-A g_{\alpha }* x ) \\ =& S_{\alpha }* \bigl(g_{\alpha }x_{0}+g_{\alpha }*f \bigl(\cdot ,x(\cdot ),Hx( \cdot ) \bigr) \bigr) \\ =& g_{\alpha }* \bigl(S_{\alpha }x_{0}+S_{\alpha }*f \bigl(\cdot ,x(\cdot ),Hx( \cdot ) \bigr) \bigr), \end{aligned}$$
which implies
$$ x(t)=S_{\alpha }(t)x_{0}+ \int _{0}^{t} S_{\alpha }(t-s)f\bigl(s, x(s),Hx(s)\bigr) \,\mathrm{d} s. $$
Conversely, suppose \(x(\cdot )\) satisfies Eq. (3.2). From Lemma 3.1, we know that x is well defined on \(J'\). For the result of \(A I_{t}^{ \alpha } x(t)\), by Definition 2.3(c), we have
$$\begin{aligned}& \biggl(s^{1-\alpha } S_{\alpha }(s)-\frac{1}{\varGamma (\alpha )} \biggr) I_{t}^{\alpha } x(t) \\& \quad = \bigl(s^{1-\alpha } S_{\alpha }(s)-s^{1-\alpha }g_{\alpha }(s) \bigr) \bigl(I_{t}^{\alpha } S_{\alpha }(t)x_{0}+g_{\alpha }* S_{\alpha } * f\bigl(\cdot ,x(\cdot ),Hx(\cdot )\bigr) (t) \bigr) \\& \quad = s^{1-\alpha }\bigl[S_{\alpha }(s)I_{t}^{\alpha } S_{\alpha }(t)x_{0} - g_{\alpha }(s)I_{t}^{\alpha } S_{\alpha }(t)x_{0} \bigr] \\& \qquad {} +s^{1-\alpha }\bigl[S_{\alpha }(s)\cdot \bigl(I_{t}^{\alpha }S_{\alpha } \bigr)*f\bigl( \cdot ,x(\cdot ),Hx(\cdot )\bigr) (t)- g_{\alpha }(s)\cdot \bigl(I_{t}^{\alpha }S _{\alpha }\bigr)*f\bigl(\cdot ,x( \cdot ),Hx(\cdot )\bigr) (t)\bigr] \\& \quad = s^{1-\alpha }\bigl[S_{\alpha }(t)I_{s}^{\alpha } S_{\alpha }(s)x_{0} - g_{\alpha }(t)I_{s}^{\alpha } S_{\alpha }(s)x_{0} \bigr] \\& \qquad {} +s^{1-\alpha }\bigl[I_{s}^{\alpha }S_{\alpha }(s)S_{\alpha }(t)- I_{s} ^{\alpha }S_{\alpha }(s) g_{\alpha }(t) \bigr]* f\bigl(\cdot ,x(\cdot ),Hx( \cdot )\bigr) (t) \\& \quad = s^{1-\alpha }I_{s}^{\alpha }S_{\alpha }(s) \bigl[S_{\alpha }(t)x _{0}- g_{\alpha }(t)x_{0}+S_{\alpha } * f\bigl(\cdot ,x(\cdot ),Hx(\cdot )\bigr) (t)-g_{\alpha }*f\bigl(\cdot ,x( \cdot ),Hx(\cdot )\bigr) (t) \bigr] \\& \quad = s^{1-\alpha }I_{s}^{\alpha }S_{\alpha }(s) \bigl[x(t)-g_{\alpha }(t)x _{0}- I_{t}^{\alpha }f \bigl(t,x(t),Hx(t)\bigr) \bigr]. \end{aligned}$$
It follows that
$$\begin{aligned}& A I_{t}^{\alpha } x(t) \\& \quad = \lim_{s \rightarrow 0^{+}} \varGamma (2 \alpha ) \frac{ (s^{1- \alpha } S_{\alpha }(s) -\frac{1}{\varGamma (\alpha )} )I_{t}^{\alpha } x(t) }{s^{\alpha }} \\& \quad = \lim_{s \rightarrow 0^{+}} \varGamma (2 \alpha ) s^{1-2 \alpha } I _{s}^{\alpha }S_{\alpha }(s) \bigl[x(t)-g_{\alpha }(t)x_{0}- I_{t}^{ \alpha }f\bigl(t,x(t),Hx(t)\bigr) \bigr]. \end{aligned}$$
(3.3)
Noticing that
$$\begin{aligned}& \bigl\Vert \varGamma (2 \alpha ) s^{1-2 \alpha } I_{s}^{\alpha } S_{ \alpha }(s) x-x \bigr\Vert \\& \quad = \biggl\Vert \frac{\varGamma (2 \alpha )}{ \varGamma (\alpha )} \int _{0}^{s} s^{1-2 \alpha }(s-\tau )^{\alpha -1} S _{\alpha }(\tau ) x \,\mathrm{d}\tau -x \biggr\Vert \\& \quad = \biggl\Vert \frac{\varGamma (2 \alpha )}{\varGamma (\alpha )} \int _{0} ^{1} s^{1-\alpha }(1-\tau )^{\alpha -1} S_{\alpha }(s \tau ) x \,\mathrm{d}\tau -x \biggr\Vert \\& \quad = \biggl\Vert \frac{\varGamma (2 \alpha )}{[\varGamma (\alpha )]^{2}} \int _{0}^{1} s^{1-\alpha } \varGamma (\alpha ) (1-\tau )^{\alpha -1} S_{ \alpha }(s \tau ) x \,\mathrm{d}\tau -x \biggr\Vert \\& \quad = \biggl\Vert \frac{\varGamma (2 \alpha )}{[\varGamma (\alpha )]^{2}} \int _{0}^{1}(1-\tau )^{\alpha -1} \tau ^{\alpha -1} \varGamma (\alpha ) (s \tau )^{1-\alpha } S_{\alpha }(s \tau ) x \,\mathrm{d}\tau \\& \qquad {} -\frac{\varGamma (2 \alpha )}{[\varGamma (\alpha )]^{2}} \int _{0}^{1}(1- \tau )^{\alpha -1} \tau ^{\alpha -1} x \,\mathrm{d}\tau \biggr\Vert \\& \quad \leq \frac{\varGamma (2 \alpha )}{[\varGamma (\alpha )]^{2}} \int _{0} ^{1}(1-\tau )^{\alpha -1} \tau ^{\alpha -1} \,\mathrm{d}\tau \cdot \sup_{\tau \in [0,1]} \bigl\Vert \varGamma (\alpha ) (s \tau )^{1-\alpha } S _{\alpha }(s \tau ) x-x \bigr\Vert \\& \quad \leq \sup_{\tau \in [0,1]} \bigl\Vert \varGamma (\alpha ) (s \tau )^{1- \alpha } S_{\alpha }(s \tau ) x-x \bigr\Vert . \end{aligned}$$
By Definition 2.3(a), we get
$$ \bigl\Vert \varGamma (2 \alpha ) s^{1-2 \alpha } I_{s}^{\alpha } S_{ \alpha }(s) x-x \bigr\Vert \rightarrow 0,\quad \text{as } s\rightarrow 0^{+}. $$
(3.4)
Combining (3.3) and (3.4), we have
$$ A I_{t}^{\alpha } x(t)=x(t)-g_{\alpha }(t)x_{0}- I_{t}^{\alpha }f\bigl(t,x(t),Hx(t)\bigr). $$
That is,
$$ x(t)=g_{\alpha }(t)x_{0} + A I_{t}^{\alpha } x(t)+ I_{t}^{\alpha }f\bigl(t,x(t),Hx(t)\bigr), $$
which shows that x is a solution to problem (1.1). □
Lemma 3.3
Suppose that assumptions (H1)–(H3) are satisfied. Let
\(W_{r}=\{x \in C_{1-\alpha }(J,X):\|x\|_{C_{1-\alpha }}\leq r\}\). Then the mapping
\(G:W_{r}\rightarrow C_{1-\alpha }(J,X) \)defined by
$$ (Gx) (t)= \int _{0}^{t} S_{\alpha }(t-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s $$
is compact.
Proof
In view of the relationship between \((C_{1-\alpha }(J,X), \|\cdot \|_{C_{1-\alpha }})\) and \((C(J,X), \|\cdot \|_{C})\), for the compactness of \(GW_{r}\) in \(C_{1-\alpha }(J,X) \), it is sufficient to prove that the set
$$ B=\bigl\{ y\in C(J,X):y(t)=t^{1-\alpha }(Gx) (t), x\in W_{r}, t \in J\bigr\} $$
is precompact in \(C(J,X)\).
Firstly, we show that \(B(t)=\{y(t):y\in B \}\subseteq X\) is precompact in X for every \(t\in J\). If \(t=0\), then \(B(0)=0\) is obviously satisfied. If \(t>0\), we can define a set \(B^{\varepsilon }(t)= \{y ^{\varepsilon }(t), x\in W_{r}, t\in J'\}\subseteq X \), where
$$ y^{\varepsilon }(t)=\varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon ) \cdot \varGamma (\alpha ) t^{1-\alpha } \int _{0}^{t-\varepsilon } S_{ \alpha }(t-s- \varepsilon )f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s. $$
For \(x\in W_{r}\), \(s\in [0,b]\), we have
$$\begin{aligned} \bigl\Vert f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \leq & \theta (s)+\rho s^{1-\alpha } \biggl( \bigl\Vert x(s) \bigr\Vert + \biggl\Vert \int _{0}^{s} h\bigl(s,\tau ,x(\tau )\bigr) \, \mathrm{d}\tau \biggr\Vert \biggr) \\ \leq & \theta (s)+\rho s^{1-\alpha } \biggl( \bigl\Vert x(s) \bigr\Vert + \int _{0}^{s} m \bigl\Vert x(\tau ) \bigr\Vert \,\mathrm{d}\tau \biggr) \\ \leq & \theta (s)+\rho s^{1-\alpha } \bigl\Vert x(s) \bigr\Vert + \rho s^{1-\alpha } \int _{0}^{s} m \tau ^{\alpha -1} \bigl\Vert \tau ^{1-\alpha }x(\tau ) \bigr\Vert \,\mathrm{d}\tau \\ \leq & \theta (s)+\rho r+ \rho s^{1-\alpha }m\frac{s^{\alpha }}{ \alpha }r \\ \leq & \theta (s)+\rho r+ \rho \frac{ms}{\alpha }r \\ \leq & \theta (s)+\rho r+ \rho \frac{mb}{\alpha }r. \end{aligned}$$
(3.5)
By (3.5), for \(x\in W_{r}\), \(t\in (0,b]\), we get
$$\begin{aligned}& \biggl\Vert t^{1-\alpha } \int _{0}^{t-\varepsilon } S_{\alpha }(t-s-\varepsilon )f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \quad \leq b^{1-\alpha } \int _{0}^{t-\varepsilon } \bigl\Vert (t-s-\varepsilon )^{1- \alpha } S_{\alpha }(t-s-\varepsilon )\cdot (t-s-\varepsilon )^{ \alpha -1}f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \quad \leq M b^{1-\alpha } \int _{0}^{t-\varepsilon } \bigl\Vert (t-s-\varepsilon )^{\alpha -1}f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \quad \leq M b^{1-\alpha } \int _{0}^{t-\varepsilon } (t-s-\varepsilon )^{ \alpha -1} \biggl( \theta (s)+\rho r+ \rho \frac{mb}{\alpha }r \biggr) \,\mathrm{d}s \\& \quad \leq M b^{1-\alpha } \int _{0}^{t-\varepsilon } (t-s-\varepsilon )^{ \alpha -1} \theta (s) \,\mathrm{d}s+ M b^{1-\alpha } \int _{0}^{t- \varepsilon } (t-s-\varepsilon )^{\alpha -1} \biggl(\rho r+ \rho \frac{mb}{ \alpha }r \biggr) \, \mathrm{d}s \\& \quad \leq M \biggl( b\frac{p-1}{\alpha p-1} \biggr)^{1-\frac{1}{p}} \Vert \theta \Vert _{L^{p}}+\frac{Mb}{\alpha } \biggl(\rho r+ \rho \frac{mb}{ \alpha }r \biggr) \\& \quad < \infty . \end{aligned}$$
(3.6)
Moreover, due to hypothesis (H1), for \(\varepsilon >0\), the operator \(\varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon )\) is compact. So we know that \(B^{\varepsilon }(t) \) is precompact in X for each \(t\in J'\).
Let \(t\in (0,b]\) and \(\delta \in (\varepsilon ,t )\). We have
$$\begin{aligned}& \bigl\Vert y(t)-y^{\varepsilon }(t) \bigr\Vert \\& \quad \leq t^{1-\alpha } \biggl[ \biggl\Vert \int _{0}^{t-\varepsilon } (t-s)^{1- \alpha }S_{\alpha }(t-s) \cdot (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \\& \qquad {} - \varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon )\varGamma (\alpha ) \int _{0}^{t-\varepsilon } (t-s-\varepsilon )^{1-\alpha }S_{\alpha }(t-s- \varepsilon )\cdot (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \qquad {} + \biggl\Vert \varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon ) \varGamma (\alpha ) \int _{0}^{t-\varepsilon } (t-s-\varepsilon )^{1-\alpha }S _{\alpha }(t-s-\varepsilon )\cdot \bigl((t-s)^{\alpha -1} -(t-s-\varepsilon )^{\alpha -1} \bigr) \\& \qquad {}\times f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \qquad {} + \biggl\Vert \int _{t-\varepsilon }^{t} (t-s)^{1-\alpha }S_{\alpha }(t-s) \cdot (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \biggr] \\& \quad \leq b^{1-\alpha } \int _{0}^{t-\varepsilon } \bigl\Vert \bigl[ (t-s)^{1- \alpha }S_{\alpha }(t-s)- \varGamma (\alpha ) \varepsilon ^{1-\alpha } S _{\alpha }(\varepsilon ) (t-s-\varepsilon )^{1-\alpha } S_{\alpha }(t-s- \varepsilon ) \bigr] \\& \qquad {}\times (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \qquad {} +b^{1-\alpha } \bigl\Vert \varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon ) \bigr\Vert \varGamma (\alpha )\cdot M \int _{0}^{t-\varepsilon } \bigl\Vert \bigl[(t-s)^{ \alpha -1} -(t-s-\varepsilon )^{\alpha -1} \bigr]f \bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \qquad {} + b^{1-\alpha }M \int _{t-\varepsilon }^{t} \bigl\Vert (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \quad \leq b^{1-\alpha } \int _{0}^{t-\delta } \bigl\Vert (t-s)^{1-\alpha }S_{ \alpha }(t-s)- \varGamma (\alpha )\varepsilon ^{1-\alpha } S_{\alpha }( \varepsilon ) (t-s-\varepsilon )^{1-\alpha } S_{\alpha }(t-s-\varepsilon ) \bigr\Vert \\& \qquad {}\times (t-s)^{\alpha -1} \biggl(\theta (s)+\rho r+ \rho \frac{mb}{\alpha }r \biggr) \,\mathrm{d}s \\& \qquad {} + b^{1-\alpha } \int _{t-\delta }^{t-\varepsilon } \bigl\Vert (t-s)^{1-\alpha }S_{\alpha }(t-s)- \varGamma (\alpha )\varepsilon ^{1-\alpha } S_{\alpha }(\varepsilon ) (t-s-\varepsilon )^{1-\alpha } S_{\alpha }(t-s-\varepsilon ) \bigr\Vert \\& \qquad {}\times (t-s)^{\alpha -1} \biggl(\theta (s)+\rho r+ \rho \frac{mb}{\alpha }r \biggr) \,\mathrm{d}s \\& \qquad {} +b^{1-\alpha }M^{2} \varGamma (\alpha ) \biggl( \int _{0}^{t-\varepsilon } \bigl[(t-s)^{\alpha -1} -(t-s-\varepsilon )^{\alpha -1} \bigr]^{ \frac{p}{p-1}} \,\mathrm{d}s \biggr)^{1-\frac{1}{p}} \Vert f \Vert _{L^{p}} \\& \qquad {} +b^{1-\alpha }M \int _{t-\varepsilon }^{t} \bigl\Vert (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s \\& \quad := I_{1}+I_{2}+I_{3}+I_{4}, \end{aligned}$$
where
$$\begin{aligned}& \begin{aligned} I_{1} &= b^{1-\alpha } \int _{0}^{t-\delta } \bigl\Vert (t-s)^{1-\alpha }S_{ \alpha }(t-s)- \varGamma (\alpha ) \varepsilon ^{1-\alpha } S_{\alpha }( \varepsilon ) (t-s-\varepsilon )^{1-\alpha } S_{\alpha }(t-s-\varepsilon ) \bigr\Vert \\ &\quad {}\times (t-s)^{\alpha -1} \biggl(\theta (s)+\rho r+ \rho \frac{mb}{\alpha }r \biggr) \,\mathrm{d}s, \end{aligned} \\& \begin{aligned} I_{2} &= b^{1-\alpha } \int _{t-\delta }^{t-\varepsilon } \bigl\Vert (t-s)^{1- \alpha }S_{\alpha }(t-s)- \varGamma (\alpha )\varepsilon ^{1-\alpha } S _{\alpha }(\varepsilon ) (t-s-\varepsilon )^{1-\alpha } S_{\alpha }(t-s- \varepsilon ) \bigr\Vert \\ &\quad {}\times (t-s)^{\alpha -1} \biggl(\theta (s)+\rho r+ \rho \frac{mb}{\alpha }r \biggr) \,\mathrm{d}s, \end{aligned} \\& I_{3} = b^{1-\alpha }M^{2} \varGamma (\alpha ) \biggl( \int _{0}^{t- \varepsilon } \bigl[(t-s)^{\alpha -1} -(t-s-\varepsilon )^{\alpha -1} \bigr]^{\frac{p}{p-1}} \,\mathrm{d}s \biggr)^{1-\frac{1}{p}} \Vert f \Vert _{L^{p}}, \\& I_{4} = b^{1-\alpha }M \int _{t-\varepsilon }^{t} \bigl\Vert (t-s)^{\alpha -1} f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d}s. \end{aligned}$$
From Lemma 2.5, we know that \(I_{1}\rightarrow 0\), as \(\varepsilon \rightarrow 0^{+} \). By the arbitrariness of ε, δ and absolute continuity of integral, we get
$$ I_{2}\rightarrow 0,\qquad I_{4}\rightarrow 0, $$
as \(\varepsilon ,\delta \rightarrow 0^{+} \). The conclusion of Lemma 2.7 shows that \(I_{3}\rightarrow 0 \), as \(\varepsilon \rightarrow 0^{+}\). Now for \(t\in J'\), we get
$$ \lim_{\varepsilon \rightarrow 0^{+}} \bigl\Vert y(t)-y^{\varepsilon }(t) \bigr\Vert =0, $$
which implies that \(B(t)=\{y(t):y\in B \}\) is precompact in X as there is a family of precompact sets arbitrarily close to it.
Next, we show the equicontinuity of B on J. Similar to the computational procedure of (3.6), we can get
$$\begin{aligned}& \biggl\Vert \int _{0}^{t} S_{\alpha }(t-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \quad \leq Mb^{\alpha - \frac{1}{p}} \biggl(\frac{p-1}{\alpha p-1} \biggr) ^{1-\frac{1}{p}} \Vert \theta \Vert _{L^{p}}+\frac{Mb^{\alpha }}{\alpha } \biggl(\rho r+ \rho \frac{mb}{\alpha }r \biggr) \\& \quad := F_{r}< \infty , \end{aligned}$$
(3.7)
for \(t\in J\), \(x\in W_{r}\). Let \(y\in B\), \(0\leq t_{1}< t_{2}\leq b\). Then we have
$$\begin{aligned}& \bigl\Vert y(t_{2})-y(t_{1}) \bigr\Vert \\& \quad = \biggl\Vert t_{2}^{1-\alpha } \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s - t_{1}^{1-\alpha } \int _{0}^{t_{1}} S_{\alpha }(t_{1}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \quad \leq \biggl\Vert \bigl(t_{2}^{1-\alpha }-t_{1}^{1-\alpha } \bigr) \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \qquad {} +t_{1}^{1-\alpha } \biggl\Vert \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s- \int _{0}^{t_{1}} S_{\alpha }(t_{1}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \quad \leq \bigl(t_{2}^{1-\alpha }-t_{1}^{1-\alpha } \bigr)F_{r} \\& \qquad {} +b^{1-\alpha } \biggl\Vert \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s- \int _{0}^{t_{1}} S_{\alpha }(t_{1}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert . \end{aligned}$$
From (3.5), we know
$$ \bigl\Vert f\bigl(s,x(s),Hx(s)\bigr) \bigr\Vert \leq \theta (s)+\rho r+ \rho \frac{mb}{\alpha }r,\quad \theta \in L^{p}(J,X). $$
Then due to Eq. (3.1) in Lemma 3.1, we have
$$ \biggl\Vert \int _{0}^{t_{2}} S_{\alpha }(t_{2}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s- \int _{0}^{t_{1}} S_{\alpha }(t_{1}-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \rightarrow 0, $$
as \(t_{1}\rightarrow t_{2} \), independent of \(x\in W_{r}\). Now we can obtain
$$ \lim_{t_{1} \rightarrow t_{2}} \bigl\Vert y (t_{2} )-y (t _{1} ) \bigr\Vert =0, $$
which leads to the equicontinuity of B on J. Thus \(G:W_{r}\rightarrow C_{1-\alpha }(J,X) \) is a compact mapping by the Ascoli–Arzela theorem. This proof is completed. □
Now we can present our main existence result to problem (1.1).
Theorem 3.4
Assume that the hypotheses (H1)–(H3) are satisfied. Then the system (1.1) has at least one solution.
Proof
We transform the existence of solutions into a fixed point problem. For this purpose, by considering Lemma 3.2, we introduce the solution operator \(\varPhi :C_{1-\alpha }(J,X) \rightarrow C_{1- \alpha }(J,X)\) by
$$ \varPhi x(t)=S_{\alpha }(t) x_{0}+ \int _{0}^{t} S_{\alpha }(t-s)f\bigl(s, x(s),Hx(s)\bigr) \,\mathrm{d} s. $$
It is easy to see that the fixed point of Φ is just the solution to problem (1.1). Subsequently, we shall prove that Φ has a fixed point by Schauder’s fixed point theorem.
Step 1. We claim that \(\varPhi W_{r}\subseteq W_{r}\) in \(C_{1-\alpha }(J,X)\), where
$$ r\geq \frac{\alpha ^{2}}{\alpha ^{2}-Mb(\alpha \rho +\rho bm ) } \biggl[ M \Vert x_{0} \Vert + M \biggl( b\frac{p-1}{\alpha p-1} \biggr)^{1-\frac{1}{p}} \Vert \theta \Vert _{L^{p}} \biggr] . $$
In fact, for \(x\in W_{r}\), \(t\in J\), from (3.7) we have
$$\begin{aligned}& \bigl\Vert t^{1-\alpha }\varPhi x(t) \bigr\Vert \\& \quad \leq \bigl\Vert t^{1-\alpha }S_{\alpha }(t) x_{0} \bigr\Vert +b^{1-\alpha } \biggl\Vert \int _{0}^{t} S_{\alpha }(t-s)f \bigl(s,x(s),Hx(s)\bigr) \,\mathrm{d}s \biggr\Vert \\& \quad \leq M \Vert x_{0} \Vert + M \biggl( b\frac{p-1}{\alpha p-1} \biggr)^{1- \frac{1}{p}} \Vert \theta \Vert _{L^{p}}+ \frac{Mb}{\alpha } \biggl(\rho r+ \rho \frac{mb}{\alpha }r \biggr) \\& \quad \leq r. \end{aligned}$$
Step 2. We show that Φ is continuous on \(W_{r}\subseteq C_{1- \alpha }(J,X)\). For this purpose, we assume that \(x_{n}\rightarrow x\) in \(W_{r}\). From hypothesis (H2), (H3), for \(t\in J\), we have
$$ (t-s)^{\alpha -1} \bigl(f \bigl(s, x_{n}(s), Hx_{n}(s) \bigr)-f\bigl(s, x(s),Hx(s)\bigr) \bigr) \rightarrow 0,\quad \text{a.e. } s \in [0, t], $$
and from (3.5), it follows that
$$\begin{aligned}& (t-s)^{\alpha -1} \bigl\Vert f \bigl(s, x_{n}(s),Hx_{n}(s) \bigr)-f\bigl(s, x(s),Hx(s)\bigr) \bigr\Vert \\& \quad \leq 2(t-s)^{\alpha -1}\biggl(\theta (s)+\varrho r+\rho \frac{mb}{\alpha }r\biggr),\quad s \in [0, t]. \end{aligned}$$
Then, by the dominated convergence theorem, we get
$$\begin{aligned}& t^{1-\alpha } \bigl\Vert (\varPhi x_{n}) (t)-(\varPhi x) (t) \bigr\Vert \\& \quad \leq t^{1-\alpha } \int _{0}^{t} \bigl\Vert (t-s)^{1-\alpha }S_{\alpha }(t-s) \bigr\Vert \cdot (t-s)^{\alpha -1} \bigl\Vert f\bigl(s, x_{n}(s),Hx_{n}(s)\bigr)- f\bigl(s, x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d} s \\& \quad \leq Mb^{1-\alpha } \int _{0}^{t} (t-s)^{\alpha -1} \bigl\Vert f\bigl(s, x _{n}(s),Hx_{n}(s)\bigr)- f\bigl(s, x(s),Hx(s)\bigr) \bigr\Vert \,\mathrm{d} s \\& \quad \rightarrow 0 ,\quad n\rightarrow \infty , \end{aligned}$$
which implies the continuity of Φ on \(W_{r}\).
Step 3. We show that the operator Φ is compact. Let
$$ \varPhi =\varPhi _{1}+\varPhi _{2}, $$
where \(\varPhi _{1}(t)=S_{\alpha }(t) x_{0}\), \(\varPhi _{2}(t)=\int _{0}^{t} S _{\alpha }(t-s)f(s, x(s),Hx(s)) \,\mathrm{d} s\). From Lemma 3.3, we have concluded that \(\varPhi _{2}\) is compact in \(W_{r}\). For the compactness of \(\varPhi _{1}\), it is sufficient to check the set
$$ V=\bigl\{ z\in C(J,X):z(t)=t^{1-\alpha } S_{\alpha }(t)x_{0},x_{0} \in X, t \in J \bigr\} , $$
is precompact in \(C(J,X)\). Obviously, \(V(0)=\{\frac{x_{0}}{\varGamma ( \alpha )}\}\), \(V(t)=\{t^{1-\alpha } S_{\alpha }(t)x_{0} \}\), \(t>0\), is precompact in X. Suppose that \(0\leq t_{1}< t_{2}\leq b \). If \(t_{1}=0\), in view of Definition 2.3(a), we get
$$ \bigl\Vert z(t_{2})-z(0) \bigr\Vert = \biggl\Vert t_{2}^{1-\alpha } S_{\alpha }(t_{2})x_{0} -\frac{x _{0}}{\varGamma (\alpha )} \biggr\Vert \rightarrow 0, $$
as \(t_{2}\rightarrow 0\). If \(t_{1}>0\),
$$ \bigl\Vert z(t_{2})-z(t_{1}) \bigr\Vert \leq \bigl\Vert t_{2}^{1-\alpha } S_{\alpha }(t_{2})x _{0} - t_{2}^{1-\alpha } S_{\alpha }(t_{2})x_{0} \bigr\Vert \rightarrow 0. $$
From hypothesis (H1), we know that \(\|z(t_{2})-z(t_{1}) \|\rightarrow 0\), as \(t_{1}\rightarrow t_{2}\). By the Ascoli–Arzela theorem, we see that V is precompact in \(C(J,X)\). Therefore, \(\varPhi =\varPhi _{1}+\varPhi _{2}\) is a compact operator in \(C_{1-\alpha }(J,X) \).
Hence, from Schauder’s fixed point theorem, there exists a fixed point x such that \(\varPhi x=x \), which is the solution to problem (1.1). This completes the proof. □