Let \(\lambda _{m,n}\), \(m\geq 0\), \(n\in \mathbb{N}\), be the eigenvalues of the q-Dirac problem (1.1)–(1.3) (i.e. the roots of \(\Delta _{n}(\lambda )\)) with the corresponding eigenfunctions
$$ Y_{m,n}(x)=Y(x,\lambda _{m,n}) = \bigl(Y_{1}(x, \lambda _{m,n}), Y_{2}(x, \lambda _{m,n}) \bigr). $$
If \(f(x)=(f_{1} (x), f_{2}(x))\) is a vector function, \(f_{1},f_{2} \in L^{2}_{q}(0,q^{-n})\), \(n\in \mathbb{N}\), \(Y_{m,n,i}(x )=Y_{i}(x, \lambda _{m,n})\), \(i=1,2\), and
$$ \alpha ^{2}_{m,n,i}= \int _{0}^{q^{-n}}Y^{2}_{m,n,i}(x) \,d_{q}x,\quad i=1,2, $$
then from [7] we have
$$\begin{aligned} \int _{0}^{q^{-n}} \bigl(f^{2}_{1} (x)+f^{2}_{2} (x) \bigr) \,d_{q}x= \sum _{m=- \infty }^{\infty } \sum _{i=1}^{2} \frac{1}{\alpha ^{2}_{m,n,i}} \biggl( \int _{0}^{q^{-n}} f_{i} (x) Y_{m,n,i}(x) \,d_{q}x \biggr)^{2}. \end{aligned}$$
(4.1)
Denote the non-decreasing step function \(\rho _{n}\) by
$$\begin{aligned} \rho _{n}(\lambda )= \textstyle\begin{cases} -\sum_{\lambda < \lambda _{m,n} < 0 } \sum_{i=1}^{2} \frac{1}{\alpha ^{2}_{m,n,i}},& \lambda < 0, \\ \sum_{0 \leq \lambda _{m,n} < \lambda } \sum_{i=1}^{2} \frac{1}{\alpha ^{2}_{m,n,i}},& \lambda \geq 0. \end{cases}\displaystyle \end{aligned}$$
Therefore, (4.1) can be written as
$$\begin{aligned} \int _{0}^{q^{-n}} \bigl(f^{2}_{1} (x)+f^{2}_{2} (x) \bigr) \,d_{q}x= \int _{-\infty }^{\infty } \bigl(F^{2}_{1,n} (\lambda )+F^{2}_{2,n} (\lambda ) \bigr) \,d\rho _{n}(\lambda ), \end{aligned}$$
(4.2)
where \(F_{i,n} (\lambda )=\int _{0}^{q^{-n}} f_{i} (x) Y_{i}(x,\lambda ) \,d_{q}x \), \(i=1,2 \).
Lemma 4.1
For any positiveτ, the following inequality holds:
$$\begin{aligned} \sum_{-\tau \leq \lambda _{m,n} < \tau } \sum _{i=1}^{2} \frac{1}{\alpha ^{2}_{m,n,i}}= \rho _{n}(\tau ) -\rho _{n}(-\tau ) < \frac{4}{\tau }. \end{aligned}$$
(4.3)
Proof
Since \(\zeta _{1}(x,\lambda )\) and \(\zeta _{2}(x,\lambda )\) are continuous at zero, it follows from (3.7) that there is a positive number τ and nearby zero such that
$$\begin{aligned} \frac{1}{\tau } \sum_{i=1}^{2} \biggl( \int _{0}^{\tau }\zeta _{i}(x,\lambda ) \,d_{q}x \biggr)^{2} > \frac{1}{2}. \end{aligned}$$
(4.4)
Denote the vector function \({}_{\tau }f(x)=({}_{\tau }f_{1}(x), {}_{ \tau }f_{2}(x))\) by
$$\begin{aligned} _{\tau }f_{i}(x)= \textstyle\begin{cases} \frac{1}{\tau },& 0\leq x \leq \tau, \\ 0,& x>\tau. \end{cases}\displaystyle \end{aligned}$$
Then, from (4.2) and (4.4), we obtain
$$\begin{aligned} \int _{0}^{\tau } \bigl({}_{\tau }f^{2}_{1}(x)+ {}_{\tau }f^{2}_{2}(x) \bigr) \,d_{q}x &=\frac{2}{\tau } = \int _{-\infty }^{\infty } \sum_{i=1}^{2} \biggl( \int _{0} ^{\tau } \frac{1}{\tau } \zeta _{i}(x,\lambda ) \,d_{q}x \biggr)^{2} \,d \rho _{n}( \lambda ) \\ &\geq \int _{-\tau }^{\tau } \sum _{i=1}^{2} \biggl(\frac{1}{\tau } \int _{0} ^{\tau } \zeta _{i}(x, \lambda ) \,d_{q}x \biggr)^{2} \,d\rho _{n}( \lambda ) \\ &>\frac{1}{2} \bigl( \rho _{n}(\tau )-\rho _{n}(-\tau ) \bigr), \end{aligned}$$
and we arrive at (4.3). □
The following lemmas were proved in [21].
Lemma 4.2
Let
\(\{ v_{n} \}_{n=1}^{\infty }\)be a uniformly bounded sequence of real non-decreasing function ofλon a finite interval
\([a,b]\). Then there exist a subsequence
\(\{ v_{n_{k}} \}_{k=1}^{ \infty }\)and a non-decreasing functionvsuch that, for
\(\lambda \in [a,b]\), \(\lim_{k\rightarrow \infty } v_{n_{k}}(\lambda )=v(\lambda )\).
Lemma 4.3
Assume
\(\{ v_{n} \}_{n=1}^{\infty }\)is a real uniformly bounded sequence of real non-decreasing function ofλon a finite interval
\([a,b]\), and suppose for
\(\lambda \in [a,b]\), \(\lim_{n\rightarrow \infty } v_{n}(\lambda )=v(\lambda )\). Ifgis any continuous function ofλon
\([a,b]\), then
\(\lim_{n\rightarrow \infty } \int _{a}^{b} g(\lambda ) \,dv_{n}(\lambda )= \int _{a}^{b} g(\lambda ) \,dv(\lambda )\).
Now, let ρ be any non-decreasing function of λ on the interval \((-\infty, \infty )\). We define by \(L^{2}_{\rho }(-\infty, \infty ) \times L^{2}_{\rho }(-\infty, \infty )\) the Hilbert space of all vector functions \(g=(g_{1},g_{2}): (-\infty, \infty )\times (- \infty, \infty ) \rightarrow \mathbb{R}\) which \(g_{1},g_{2}\) are measurable with respect to the Lebesgue–Stieltjes measure defined by ρ, such that \(\int _{-\infty }^{\infty } g_{i}(\lambda ) \,d\rho ( \lambda ) < \infty \), \(i=1,2\), with inner product
$$ \langle g,h\rangle _{\rho }:= \int _{-\infty }^{\infty } \bigl( g_{1}(\lambda )h_{1}( \lambda ) +g_{2}(\lambda )h_{2}( \lambda ) \bigr) \,d\rho (\lambda ). $$
In the following theorem, we prove the main result of this section.
Theorem 4.4
For theq-Dirac problem (1.1)–(1.3), there exists a non-decreasing function
\(\rho (\lambda )\)on the interval
\((-\infty, \infty )\)such that satisfies the following property:
If
\(f=(f_{1},f_{2})\)is a vector function, \(f_{i}\in L^{2}_{q }(0,q ^{-n})\), \(i=1,2\), then there exists a function
\(F=(F_{1},F_{2}) \in L^{2}_{\rho }(-\infty, \infty ) \times L^{2}_{\rho }(-\infty, \infty )\)such that
$$\begin{aligned} \lim_{n \rightarrow \infty } \int _{-\infty }^{\infty } \biggl\{ F_{1}( \lambda )+F_{2}(\lambda ) - \int _{0}^{q^{-n}} \bigl(f_{1}(x)Y_{1}(x, \lambda ) +f_{2}(x) Y_{2}(x,\lambda ) \bigr) \,d_{q}x \biggr\} \,d\rho (\lambda )=0, \end{aligned}$$
and the Parseval’s equality holds:
$$ \int _{0 }^{\infty } \bigl( f^{2}_{1}(x) +f^{2}_{2}(x) \bigr) \,d_{q}x= \int _{- \infty }^{\infty } \bigl( F^{2}_{1}( \lambda )+F^{2}_{2}(\lambda ) \bigr) \,d \rho (\lambda ). $$
The function ρ is called the spectral function for the q-problem (1.1)–(1.3).
Proof
Assume that the vector function \(f_{\eta }(x)=(f_{\eta,1}(x),f_{ \eta,2}(x))\) satisfies the following conditions:
- (1)
\(f_{\eta }(0)=(1,1)\);
- (2)
\(f_{\eta }(x)\) vanishes outside \([0,q^{-\eta }]\times [0,q ^{-\eta }]\), \(q^{-\eta } < q^{-n }\);
- (3)
\(f_{\eta,i}(x)\) and \(D_{q} f_{\eta,i}(x)\), \(i=1,2\), are q-regular at zero.
According to (4.2), we can write
$$\begin{aligned} \int _{0 }^{q^{-\eta } } \bigl( f^{2}_{\eta,1}(x) +f^{2}_{\eta,1}(x) \bigr)\,d _{q}x= \int _{-\infty }^{\infty } \bigl( F^{2}_{1}( \lambda )+F^{2}_{2}( \lambda ) \bigr) \,d\rho (\lambda ), \end{aligned}$$
(4.5)
where
$$ F_{i} (\lambda )= \int _{0}^{q^{-\eta }} f_{\eta,i} (x) Y_{i}(x,\lambda )\,d_{q}x,\quad i=1,2. $$
Since \(Y(x,\lambda )=(Y_{1}(x,\lambda ),Y_{2}(x,\lambda ))\) satisfies the q-system (1.1), we have
$$\begin{aligned} \textstyle\begin{cases} Y_{1}(x,\lambda )=\frac{1}{\lambda } ( \frac{1}{q} D_{q}Y_{2}(x, \lambda ) + p(x) Y_{1}(x,\lambda ) ), \\ Y_{2}(x,\lambda )=\frac{1}{\lambda } ( - D_{q^{-1}}Y_{1}(x,\lambda ) + r(x) Y_{2}(x,\lambda ) ). \end{cases}\displaystyle \end{aligned}$$
Denote
$$\begin{aligned} &F_{n,1} (\lambda ):= \frac{1}{\lambda } \int _{0}^{q^{-n } } f_{\eta,1} (x) \biggl( \frac{1}{q} D_{q}Y_{2}(x,\lambda ) + p(x) Y_{1}(x,\lambda ) \biggr) \,d _{q}x, \\ &F_{n,2} (\lambda ):= \frac{1}{\lambda } \int _{0}^{q^{-n }} f_{\eta,2} (x) \bigl( - D_{q^{-1}}Y_{1}(x,\lambda ) + r(x) Y_{2}(x, \lambda ) \bigr) \,d_{q}x . \end{aligned}$$
Since \(f_{\eta } (x)\) vanishes in a neighborhood of \((q^{-n }, q^{-n })\), and \(f_{\eta } (0)=Y(0,\lambda )=(1,1)\), using q-integration by parts we get
$$\begin{aligned} &F_{n,1} (\lambda )= \frac{1}{\lambda } \int _{0}^{q^{-n } } \biggl\{ \frac{1}{q} Y_{2}(x,\lambda ) D_{q} f_{\eta,1} (x)+ p(x) f_{\eta,1} (x) Y_{1}(x,\lambda ) \biggr\} \,d_{q}x, \\ &F_{n,2} (\lambda )= \frac{1}{\lambda } \int _{0}^{q^{-n }} \bigl\{ - Y_{1}(x, \lambda ) D_{q^{-1}} f_{\eta,2} (x)+ r(x) f_{\eta,2} (x) Y_{2}(x, \lambda ) \bigr\} \,d_{q}x. \end{aligned}$$
Applying (4.2), we have, for any \(\tau >0\),
$$\begin{aligned} & \int _{ |\lambda |>\tau } F^{2}_{n,1} (\lambda ) \,d \rho _{n}(\lambda ) \\ &\quad \leq \frac{1}{\tau ^{2}} \int _{|\lambda |>\tau } \biggl\{ \int _{0}^{q^{-n } } \biggl\{ \frac{1}{q} Y_{2}(x,\lambda ) D_{q} f_{\eta,1} (x) \\ &\qquad{}+ p(x) f_{\eta,1} (x) Y_{1}(x,\lambda ) \biggr\} \,d_{q}x \biggr\} ^{2} \,d\rho _{n}( \lambda ) \\ &\quad \leq \frac{1}{\tau ^{2}} \int _{-\infty }^{\infty } \biggl\{ \int _{0}^{q ^{-n } } \biggl\{ \frac{1}{q} Y_{2}(x,\lambda ) D_{q} f_{\eta,1} (x) \\ &\qquad{}+ p(x) f_{\eta,1} (x) Y_{1}(x,\lambda ) \biggr\} \,d_{q}x \biggr\} ^{2} \,d\rho _{n}( \lambda ) \\ & \quad= \frac{1}{\tau ^{2}} \biggl\{ \int _{-\infty }^{\infty } \biggl( \int _{0}^{q^{-n } } \frac{1}{q} Y_{2}(x,\lambda ) D_{q} f_{\eta,1} (x) \,d_{q}x \biggr)^{2} \,d \rho _{n}(\lambda ) \\ &\qquad{} + \int _{-\infty }^{\infty } \biggl( \int _{0}^{q^{-n } } Y_{1}(x,\lambda ) p(x) f_{\eta,1} (x) \,d_{q}x \biggr)^{2} \,d \rho _{n}(\lambda ) + M_{1} \biggr\} , \end{aligned}$$
where
$$ M_{1}=\frac{2}{q} \int _{-\infty }^{\infty } \biggl\{ \int _{0}^{q^{-n } } Y _{1}(x,\lambda ) p(x) f_{\eta,1} (x) \,d_{q}x \biggr\} \biggl\{ \int _{0}^{q^{-n } } Y_{2}(x,\lambda ) D_{q} f_{\eta,1} (x) \,d_{q}x \biggr\} \,d\rho _{n}(\lambda ). $$
Hence, from (4.2) we obtain
$$\begin{aligned} &\int _{|\lambda |>\tau } F^{2}_{n,1} (\lambda ) \,d \rho _{n}(\lambda ) \\ &\quad \leq \frac{1}{\tau ^{2}} \biggl\{ \int _{0}^{q^{-n } } \bigl( p(x) f_{\eta,1} (x) \bigr)^{2}\,d_{q}x + \int _{0}^{q^{-n } } \biggl( \frac{1}{q} D_{q} f_{\eta,1} (x) \biggr)^{2} \,d_{q}x + M_{1} \biggr\} . \end{aligned}$$
(4.6)
Similarly, we have
$$\begin{aligned} &\int _{|\lambda |>\tau } F^{2}_{n,2} (\lambda ) \,d \rho _{n}(\lambda ) \\ &\quad \leq \frac{1}{\tau ^{2}} \biggl\{ \int _{0}^{q^{-n } } \bigl(D_{q^{-1}} f_{\eta,2} (x) \bigr)^{2} \,d_{q}x + \int _{0}^{q^{-n } } \bigl( r(x) f_{\eta,2} (x) \bigr)^{2}\,d _{q}x + M_{2} \biggr\} , \end{aligned}$$
(4.7)
where
$$ M_{2}=-2 \int _{-\infty }^{\infty } \biggl\{ \int _{0}^{q^{-n } } Y_{1}(x, \lambda ) D_{q^{-1}} f_{\eta,2} (x) \,d_{q}x \biggr\} \biggl\{ \int _{0}^{q^{-n } } Y_{2}(x,\lambda ) r(x) f_{\eta,2} (x)\,d_{q}x \biggr\} \,d\rho _{n}( \lambda ). $$
Therefore, it follows from (4.5)–(4.7) that
$$\begin{aligned} & \biggl\vert \int _{0}^{q^{-\eta } } \bigl( f^{2}_{\eta,1} (x)+f^{2}_{\eta,2} (x) \bigr) \,d _{q}x- \int _{-\tau }^{\tau } \bigl(F^{2}_{n,1} (\lambda ) +F^{2}_{n,2} ( \lambda ) \bigr)\,d\rho _{n}(\lambda ) \biggr\vert \\ & \quad = \int _{ \vert \lambda \vert >\tau } \bigl(F^{2}_{n,1} (\lambda ) +F^{2}_{n,2} ( \lambda ) \bigr)\,d\rho _{n}( \lambda ) \\ &\quad < \frac{1}{\tau ^{2}} \int _{0}^{q^{-\eta } } \biggl\{ \bigl(p(x)f_{\eta,1} (x) \bigr)^{2}+ \biggl(\frac{1}{q}D_{q}f_{\eta,1} (x) \biggr)^{2}+ \bigl(D_{q^{-1}}f_{\eta,2} (x) \bigr)^{2} \\ &\qquad{} + \bigl(r(x)f_{\eta,2} (x) \bigr)^{2} + M_{1}+ M_{2} \biggr\} \,d_{q}x. \end{aligned}$$
(4.8)
On the other hand, according to Lemma 4.1, the set \(\{ \rho _{n}( \lambda ) \}\) is bounded. Thus, by Lemmas 4.2 and 4.3, there is a subsequence \(\{ n_{k} \}\) such that \(\{ \rho _{n_{k}}(\lambda ) \}\) converges to a monotone function \(\rho (\lambda )\). Passing to the limit with respect to \(\{ n_{k} \}\) in (4.8), we obtain
$$\begin{aligned} & \biggl\vert \int _{0}^{q^{-\eta } } \bigl( f^{2}_{\eta,1} (x)+f^{2}_{\eta,2} (x) \bigr) \,d _{q}x- \int _{-\tau }^{\tau } \bigl(F^{2}_{n,1} (\lambda ) +F^{2}_{n,2} ( \lambda ) \bigr)\,d\rho ( \lambda ) \biggr\vert \\ & \quad < \frac{1}{\tau ^{2}} \int _{0}^{q^{-\eta } } \biggl\{ \bigl(p(x)f_{\eta,1} (x) \bigr)^{2}+ \biggl(\frac{1}{q}D_{q}f_{\eta,1} (x) \biggr)^{2}+ \bigl(D_{q^{-1}}f_{\eta,2} (x) \bigr)^{2} \\ & \qquad{}+ \bigl(r(x)f_{\eta,2} (x) \bigr)^{2}+ M_{1}+ M_{2} \biggr\} \,d_{q}x. \end{aligned}$$
So,
$$ \int _{0}^{q^{-\eta } } \bigl( f^{2}_{\eta,1} (x)+f^{2}_{\eta,2} (x) \bigr) \,d _{q}x = \int _{-\infty }^{\infty } \bigl(F^{2}_{n,1} (\lambda ) +F^{2}_{n,2} (\lambda ) \bigr)\,d\rho (\lambda ) $$
as \(\tau \rightarrow \infty \). Now, let \(f=(f_{1},f_{2})\) be an arbitrary vector function in \(L^{2}_{q}(0,\infty )\times L^{2}_{q}(0, \infty ) \). We know that there exists a sequence \(\{ f_{\eta }(x)= (f _{\eta,1}(x),f_{\eta,2}(x) ) \}\) satisfying the conditions (1)–(3) such that
$$ \lim_{\eta \rightarrow \infty } \int _{0}^{\infty } \bigl( f_{i}(x) - f_{ \eta,i}(x) \bigr)^{2} \,d_{q}x=0,\quad i=1,2. $$
Then
$$ \int _{0}^{\infty } \bigl( f^{2}_{\eta,1}(x) + f^{2}_{\eta,2}(x) \bigr)\,d_{q}x= \int _{-\infty }^{\infty } \bigl(F^{2}_{\eta,1} (\lambda ) +F^{2}_{\eta,2} (\lambda ) \bigr)\,d\rho (\lambda ), $$
where \(F_{\eta,i} (\lambda )=\int _{0}^{\infty } f_{\eta,i} (x) Y _{i}(x,\lambda )\,d_{q}x\). Since for \(i=1,2\),
$$ \int _{0}^{\infty } \bigl( f_{\eta _{1},i}(x) - f_{\eta _{2},i}(x) \bigr)^{2} \,d _{q}x \rightarrow 0 $$
as \(\eta _{1}, \eta _{2}\rightarrow \infty \), we get
$$\begin{aligned} \int _{-\infty }^{\infty } \bigl(F_{\eta _{1},i} (\lambda ) -F_{\eta _{2},i} ( \lambda ) \bigr)^{2}\,d\rho (\lambda ) = \int _{0}^{\infty } \bigl( f_{\eta _{1},i}(x) - f_{\eta _{2},i}(x) \bigr)^{2} \,d_{q}x \rightarrow 0,\quad i=1,2, \end{aligned}$$
as \(\eta _{1},\eta _{2}\rightarrow \infty \). This is means that there is a limit vector function \(F=(F_{1},F_{2})\) such that by the completeness of the space \(L^{2}_{\rho }(-\infty,\infty )\times L^{2}_{\rho }(- \infty,\infty ) \),
$$ \int _{0 }^{\infty } \bigl( f^{2}_{1}(x) +f^{2}_{2}(x) \bigr) \,d_{q}x= \int _{- \infty }^{\infty } \bigl( F^{2}_{1}( \lambda )+F^{2}_{2}(\lambda ) \bigr) \,d \rho (\lambda ). $$
Now, it remains to show that the function \(\widetilde{F}_{\eta }( \lambda ):=(\widetilde{F}_{\eta,1},\widetilde{F}_{\eta,2})\) with
$$ \widetilde{F}_{\eta,i}(\lambda ):= \int _{0}^{q^{-\eta } } f_{i} (x) Y _{i}(x,\lambda )\,d_{q}x, $$
as \(\eta \rightarrow \infty \), converges to \(F=(F_{1},F_{2})\) in \(L^{2}_{\rho }(-\infty,\infty )\times L^{2}_{\rho }(-\infty,\infty ) \). For this purpose, assume that \(s=(s_{1},s_{2})\) is another function in \(L^{2}_{q}(0,\infty )\times L^{2}_{q}(0,\infty ) \), and by a similar argument, \(S(\lambda )\) is defined by s. Clearly,
$$\begin{aligned} \int _{0 }^{\infty } \bigl( f_{i}(x) - s_{i}(x) \bigr)^{2} \,d_{q}x= \int _{-\infty }^{\infty } \bigl( F_{i}(\lambda )-S_{i}(\lambda ) \bigr)^{2} \,d\rho (\lambda ),\quad i=1,2. \end{aligned}$$
For \(i=1,2\), set
$$\begin{aligned} s_{i}(x)= \textstyle\begin{cases} f_{i}(x),& x\in [0, q^{-\eta } ], \\ 0,& x\in (q^{-\eta }, \infty ). \end{cases}\displaystyle \end{aligned}$$
Then
$$\begin{aligned} \int _{-\infty }^{\infty } \bigl( F_{i}(\lambda )-\widetilde{F}_{\eta,i}( \lambda ) \bigr)^{2} \,d\rho ( \lambda )= \int _{q^{-\eta } } ^{\infty } f^{2} _{i}(x) \,d_{q}x,\quad i=1,2, \end{aligned}$$
as \(\eta \rightarrow \infty \). Consequently, \(\widetilde{F}_{\eta }\) converges to F in \(L^{2}_{\rho }(-\infty,\infty )\times L^{2}_{ \rho }(-\infty,\infty ) \) as \(\eta \rightarrow \infty \). This completes the proof. □