Skip to main content

Theory and Modern Applications

On Grüss inequalities within generalized K-fractional integrals

Abstract

In this paper, we introduce the generalized \(\mathcal{K}\)-fractional integral in the frame of a new parameter \(\mathcal{K}>0\). This paper offers some new important inequalities of Grüss type using the generalized \(\mathcal{K}\)-fractional integral and associated integral inequalities. Our results with this new integral operator have the abilities to be implemented for the evaluation of many mathematical problems related to the real world applications.

1 Introduction

There are numerous problems wherein fractional derivatives (non-integer order derivatives and integrals) attain a valuable position [19]. It must be emphasized that fractional derivatives are furnished in many techniques, especially, characterizing three distinct approaches, which we are able to mention in an effort to grow the work in certainly one of them. Every classical fractional operator is typically described in terms of a particular significance. There are many well-recognized definitions of fractional operators, we can point out the Riemann-Liouville, Caputo, Grunwald–Letnikov, and Hadamard operators [10], whose formulations include integrals with singular kernels and which may be used to check the issues involving the reminiscence effect [11]. Some special new formulas for the fractional operators can be found in the literature [12]. These new formulas are different from the classical formulas in numerous components. As an example, classical fractional derivatives are described in such a manner that in the limit wherein the order of the derivative is an integer, one recovers the classical derivatives in the sense of Newton and Leibniz. There have additionally been currently proposed new fractional operators [13] with a corresponding integral whose kernel may be a non-singular mapping, as an instance, a Mittag-Leffler function. Additionally, in such instances, integer-order derivatives are rediscovered by supposing suitable limits for the values of their parameters.

On the other hand, there are numerous approaches to acquiring a generalization of classical fractional integrals. Many authors introduced new fractional operators generated from general classical local derivatives (see [1417] and the references therein). Other authors introduced a parameter and enunciated a generalization for fractional integrals on a selected space. These are called generalized \(\mathcal{K}\)-fractional integrals. For such operators, we refer to [4, 1820] and the works cited in them.

It is well known that inequalities have potential applications in the technology, scientific studies, and analysis [2132] and numerous mathematical problems such as approximation theory, statistical analysis, and human social sciences [3359]. In perspective on the more extensive applications, such variants have acquired large interest. Presently, authors have provided the unique version of such inequalities, which may be beneficial in the investigation of diverse forms of integrodifferential and difference equations. Those variants are an extensive instrument to take a gander at the classes of differential and integral equations.

The most celebrated Grüss inequality can be described as follows.

Theorem 1.1

(see [60])

Let\(\mathcal{R}\)be a set of real numbers, \(m,\mathcal{M}, n,\mathcal{N}\in\mathcal{R}\)and\(\mathcal{P},\mathcal{S}:[\sigma_{1},\sigma_{2}]\rightarrow\mathcal{R}\)be two positive functions such that\(m\leq\mathcal{P}(\mathfrak{d}_{1})\leq\mathcal{M} \)and\(n\leq\mathcal{S}(\mathfrak{d}_{1})\leq\mathcal{N}\)for all\(\mathfrak{d}_{1}\in[\sigma_{1},\sigma_{2}]\). Then

$$ \begin{aligned}[b] &\biggl\vert \frac{1}{\sigma_{2}-\sigma_{1}} \int_{\sigma_{1}}^{\sigma_{2}} \mathcal{P}(\mathfrak{d}_{1}) \mathcal{S}(\mathfrak{d}_{1})\,d\mathfrak{d}_{1}- \frac{1}{(\sigma_{2}-\sigma_{1})^{2}} \int_{\sigma_{1}}^{\sigma_{2}} \mathcal{P}(\mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \int_{\sigma _{1}}^{\sigma_{2}}\mathcal{S}(\mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \biggr\vert \\ &\quad\leq\frac{1}{4}(\mathcal{M}-m) (\mathcal{N}-n),\end{aligned} $$
(1.1)

where the constant\(1/4\)cannot be improved.

Grüss inequality (1.1) connects the integral of the product of two functions with the product of their integrals. It is extensively identified that continuous and discrete cases of Grüss type variants play a considerable job in examining the qualitative conduct of differential and integral equations. Inspired by Grüss inequality (1.1), we intend to show modified versions of (1.1) by using generalized \(\mathcal{K}\)-fractional integrals. For the reason that such variants are supposed to be vital, the exploration has continued to develop the investigations for such kinds of variants. Our findings and their utilities appeared in a variety of academic papers (see [6164]). Amongst such sorts of inequalities, the Grüss inequality is one of the most fascinating inequalities.

We are influenced to take a look at this inequality for the generalized \(\mathcal{K}\)-fractional integral. As a consequence, we obtain numerous fractional integral inequalities, such inequalities are worthwhile in the fields of fractional differential equations. Also we apply these fractional inequalities to find new versions for the generalized Riemann–Liouville fractional integral. In this sequel, we present some preliminary results in order to prove our main results later.

Definition 1.2

Let \(\mathcal{P}\in L_{1}([\sigma_{1},\sigma_{2}])\) (the Lebesgue space). Then the left- and right-sided generalized Riemann–Liouville fractional integrals of order \(\rho>0\) are defined by

$$\begin{aligned} \mathfrak{J}_{\sigma_{1}^{+}}^{\varrho}\mathcal{P}(\varrho)= \frac {1}{\varGamma(\rho)} \int_{\sigma_{1}}^{\varrho}(\varrho-\zeta)^{\rho-1} \mathcal{P}(\zeta )\,d\zeta,\quad \varrho>\sigma_{1}, \end{aligned}$$

and

$$\begin{aligned} \mathfrak{J}_{\sigma_{2}^{-}}^{\varrho}\mathcal{P}(\varrho)= \frac {1}{\varGamma(\rho)} \int_{\varrho}^{\sigma_{2}}(\zeta-\lambda)^{\rho-1} \mathcal{P}(\zeta )\,d\zeta,\quad \varrho< \sigma_{2}, \end{aligned}$$

where \(\varGamma(\cdot)\) is the gamma function [65, 66].

Now, we give the definition of more general fractional integral, which is mainly due to Mubeen and Habibullah [18].

Definition 1.3

(see [18])

Let \(\mathcal{P}\in L_{1}([\sigma_{1},\sigma_{2}])\) (the Lebsegue space). Then the left-sided and right-sided \(\mathcal{K}\)-fractional integrals of order \(\rho, \mathcal{K}>0\) are defined by

$$\begin{aligned} \mathfrak{J}_{\sigma_{1}^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )= \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{\sigma_{1}}^{\varrho}(\varrho-\zeta)^{\frac{\rho}{\mathcal {K}}-1} \mathcal{P}(\zeta)\,d\zeta \quad(\varrho>\sigma_{1}) \end{aligned}$$

and

$$\begin{aligned} \mathfrak{J}_{\sigma_{2}^{-}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )= \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{\varrho}^{\sigma_{2}}(\zeta-\varrho)^{\frac{\rho}{\mathcal {K}}-1} \mathcal{P}(\zeta)\,d\zeta \quad(\varrho< \sigma_{2}). \end{aligned}$$

Further, we demonstrate the concept of generalized Riemann–Liouville fractional integral as follows.

Definition 1.4

(see [11, 67])

Let \(\sigma_{1},\sigma_{2}\in(-\infty, +\infty)\) such that \(\sigma_{1}<\sigma_{2}\) and \(\varPsi(\zeta)\) be an increasing and positive monotone function on \((\sigma_{1},\sigma_{2}]\). Then the left-sided and right-sided generalized Riemann–Liouville fractional integrals of a function \(\mathcal{P}\) with respect to another function Ψ of order \(\rho>0\) are defined by

$$\begin{aligned}& \mathfrak{J}_{\sigma_{1}^{+}}^{\rho,\varPsi}\mathcal{P}(\varrho )= \frac{1}{\varGamma(\varrho)} \int_{\sigma_{1}}^{\varrho}\varPsi ^{\prime}(\zeta ) \bigl(\varPsi(\varrho)-\varPsi(\zeta) \bigr)^{\rho-1} \mathcal{P}(\zeta ) \,d\zeta, \\& \mathfrak{J}_{\sigma_{2}^{-}}^{\rho,\varPsi}\mathcal{P}(\varrho)= \frac{1}{\varGamma(\rho)} \int_{\varrho}^{\sigma_{2}}\varPsi^{\prime }(\zeta) \bigl(\varPsi(\zeta)-\varPsi(\varrho) \bigr)^{\rho-1} \mathcal{P}(\zeta)\,d \zeta. \end{aligned}$$
(1.2)

We define the more general form of generalized \(\mathcal{K}\)-fractional integral as follows.

Definition 1.5

Let \(\sigma_{1},\sigma_{2}\in(-\infty, +\infty)\) such that \(\sigma_{1}<\sigma_{2}\) and \(\varPsi(\zeta)\) be an increasing and positive monotone function on \((\sigma_{1},\sigma_{2}]\). Then the left-sided and right-sided generalized \(\mathcal{K}\)-fractional integrals of a function \(\mathcal{P}\) with respect to another function Ψ of order \(\rho, \mathcal{K}>0\) are defined by

$$\begin{aligned}& \mathfrak{J}_{\varPsi,\sigma_{1}^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho)= \frac{1}{ \mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{\sigma_{1}}^{\varrho }\varPsi^{\prime}(\zeta) \bigl(\varPsi(\varrho)-\varPsi(\zeta) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \mathcal{P}(\zeta) \,d\zeta, \\& \mathfrak{J}_{\varPsi,\sigma_{2}^{-}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho)= \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{\varrho }^{\sigma_{2}}\varPsi^{\prime}(\zeta) \bigl(\varPsi(\zeta)-\varPsi(\varrho ) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \mathcal{P}(\zeta) \,d\zeta, \end{aligned}$$
(1.3)

where \(\varGamma_{\mathcal{K}}\) is the \(\mathcal{K}\)-gamma function.

Remark 1.6

From Definition 1.5 we clearly see that Definition 1.2, Definition 1.3, and Definition 1.4 can be obtained if we take \(\mathcal{K}=1\), \(\varPsi(\varrho)=\varrho\), and \(\varPsi(\varrho)=\varrho\) and \(\mathcal{K}=1\), respectively.

Grüss type inequality and its useful consequences are investigated by Kacar et al. [68]. Motivated by [68], we provide new and novel results using generalized \(\mathcal{K}\)-fractional integral related to (1.1). Consequently, the effects furnished in this research paper are an extra generalization.

2 Main results

Theorem 2.1

Let\(\mathcal{K}, \rho, \delta>0\), \(\mathcal{P}\)be a positive function on\([0,\infty)\)andΨbe an increasing and positive function on\([0,\infty)\)such that\(\varPsi^{\prime}(x)\)is continuous on\([0,\infty)\)with\(\varPsi(0)=0\). Suppose that there exist integrable functions\(\varTheta_{1}\), \(\varTheta_{2}\)on\([0,\infty)\)such that

$$\begin{aligned} \varTheta_{1}(\varrho)\leq\mathcal{P}(\varrho)\leq \varTheta_{2}(\varrho) \end{aligned}$$
(2.1)

for all\(\varrho\in[0,\infty)\). Then we have

$$\begin{aligned}& \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta _{1}( \varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) + \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho ) \\& \quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta_{1}( \varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho). \end{aligned}$$
(2.2)

Proof

Using (2.1), for all \(\mathfrak{d}_{1}\geq0\), \(\mathfrak{d_{2}}\geq0\), we have

$$\begin{aligned}& \bigl(\varTheta_{2}(\mathfrak{d}_{1})-\mathcal{P}( \mathfrak{d}_{1}) \bigr) \bigl(\mathcal{P}(\mathfrak{d_{2}})- \varTheta_{1}(\mathfrak{d_{2}}) \bigr)\geq0, \\& \varTheta_{2}(\mathfrak{d}_{1})\mathcal{P}( \mathfrak{d_{2}})+\varTheta _{1}(\mathfrak{d_{2}}) \mathcal{P}(\mathfrak{d}_{1})\geq\varTheta _{1}( \mathfrak{d_{2}}) \varTheta_{2}(\mathfrak{d}_{1})+ \mathcal{P}(\mathfrak{d}_{1})\mathcal {P}(\mathfrak{d_{2}}). \end{aligned}$$
(2.3)

If we multiply both sides of (2.3) by \(\frac{ (\varPsi(\varrho)-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho }{\mathcal{K}}-1}\varPsi^{\prime}(\mathfrak{d}_{1})}{\mathcal {K}\varGamma_{\mathcal{K}}(\rho)}\) and integrate with respect to \(\mathfrak{d}_{1}\) on \((0,\varrho)\), we obtain

$$\begin{aligned}& \mathcal{P}(\mathfrak{d_{2}})\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak {d}_{1}) \bigr) ^{\frac{\rho}{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak {d}_{1})\varTheta_{2}(\mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \\& \qquad{} +\varTheta_{1}(\mathfrak{d_{2}})\frac{1}{\mathcal{K}\varGamma _{\mathcal{K}}(\rho)} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi ( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak{d}_{1})\, d \mathfrak{d}_{1} \\& \quad\geq\varTheta_{1}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma _{\mathcal{K}}(\rho)} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi ( \mathfrak{d}_{1} ) \bigr)^{\frac{\rho}{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak {d}_{1})\varTheta_{2}(\mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \\& \quad\quad{}+\mathcal{P}(\mathfrak{d_{2}})\frac{1}{\mathcal{K}\varGamma _{\mathcal{K}}(\rho)} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi ( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak {d}_{1})\mathcal{P}(\mathfrak{d}_{1})\,d \mathfrak{d}_{1}, \end{aligned}$$

which can be written as

$$\begin{aligned}& \mathcal{P}(\mathfrak{d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \varTheta_{2}(\varrho)+\varTheta_{1}( \mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho) \\& \quad\geq\varTheta_{1}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}}\varTheta_{2}(\varrho)+ \mathcal{P}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho). \end{aligned}$$
(2.4)

Multiplying both sides of (2.4) by \(\frac{ (\varPsi(\varrho)-\varPsi(\mathfrak{d_{2}}) )^{\frac {\delta}{\mathcal{K}}-1}\varPsi^{\prime}(\mathfrak{d_{2}})}{\mathcal {K}\varGamma_{\mathcal{K}}(\delta)}\) and integrating with respect to \(\mathfrak{d_{2}}\) on \((0,\varrho)\), we get

$$\begin{aligned}& \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta _{1}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho ) \\& \quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta_{1}( \varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho). \end{aligned}$$
(2.5)

This completes the proof of Theorem 2.1. □

Corollary 2.2

Let\(\varPsi(\varrho)=\varrho\). Then Theorem 2.1leads to the inequality for\(\mathcal{K}\)-fractional integral as follows:

$$\begin{aligned}& \begin{gathered} \mathfrak{J}^{\delta,\mathcal{K}}\varTheta_{1}(\varrho)\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) +\mathfrak{J}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho)\mathfrak {J}^{\delta,\mathcal{K}}\mathcal{P}( \varrho)\\ \quad\geq \mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho) \mathfrak {J}^{\delta,\mathcal{K}}\varTheta_{1}(\varrho)+ \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho)\mathfrak{J}^{\delta ,\mathcal{K}} \mathcal{P}(\varrho).\end{gathered} \end{aligned}$$

Corollary 2.3

Let\(m,\mathcal{M}\in\mathcal{R}\)with\(m<\mathcal{M}\in\mathcal{R}\), \(\mathcal{K}, \rho,\delta>0\)and\(\mathcal{P}\)be a positive function on\([0,\infty)\)such that\(m\leq\mathcal{P}(\varrho)\leq\mathcal{M}\). Then one has

$$\begin{aligned}& m\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\delta+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho) +\mathcal{M}\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\delta,\mathcal{K}} \mathcal{P}(\varrho) \\& \quad\geq m\mathcal{M}\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\delta+\mathcal{K})}\frac{\varPsi^{\frac{\rho }{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho). \end{aligned}$$

Remark 2.4

Theorem 2.1, Corollary 2.2, and Corollary 2.3 lead to the following conclusions:

  1. (1)

    If \(\mathcal{K}=1\) in Theorem 2.1, then we get Theorem 2.11 in [68].

  2. (2)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\) in Theorem 2.1, then we get Theorem 2 in [69].

  3. (3)

    If \(\mathcal{K}=1\) in Corollary 2.2, then we get Corollary 2.14 in [68].

  4. (4)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\) in Corollary 2.3, then we obtain Corollary 3 in [69].

Theorem 2.5

Let\(\mathcal{K}>0\), \(\rho,\delta>0\), \(\mathcal{P}\)and\(\mathcal{S}\)be two positive functions on\([0,\infty)\), andΨbe an increasing and positive function on\([0,\infty)\)such that\(\varPsi(0)=0\)and\(\varPsi^{\prime}\)is continuous on\([0,\infty)\). Suppose that (2.1) holds and there exist integrable functions\(\varphi_{1}\)and\(\varphi_{2}\)on\([0,\infty)\)such that

$$\begin{aligned} \varphi_{1}(\varrho)\leq\mathcal{S}(\varrho)\leq \varphi_{2}(\varrho) \end{aligned}$$
(2.6)

for all\(\varrho\in[0,\infty)\). Then we have four inequalities as follows:

$$\begin{aligned}& \textup{(a)}\quad\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi _{1}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}(\varrho) \\& \phantom{\textup{(a)}\quad}\quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{2}( \varrho)+\mathfrak{J}_{\varPsi,0^{+}}^{\rho}\mathcal {P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal {S}(\varrho), \\& \textup{(b)}\quad\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta _{1}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}(\varrho) +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho) \\& \phantom{\textup{(b)}\quad}\quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varTheta_{1}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varphi_{2}( \varrho)+\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal {K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{S}(\varrho), \\& \textup{(c)}\quad\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta _{2}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi _{2}(\varrho) +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}( \varrho) \\& \phantom{\textup{(c)}\quad}\quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal {K}}\varphi_{2}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho), \\& \textup{(d)}\quad\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta _{1}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi _{1}(\varrho) +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}( \varrho) \\& \phantom{\textup{(d)}\quad}\quad\geq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal {K}}\varphi_{1}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho). \end{aligned}$$
(2.7)

Proof

For any \(\varrho\in[0,\infty)\), it follows from (2.1) and (2.6) that

$$\begin{aligned} \bigl(\varTheta_{2}(\mathfrak{d}_{1})-\mathcal{P}( \mathfrak{d}_{1}) \bigr) \bigl(\mathcal{S}(\mathfrak{d_{2}})- \varphi_{1}(\mathfrak{d_{2}}) \bigr)\geq0 \end{aligned}$$

and

$$\begin{aligned} \varTheta_{2}(\mathfrak{d}_{1})\mathcal{S}( \mathfrak{d_{2}})+\varphi _{1}(\mathfrak{d_{2}}) \mathcal{P}(\mathfrak{d}_{1})\geq \varphi_{1}( \mathfrak{d_{2}})\varTheta_{2}(\mathfrak{d}_{1})+ \mathcal {P}(\mathfrak{d}_{1})\mathcal{S}(\mathfrak{d_{2}}). \end{aligned}$$
(2.8)

Taking product on both sides of (2.8) by \(\frac{ (\varPsi(\varrho)-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho }{\mathcal{K}}-1}\varPsi^{\prime}(\mathfrak{d}_{1})}{\mathcal {K}\varGamma_{\mathcal{K}}(\rho)}\) and integrating the resulting identity for the variable \(\mathfrak{d}_{1}\) on \((0,\varrho)\) give

$$\begin{aligned}& \mathcal{S}(\mathfrak{d_{2}})\frac{1}{K\varGamma_{k}(\rho)} \int _{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\varTheta_{2}(\mathfrak{d}_{1}) \, d\mathfrak{d}_{1} \\& \quad\quad{}+\varphi_{1}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak {d}_{1})\,d \mathfrak{d}_{1} \\& \quad\geq \varphi_{1}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho } \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\varTheta_{2}(\mathfrak{d}_{1}) \, d\mathfrak{d}_{1} \\& \quad\quad{}+\mathcal{S}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho } \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak{d}_{1})\, d \mathfrak{d}_{1}, \end{aligned}$$

which can be rewritten as

$$\begin{aligned}& \mathcal{S}(\mathfrak{d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \varTheta_{2}(\varrho) +\varphi_{1}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho) \\& \quad\geq\varphi_{1}(\mathfrak{d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \varTheta_{2}(\varrho) +\mathcal{S}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}}\mathcal{P}(\varrho). \end{aligned}$$
(2.9)

Again, taking product on both sides of (2.9) by \(\frac{ (\varPsi(\varrho)-\varPsi(\mathfrak{d_{2}}) )^{\frac {\delta}{\mathcal{K}}-1}\varPsi^{\prime}(\mathfrak{d_{2}})}{\mathcal {K}\varGamma_{\mathcal{K}}(\delta)}\) and integrating the resulting identity for the variable \(\mathfrak{d_{2}}\) on \((0,\varrho)\), we obtain

$$\begin{aligned}& \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi_{1}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) + \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}(\varrho) \\& \quad \geq \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\varphi_{1}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )+\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}(\varrho). \end{aligned}$$

This proves part (a). To prove parts (b)–(d), we consider the subsequent inequalities:

$$\begin{aligned}& \text{(b)}\quad \bigl(\varphi_{2}(\mathfrak{d}_{1})- \mathcal{S}(\mathfrak{d}_{1}) \bigr) \bigl(\mathcal{P}( \mathfrak{d_{2}})-\varTheta_{1}(\mathfrak{d_{2}}) \bigr)\geq0, \\& \text{(c)}\quad \bigl(\varTheta_{2}(\mathfrak{d}_{1})- \mathcal{P}(\mathfrak{d}_{1}) \bigr) \bigl(\mathcal{S}( \mathfrak{d_{2}})-\varphi_{2}(\mathfrak{d_{2}}) \bigr)\leq0, \\& \text{(d)}\quad \bigl(\varTheta_{1}(\mathfrak{d}_{1})- \mathcal{P}(\mathfrak{d}_{1}) \bigr) \bigl(\mathcal{S}( \mathfrak{d_{2}})-\varphi_{1}(\mathfrak{d_{2}}) \bigr)\leq0. \end{aligned}$$

We use similar arguments as those in the proof of part (a) to get the rest of the inequalities. □

The following inequalities are special cases of Theorem 2.5.

Corollary 2.6

Let\(\mathcal{K}>0\), \(\rho, \delta>0\), and\(\mathcal{P}\)and\(\mathcal{S}\)be two positive functions on\([0,\infty)\). Suppose that there exist real constantsm, \(\mathcal{M}\), n, \(\mathcal{N}\)such that

$$ m\leq\mathcal{P}(\varrho)\leq\mathcal{M},\qquad n\leq\mathcal{S}(\varrho)\leq \mathcal{N} $$

for all\(\varrho\in[0,\infty)\). Then we obtain

$$\begin{aligned}& \textup{(i)}\quad n\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\delta+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho)+ \mathcal{M}\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\delta ,\mathcal{K}} \mathcal{S}(\varrho) \\& \phantom{\textup{(i)}\quad}\quad\geq n\mathcal{M}\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\delta+\mathcal{K})}\frac{\varPsi^{\frac{\rho }{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}+ \mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi ,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}(\varrho), \\& \textup{(ii)}\quad m\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\delta+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{S}(\varrho)+ \mathcal{N}\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\delta ,\mathcal{K}} \mathcal{P}(\varrho) \\& \phantom{\textup{(ii)}\quad}\quad\geq m\mathcal{N}\frac{\varPsi{\frac{\delta}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\delta+\mathcal{K})}\frac{\varPsi^{\frac{\rho }{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}+ \mathfrak{J}_{\varPsi ,0^{+}}^{\delta,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho), \\& \textup{(iii)}\quad \mathcal{N}\mathcal{M}\frac{\varPsi^{\frac{\delta}{\mathcal {K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\delta+\mathcal{K})}\frac{\varPsi ^{\frac{\rho}{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}+ \mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}}\mathcal{S}(\varrho ) \\& \phantom{\textup{(iii)}\quad}\quad\geq \mathcal{M}\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma (\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+ \mathcal{N}\frac{\varPsi{\frac{\delta}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\delta+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho) , \\& \textup{(iv)}\quad nm\frac{\varPsi{\frac{\delta}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\delta+\mathcal{K})} \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} +\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}} \mathcal{S}( \varrho) \\& \phantom{\textup{(iv)}\quad}\quad\geq m\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+ n\frac{\varPsi^{\frac{\delta}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\delta+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho). \end{aligned}$$
(2.10)

Corollary 2.7

Let\(\mathcal{K}>0\), \(\rho, \delta>0\), \(\mathcal{P},\mathcal{S}\in L_{1}[0,\infty]\)and\(\varPsi(\varrho)=\varrho\). Suppose that there exist real constantsm, \(\mathcal{M}\), n, \(\mathcal{N}\)such that

$$ m\leq\mathcal{P}(\varrho)\leq\mathcal{M},\qquad n\leq\mathcal{S}(\varrho) \leq \mathcal{N} $$

for all\(\varrho\in[0,\infty)\), then one has

$$\begin{aligned}& \textup{(a)}\quad\mathfrak{J}^{\delta,\mathcal{K}}\varphi_{1}(\varrho ) \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) +\mathfrak{J}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho)\mathfrak {J}^{\delta,\mathcal{K}}\mathcal{S}( \varrho) \\& \phantom{\textup{(a)}\quad}\quad\geq \mathfrak{J}^{\delta,\mathcal{K}}\varphi_{1}(\varrho) \mathfrak{J}^{\rho ,\mathcal{K}}\varTheta_{2}(\varrho) + \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}^{\delta,\mathcal{K}} \mathcal{S}(\varrho), \\& \textup{(b)}\quad\mathfrak{J}^{\delta,\mathcal{K}}\varTheta_{1}(\varrho ) \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{S}(\varrho) +\mathfrak{J}^{\rho,\mathcal{K}} \varphi_{2}(\varrho)\mathfrak {J}^{\delta,\mathcal{K}}\mathcal{P}(\varrho) \\& \phantom{\textup{(a)}\quad}\quad\geq \mathfrak{J}^{\delta,\mathcal{K}}\varTheta_{1}(\varrho) \mathfrak {J}^{\rho,\mathcal{K}}\varphi_{2}(\varrho) + \mathfrak{J}^{\delta,\mathcal{K}}\mathcal{P}(\varrho) \mathfrak{J}^{\rho,\mathcal{K}} \mathcal{S}(\varrho), \\& \textup{(c)}\quad\mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho) \mathfrak {J}^{\delta,\mathcal{K}}\varphi_{2}(\varrho) + \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho)\mathfrak {J}^{\delta,\mathcal{K}} \mathcal{S}(\varrho) \\& \phantom{\textup{(a)}\quad}\quad\geq \mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho) \mathfrak {J}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+\mathfrak{J}^{\delta,\mathcal{K}} \varphi _{2}(\varrho) \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}( \varrho), \\& \textup{(d)}\quad\mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) \mathfrak {J}^{\delta,\mathcal{K}}\varphi_{1}(\varrho) + \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho)\mathfrak {J}^{\delta,\mathcal{K}} \mathcal{S}(\varrho) \\& \phantom{\textup{(a)}\quad}\quad\geq \mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) \mathfrak {J}^{\delta,\mathcal{K}} \mathcal{S}(\varrho)+\mathfrak{J}^{\delta,\mathcal{K}} \varphi _{1}(\varrho) \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}( \varrho). \end{aligned}$$

Remark 2.8

From Theorem 2.5, and Corollaries 2.6 and 2.7 we get four conclusions as follows:

  1. (1)

    If \(\mathcal{K}=1\), then Theorem 2.5 leads to Theorem 2.15 in [68].

  2. (2)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Theorem 2.5 gives Theorem 5 in [69].

  3. (3)

    If \(\mathcal{K}=1\), then Corollary 2.6 becomes Corollary 2.16 in [68].

  4. (4)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Corollary 6 in [69] can be derived from Corollary 2.7.

Lemma 2.9

Let\(\mathcal{K}>0\), \(\rho,\delta>0\), \(\mathcal{P}\)be a positive function on\([0,\infty)\), \(\varTheta_{1}\), \(\varTheta_{2}\)be two integrable functions on\([0,\infty)\), andΨbe an increasing and positive function on\([0,\infty)\)such that\({\varPsi(0)=0}\)and\(\varPsi^{\prime}\)is continuous on\([0,\infty)\). If (2.1) holds, then

$$\begin{aligned}& \begin{aligned}[b] &\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}^{2}(\varrho)- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho) \bigr)^{2} \\ &\quad= \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varTheta_{2}( \varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}}\mathcal{P}(\varrho) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \bigr) \\ &\quad\quad -\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})} \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \varTheta_{2}(\varrho) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho ) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho ) \bigr) \\ &\quad\quad+ \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl(\varTheta_{1}(\varrho)\mathcal{P}(\varrho) \bigr) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \\ &\quad\quad +\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl(\varTheta_{2}(\varrho)\mathcal{P}(\varrho) \bigr) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \\ &\quad\quad+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta _{1}(\varrho) \bigr)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta_{2}(\varrho) \bigr)-\frac{\varPsi^{\frac{\rho}{\mathcal {K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta_{1}( \varrho)\varTheta_{2}(\varrho) \bigr).\end{aligned} \end{aligned}$$
(2.11)

Proof

Since \(\mathfrak{d}_{1}, \mathfrak{d_{2}}>0\), we have

$$\begin{aligned} & \bigl(\varTheta_{2}(\mathfrak{d_{2}})-\mathcal{P}( \mathfrak {d_{2}}) \bigr) \bigl(\mathcal{P}(\mathfrak{d}_{1})- \varTheta_{1}(\mathfrak {d}_{1}) \bigr)+ \bigl( \varTheta_{2}(\mathfrak{d}_{1})-\mathcal{P}( \mathfrak{d}_{1}) \bigr) \bigl(\mathcal{P}(\mathfrak{d_{2}})- \varTheta_{1}(\mathfrak{d_{2}}) \bigr) \\ &\qquad{}- \bigl(\varTheta_{2}(\mathfrak{d}_{1})-\mathcal{P}( \mathfrak{d}_{1}) \bigr) \bigl(\mathcal{P}(\mathfrak{d}_{1})- \varTheta_{1}(\mathfrak{d}_{1}) \bigr)- \bigl( \varTheta_{2}(\mathfrak{d_{2}})-\mathcal{P}( \mathfrak{d_{2}}) \bigr) \bigl(\mathcal{P}(\mathfrak{d_{2}})- \varTheta_{1}(\mathfrak{d_{2}}) \bigr) \\ &\quad= \mathcal{P}^{2}(\mathfrak{d}_{1})+ \mathcal{P}^{2}(\mathfrak {d_{2}})-2\mathcal{P}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak {d_{2}})+ \varTheta_{2}(\mathfrak{d_{2}}) \mathcal{P}( \mathfrak{d}_{1})+\varTheta_{1}(\mathfrak{d}_{1}) \mathcal{P}(\mathfrak{d_{2}}) \\ &\qquad{} -\varTheta_{1}(\mathfrak{d}_{1}) \varTheta_{2}(\mathfrak {d_{2}})+\varTheta_{2}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak {d_{2}})+ \varTheta_{1}(\mathfrak{d_{2}}) \mathcal{P}( \mathfrak{d}_{1})-\varTheta_{1}(\mathfrak{d_{2}}) \varTheta _{2}(\mathfrak{d}_{1}) \\ &\qquad {}-\varTheta_{2}(\mathfrak{d}_{1})\mathcal{P}( \mathfrak{d}_{1})+\varTheta _{1}(\mathfrak{d}_{1}) \varTheta_{2}(\mathfrak{d}_{1})-\varTheta _{1}(\mathfrak{d}_{1}) \mathcal{P}( \mathfrak{d}_{1})-\varTheta_{2}(\mathfrak{d_{2}}) \mathcal {P}(\mathfrak{d_{2}}) \\ &\qquad {}+\varTheta_{1}(\mathfrak{d_{2}}) \varTheta_{2}(\mathfrak {d_{2}})-\varTheta_{1}( \mathfrak{d_{2}})\mathcal{P}(\mathfrak{d_{2}}). \end{aligned}$$
(2.12)

Taking product on both sides of (2.12) by \(\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} (\varPsi(\varrho )-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi ^{\prime}(\mathfrak{d}_{1})\) and integrating the resulting identity for the variable \(\mathfrak{d}_{1}\) on \((0,\varrho)\), we get

$$\begin{aligned} & \bigl(\varTheta_{2}(\mathfrak{d_{2}})-\mathcal{P}( \mathfrak {d_{2}}) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho, \mathcal{K}} \mathcal{P}(\varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \varTheta_{1}(\varrho) \bigr) \\ &\qquad{}+ \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta _{2}(\varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho) \bigr) \bigl(\mathcal{P}(\mathfrak{d_{2}})- \varTheta _{1}(\mathfrak{d_{2}}) \bigr) \\ &\qquad{}-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl( \bigl( \varTheta_{2}(\varrho)-\mathcal{P}(\varrho) \bigr) \bigl(\mathcal {P}( \varrho)-\varTheta_{1}(\varrho) \bigr) \bigr) \\ &\qquad{}- \bigl( \varTheta_{2}(\mathfrak{d_{2}})-\mathcal{P}( \mathfrak{d_{2}}) \bigr) \bigl(\mathcal{P}(\mathfrak{d_{2}})- \varTheta_{1}(\mathfrak{d_{2}}) \bigr) \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \\ &\quad= \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2}( \varrho )+\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\varrho+\mathcal{K})}\mathcal{P}^{2}(\mathfrak{d_{2}}) \\ &\qquad{}-2 \mathcal {P}(\mathfrak{d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \mathcal{P}(\varrho) +\varTheta_{2}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}}\mathcal{P}(\varrho)+\mathcal{P}( \mathfrak{d_{2}})\mathfrak {J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho) \\ &\qquad{} -\varTheta_{2}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}}\varTheta_{1}(\varrho)+ \mathcal{P}(\mathfrak {d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta _{2}(\varrho) \\ &\qquad{}+\varTheta_{1}( \mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )-\varTheta_{1}(\mathfrak{d_{2}}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho ) \\ &\quad\quad{} -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta _{2}(\varrho)\mathcal{P}(\varrho) \bigr)+\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta_{1}(\varrho)\varTheta _{2}(\varrho) \bigr) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta _{1}(\varrho)\mathcal{P}(\varrho) \bigr) \\ &\qquad{}-\varTheta_{2}( \mathfrak {d_{2}})\mathcal{P}(\mathfrak{d_{2}}) \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})} +\varTheta_{1}(\mathfrak{d_{2}}) \varTheta_{2}(\mathfrak{d_{2}})\frac {\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \\ &\qquad{}- \varTheta_{1}(\mathfrak {d_{2}})\mathcal{P}( \mathfrak{d_{2}})\frac{\varPsi^{\frac{\rho}{\mathcal {K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}. \end{aligned}$$
(2.13)

Taking product on both sides of (2.13) by \(\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} (\varPsi(\varrho )-\varPsi(\mathfrak{d_{2}}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi ^{\prime}(\mathfrak{d_{2}})\) and integrating the resulting identity for the variable \(\mathfrak{d_{2}}\) on \((0,\varrho)\), we get

$$\begin{aligned} & \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta _{2}(\varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho ) \bigr) \\ &\qquad{}+ \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta _{2}(\varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}( \varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}( \varrho) \bigr) \\ &\qquad{}-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta _{2}(\varrho)-\mathcal{P}(\varrho) \bigr) \bigl(\mathcal{P}(\varrho )-\varTheta_{1}(\varrho) \bigr) \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal {K}}(\varrho+\mathcal{K})} \\ &\qquad{}- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}(\varrho)}\varTheta _{2}(\varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) \bigr) \bigl( \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho ) \bigr)\frac{\varPsi^{\frac{\rho}{\mathcal{K}}(\varrho)}}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \\ &\quad= \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2}( \varrho )\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}+ \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \mathcal{P}^{2}(\mathfrak{d_{2}})- 2\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}( \varrho) \\ &\qquad{}+\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varTheta_{2}( \varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) \\ &\qquad{}+\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varTheta_{2}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho) \\ &\qquad{}-\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl( \varTheta_{2}(\varrho)\mathcal{P}(\varrho ) \bigr)+ \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl( \varTheta_{1}(\varrho)\varTheta_{2}(\varrho) \bigr) \\ &\qquad{}-\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}^{\rho,\mathcal {K}}_{\varPsi} \bigl(\varTheta_{1}(\varrho)\mathcal{P}(\varrho) \bigr) - \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl( \varTheta _{2}(\varrho)\mathcal{P}(\varrho) \bigr) \\ &\qquad{} +\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl(\varTheta_{1}(\varrho)\varTheta_{2}(\varrho) \bigr)-\frac{\varPsi ^{\frac{\rho}{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl( \varTheta_{1}(\varrho)\mathcal{P}(\varrho) \bigr). \end{aligned}$$
(2.14)

This is the proof of Lemma 2.9. □

Corollary 2.10

Let\(\varPsi(\varrho)=\varrho\)in Lemma 2.9, then we have the\(\mathcal{K}\)-fractional integral inequality

$$\begin{aligned} &\frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal {K}}(\rho+\mathcal{K})} \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}^{2}( \varrho)- \bigl(\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \bigr)^{2} \\ &\quad= \bigl(\mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho )- \mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \bigr) \bigl(\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) -\mathfrak{J}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho) \bigr) \\ &\qquad{} -\frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal{K}}(\rho +\mathcal{K})} \bigl(\mathfrak{J}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho) -\mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}( \varrho) \bigr) \bigl(\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) - \mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho) \bigr) \\ &\qquad{}+ \frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal{K}}(\rho +\mathcal{K})} (\mathfrak{J}^{\rho,\mathcal{K}} \bigl(\varTheta _{1}(\varrho)\mathcal{P}(\varrho) \bigr) -\mathfrak{J}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho)\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}( \varrho) \\ &\qquad {}+ \frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal{K}}(\rho +\mathcal{K})}\mathfrak{J}^{\rho,\mathcal{K}} \bigl( \varTheta_{2}(\varrho )\mathcal{P}(\varrho) \bigr) - \mathfrak{J}^{\rho,\mathcal{K}}\varTheta_{2}(\varrho)\mathfrak {J}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \\ &\qquad{}+ \mathfrak{J}^{\rho,\mathcal{K}} \bigl(\varTheta_{1}(\varrho) \bigr)\mathfrak{J}^{\rho,\mathcal{K}} \bigl(\varTheta_{2}(\varrho) \bigr)-\frac {\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal{K}}(\rho+\mathcal {K})}\mathfrak{J}^{\rho,\mathcal{K}} \bigl( \varTheta_{1}(\varrho)\varTheta_{2}(\varrho) \bigr). \end{aligned}$$
(2.15)

Corollary 2.11

Let\(m<\mathcal{M}\), \(\mathcal{K}, \rho,\delta>0\), \(\mathcal{P}\)be a positive function on\([0,\infty)\)such that\(m\leq\mathcal{P}(\varrho)\leq\mathcal{M}\), andΨbe a positive and increasing function on\([0,\infty)\)such that\(\varPsi(0)=0\)and\(\varPsi^{\prime}\)is continuous on\([0,\infty)\). Then

$$\begin{aligned} \begin{aligned}[b] &\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}^{2}(\varrho)- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho) \bigr)^{2} \\ &\quad= \biggl(\mathcal{M}\frac{\varPsi^{\frac{\rho}{\mathcal {K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}-\mathfrak {J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho) \biggr) \biggl( \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )-m\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \biggr) \\ &\quad\quad-\frac{\varPsi^{\frac{\rho}{\mathcal {K}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\mathcal {M}-\mathcal{P}(\varrho) \bigr) \bigl(\mathcal{P}(\varrho)-m\bigr) ).\end{aligned} \end{aligned}$$
(2.16)

Remark 2.12

From Lemma 2.9 and Corollary 2.11 we get three conclusions as follows.

  1. (1)

    If \(\mathcal{K}=1\), then Lemma 2.9 leads to Lemma 2.19 in [68].

  2. (2)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Lemma 2.9 becomes Lemma 7 in [69].

  3. (3)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Corollary 2.11 leads to Corollary 8 in [69].

Theorem 2.13

Let\(\mathcal{K}, \varrho>0\), \(\mathcal{P}\), \(\mathcal{S}\), \(\varTheta_{1}\), \(\varTheta_{2}\), \(\varphi_{1}\)and\(\varphi_{2}\)be six integrable functions defined on\([0,\infty)\), andΨbe an increasing and positive function on\([0,\infty)\)such that\(\varPsi^{\prime}(x)\)is continuous on\([0,\infty)\)and\(\varPsi(0)=0\). If conditions (2.1) and (2.6) are satisfied, then one has

$$\begin{aligned}[b] &\biggl\vert \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \bigl(\mathcal{P}(\varrho)\mathcal{S}(\varrho) \bigr) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}( \varrho) \biggr\vert \\ &\quad\leq\sqrt{\mathfrak{T}(\mathcal{P},\varTheta_{1},\varTheta _{2})\mathfrak{T}(\mathcal{S},\varphi_{1}, \varphi_{2})},\end{aligned} $$
(2.17)

where

$$\begin{aligned} \mathfrak{T}(\mathcal{P},\varTheta_{1},\varTheta_{2}) =& \bigl(\mathfrak {J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho)-\mathfrak {J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \bigr) \\ &{}+ \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl(\varTheta_{1}(\varrho)\mathcal{P}(\varrho) \bigr) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \\ &{}+\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho)\mathcal{P}(\varrho) \\ &{} -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{1}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho ) \\ &{}-\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl( \varTheta_{1}(\varrho)\varTheta _{2}(\varrho) \bigr) \end{aligned}$$

and

$$\begin{aligned} \mathfrak{T}(\mathcal{S},\varphi_{1},\varphi_{2}) =& \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi _{2}( \varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho )- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{1}(\varrho ) \bigr) \\ &{}+ \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl(\varphi_{1}(\varrho)\mathcal{S}(\varrho) \bigr) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{1}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho) \\ &{}+\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\varphi_{2}(\varrho )\mathcal{S}(\varrho) \bigr) \\ &{}- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho)+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{1}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{2}(\varrho ) \\ &{} -\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl(\varphi_{1}(\varrho)\varphi_{2}(\varrho ) \bigr). \end{aligned}$$

Proof

Let \(\varrho>0\), \(\mathfrak{d}_{1},\mathfrak{d_{2}}\in(0,\varrho)\), \(\mathcal{P}\) and \(\mathcal{S}\) be two positive functions defined on \([0,\infty)\) such that (2.1) and (2.6) are satisfied, and \(\mathfrak{T}(\mathfrak{d}_{1},\mathfrak{d_{2}})\) be defined by

$$\begin{aligned} \mathfrak{T}(\mathfrak{d}_{1},\mathfrak{d_{2}})= \bigl( \mathcal {P}(\mathfrak{d}_{1})-\mathcal{P}(\mathfrak{d_{2}}) \bigr) \bigl(\mathcal{S}(\mathfrak{d}_{1})-\mathcal{S}( \mathfrak{d_{2}}) \bigr). \end{aligned}$$
(2.18)

Taking product on both sides of (2.18) by \(\frac{ (\varPsi(\varrho)-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho }{\mathcal{K}}-1}\varPsi^{\prime} (\mathfrak{d}_{1}) (\varPsi(\varrho)-\varPsi(\mathfrak{d_{2}}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi^{\prime}(\mathfrak{d_{2}})}{ 2 (\mathcal{K}\varGamma_{\mathcal{K}}(\rho) )^{2}}\) and integrating the resulting identity for the variable \(\mathfrak{d}_{1}\) and \(\mathfrak{d_{2}}\) from 0 to ϱ, we obtain

$$\begin{aligned} &\frac{1}{2 (\mathcal{K}\varGamma_{\mathcal{K}}(\rho) )^{2}} \int_{0}^{\varrho} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{{\frac{\rho }{\mathcal{K}}}-1} \bigl(\varPsi(\varrho)- \varPsi(\mathfrak{d_{2}}) \bigr) ^{{\frac{\rho}{\mathcal{K}}}-1}\mathfrak{T}( \mathfrak{d}_{1},\mathfrak{d_{2}}) \\ &\qquad{}\times\varPsi^{\prime}( \mathfrak{d}_{1})\varPsi^{\prime}(\mathfrak{d_{2}}) \, d\mathfrak{d}_{1}\,d\mathfrak{d_{2}} \\ &\quad=\frac{\psi^{{\frac{\rho}{\mathcal{K}}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl( \mathcal{P}(\varrho)\mathcal{S}(\varrho ) \bigr) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\mathcal{P}(\varrho )\bigr)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\mathcal{S}(\varrho)\bigr). \end{aligned}$$
(2.19)

Applying the Cauchy–Schwarz inequality to (2.19), we have

$$\begin{aligned} & \biggl(\frac{1}{2 (\mathcal{K}\varGamma_{\mathcal{K}}(\rho) )^{2}} \int_{0}^{\varrho} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{{\frac{\rho }{\mathcal{K}}}-1} \bigl(\varPsi(\varrho)- \varPsi(\mathfrak{d_{2}}) \bigr)^{{\frac{\rho}{\mathcal{K}}}-1} \bigl(\mathcal{P}( \mathfrak{d}_{1}) -\mathcal{P}(\mathfrak{d_{2}}) \bigr) \\ &\qquad{}\times \bigl(\mathcal{S}(\mathfrak{d}_{1})-\mathcal{S}( \mathfrak{d_{2}}) \bigr)\varPsi ^{\prime}( \mathfrak{d}_{1})\varPsi^{\prime}(\mathfrak{d_{2}}) \, d\mathfrak{d}_{1}\,d\mathfrak{d_{2}} \biggr)^{2} \\ &\quad\leq\frac{1}{2 (\mathcal{K}\varGamma_{\mathcal {K}}(\rho) )^{2}} \int_{0}^{\varrho} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{{\frac{\rho }{\mathcal{K}}}-1} \bigl(\varPsi(\varrho)- \varPsi(\mathfrak{d_{2}}) \bigr)^{{\frac{\rho}{\mathcal{K}}}-1} \bigl(\mathcal{P}( \mathfrak{d}_{1})-\mathcal{P}(\mathfrak{d_{2}}) \bigr)^{2} \\ &\qquad{}\times\varPsi^{\prime}(\mathfrak{d}_{1})\varPsi ^{\prime}(\mathfrak{d_{2}})\,d\mathfrak{d}_{1} \,d\mathfrak{d_{2}} \\ &\qquad{}\times\frac{1}{2 (\mathcal{K}\varGamma_{\mathcal {K}}(\rho) )^{2}} \int_{0}^{\varrho} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{{\frac{\rho }{\mathcal{K}}}-1} \bigl(\varPsi(\varrho)- \varPsi(\mathfrak{d_{2}}) \bigr)^{{\frac{\rho}{\mathcal{K}}}-1} \bigl(\mathcal{S}( \mathfrak{d}_{1})-\mathcal{S}(\mathfrak{d_{2}}) \bigr)^{2} \\ &\qquad{}\times\varPsi^{\prime}(\mathfrak{d}_{1}) \varPsi^{\prime}(\mathfrak{d_{2}})\,d\mathfrak{d}_{1} \,d\mathfrak{d_{2}}. \end{aligned}$$
(2.20)

From (2.19) and (2.20) we get

$$\begin{aligned} & \biggl(\frac{\psi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \bigl(\mathcal{P}(\varrho)\mathcal{S}(\varrho) \bigr) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\mathcal{P}(\varrho )\bigr)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl(\mathcal{S}(\varrho )\bigr) \biggr)^{2} \\ &\quad\leq \biggl(\frac{\varPsi^{{\frac{\rho}{\mathcal {K}}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}^{2}(\varrho )- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho) \bigr)^{2} \biggr) \\ &\qquad{}\times \biggl(\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{S}^{2}(\varrho )- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}(\varrho) \bigr)^{2} \biggr). \end{aligned}$$
(2.21)

Since \((\varTheta_{2}(\varrho)-\mathcal{P}(\varrho) ) (\mathcal {P}(\varrho)-\varTheta_{1}(\varrho) )\geq0\) and \((\varphi_{2}(\varrho)-\mathcal{S}(\varrho) ) (\mathcal {S}(\varrho)-\varphi_{1}(\varrho) )\geq0\) for \(\varrho\in[0,\infty)\), we have

$$\begin{aligned}& \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl( \varTheta _{2}(\varrho)-\mathcal{P}(\varrho) \bigr) \bigl(\mathcal{P}( \varrho )-\varTheta_{1}(\varrho) \bigr)\geq0, \end{aligned}$$
(2.22)
$$\begin{aligned}& \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \bigl( \varphi_{2}(\varrho)-\mathcal{S}(\varrho) \bigr) \bigl(\mathcal {S}( \varrho)-\varphi_{1}(\varrho) \bigr)\geq0. \end{aligned}$$
(2.23)

Thus from Lemma 2.9 we obtain

$$\begin{aligned}& \biggl(\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}^{2}(\varrho )- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho) \bigr)^{2} \biggr) \\& \quad\leq \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varTheta_{2}( \varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}(\varrho ) \bigr) \\& \qquad{}+ \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl( \varTheta_{1}(\varrho)\mathcal{P}(\varrho) \bigr) \\& \qquad{}-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varTheta_{1}( \varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}(\varrho) + \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \varTheta_{2}(\varrho)\mathcal{P}(\varrho) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \varTheta_{2}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho ) \\& \qquad{}+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{1}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varTheta_{2}( \varrho )-\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl(\varTheta_{1}(\varrho)\varTheta _{2}(\varrho) \bigr) \\& \quad=\mathfrak{T}(\mathcal{P},\varTheta_{1},\varTheta_{2}), \end{aligned}$$
(2.24)
$$\begin{aligned}& \biggl(\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{S}^{2}(\varrho )- \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}(\varrho) \bigr)^{2} \biggr) \\& \quad\leq \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varphi_{2}( \varrho)-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{S}(\varrho) \bigr) \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho )- \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{1}(\varrho ) \bigr) \\& \qquad{}+ \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}} \bigl( \varphi_{1}(\varrho)\mathcal{S}(\varrho) \bigr) \\& \quad\quad{}-\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\varphi_{1}( \varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{S}(\varrho) + \frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \bigl( \varphi_{2}(\varrho )\mathcal{S}(\varrho) \bigr) - \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{2}(\varrho ) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho ) \\& \quad\quad{}+ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{1}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\varphi_{2}( \varrho )-\frac{\varPsi^{{\frac{\rho}{\mathcal{K}}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \bigl(\varphi_{1}(\varrho)\varphi_{2}(\varrho ) \bigr) \\& \quad=\mathfrak{T}(\mathcal{S},\varphi_{1},\varphi_{2}). \end{aligned}$$
(2.25)

Therefore, inequality (2.17) follows from (2.20), (2.24), and (2.25). □

Corollary 2.14

Let\(m, M, n, N\in\mathcal{R}\), \(\mathfrak{T}(\mathcal{P},\varTheta_{1},\varTheta_{2})= \mathfrak{T}(\mathcal{P},m,M)\)and\(\mathfrak{T}(\mathcal{S},\varphi_{1},\varphi_{2})= \mathfrak{T}(\mathcal{S},n,N)\). Then inequality (2.17) reduces to

$$\begin{aligned}& \biggl\vert \frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \bigl(\mathcal{P}(\varrho)\mathcal{S}(\varrho) \bigr) -\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}( \varrho) \biggr\vert \\& \quad\leq \biggl(\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{2\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \biggr)^{2}(M-m) (N-n). \end{aligned}$$

Corollary 2.15

Let\(m, \mathcal{M}, n, \mathcal{N}\in\mathcal{R}\), \(\varPsi(\varrho)=\varrho\), \(\mathfrak{T}(\mathcal{P},\varTheta_{1},\varTheta_{2})= \mathfrak{T}(\mathcal{P},m,\mathcal{M})\)and\(\mathfrak{T}(\mathcal{S},\varphi_{1},\varphi_{2})= \mathfrak{T}(\mathcal{S},n,\mathcal{N})\). Then inequality (2.17) leads to

$$\begin{aligned}& \biggl\vert \frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}\mathfrak{J}^{\rho,\mathcal{K}} \bigl(\mathcal {P}(\varrho)\mathcal{S}(\varrho) \bigr) -\mathfrak{J}^{\rho,\mathcal{K}}\mathcal{P}( \varrho)\mathfrak{J}^{\rho ,\mathcal{K}}\mathcal{S}(\varrho) \biggr\vert \\& \quad\leq \biggl(\frac{\varrho^{\frac{\rho}{\mathcal{K}}}}{\varGamma _{\mathcal{K}}(\rho+\mathcal{K})} \biggr)^{2}(\mathcal{M}-m) ( \mathcal{N}-n). \end{aligned}$$

Remark 2.16

Theorem 2.13 and Corollary 2.14 lead to four conclusions as follows:

  1. (1)

    If \(\mathcal{K}=1\), then Theorem 2.13 leads to Theorem 2.23 in [68].

  2. (2)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Theorem 2.13 gives Theorem 9 in [69].

  3. (3)

    If \(\mathcal{K}=1\), then Corollary 2.14 leads to Corollary 2.26 in [68].

  4. (4)

    If \(\mathcal{K}=1\) and \(\varPsi(\varrho)=\varrho\), then Corollary 2.14 gives Remark 10 in [69].

Example 2.17

Let \(\mathcal{K},\rho,\delta>0\), \(\mathcal{P}\) and \(\mathcal{S}\) be two positive functions defined on \([0,\infty)\), and Ψ be an increasing and positive function on \([0,\infty)\) such that \(\varPsi^{\prime}\) is continuous on \([0,\infty)\) with \(\varPsi(0)=0\). Then one has

$$\begin{aligned}& \textup{(a)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{p}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{q}(\varrho) \geq pq\frac{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}{\varPsi^{\frac{\rho }{\mathcal{K}}} (\varrho)} \bigl[ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}(\varrho) \bigr], \\& \textup{(b)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{p}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{p}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{q}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{q}(\varrho) \geq pq \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho)\mathcal{S}(\varrho) \bigr)^{2}, \\& \textup{(c)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{p}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{q}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{q}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{p}(\varrho)\\& \phantom{\textup{(c)}\quad} \quad\geq pq\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho)\mathcal{S}^{p-1}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}\mathcal{S}^{q-1}(\varrho), \\& \textup{(d)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{p}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{q}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{p}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{q}(\varrho)\\& \phantom{\textup{(d)}\quad} \quad\geq pq\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}^{p-1}(\varrho)\mathcal{S}^{q-1}(\varrho) \mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}\mathcal{S}(\varrho), \\& \textup{(e)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{p}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{2}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{2}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{q}(\varrho) \\& \phantom{\textup{(e)}\quad}\quad\geq pq\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho)\mathcal{S}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}^{\frac{2}{q}}\mathcal{S}^{\frac{2}{p}}(\varrho ), \\& \textup{(f)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{q}( \varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{p}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{2}(\varrho) \\& \phantom{\textup{(f)}\quad}\quad\geq pq\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}^{\frac {2}{p}}(\varrho)\mathcal{S} ^{\frac{2}{q}}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal {K}}\mathcal{P}^{p-1} \mathcal{S}^{q-1}(\varrho), \\& \textup{(g)}\quad q\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2} \mathcal {S}^{q}(\varrho) +p\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}^{2}(\varrho)\mathcal{S}^{p}(\varrho) \\& \phantom{\textup{(g)}\quad}\quad\geq pq \frac{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}{ \varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}^{\frac{2}{p}}(\varrho)\mathcal{S} ^{q-1}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{\frac{2}{q}}( \varrho)\mathcal{S}^{p-1}(\varrho). \end{aligned}$$

Proof

According to the well-known Young inequality [70]

$$\begin{aligned} \frac{1}{p}a^{p}+\frac{1}{q}b^{q} \geq ab \quad \biggl(a,b\geq0,p, q>1,\frac{1}{p}+\frac{1}{q}=1 \biggr), \end{aligned}$$
(2.26)

and putting \(a=\mathcal{P}(\mathfrak{d}_{1})\) and \(b=\mathcal{S}(\mathfrak{d_{2}})\), we have

$$\begin{aligned} \frac{1}{p}\mathcal{P}^{p}(\mathfrak{d}_{1})+ \frac{1}{q}\mathcal {S}^{q}(\mathfrak{d_{2}}) \geq \mathcal{P}(\mathfrak{d}_{1})\mathcal{S}(\mathfrak{d_{2}}) \end{aligned}$$
(2.27)

for all \(\mathcal{P}(\mathfrak{d}_{1}),\mathcal{S}(\mathfrak{d_{2}})\geq0\).

Taking product on both sides of (2.27) by \(\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} (\varPsi(\varrho )-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi ^{\prime}(\mathfrak{d}_{1})\) (which is positive due to \(\varrho\in(0,\mathfrak{d}_{1})\)) and integrating the resulting identity for the variable \(\mathfrak{d}_{1}\) from 0 to ϱ, we get

$$\begin{aligned} &\frac{1}{p}\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int _{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak{d}_{1})\mathcal {P}^{p}(\mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \\ &\qquad{}+\frac {1}{q}\mathcal{S}^{q}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho } \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1}\varPsi^{\prime}( \mathfrak{d}_{1}) \,d\mathfrak{d}_{1} \\ &\quad\geq\mathcal{S}(\mathfrak{d_{2}}) \frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho } \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak{d}_{1})\, d \mathfrak{d}_{1} \end{aligned}$$
(2.28)

and

$$\begin{aligned} \frac{1}{p}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{p}(\varrho)+\frac{1}{q}\mathcal{S}^{q}( \mathfrak{d_{2}})\frac {\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho)}{ \varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \geq \mathcal{S}( \mathfrak{d_{2}})\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{P}(\varrho). \end{aligned}$$
(2.29)

Again, taking product on both sides of (2.29) by \(\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} (\varPsi(\varrho )-\varPsi(\mathfrak{d_{2}}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi ^{\prime}(\mathfrak{d_{2}})\) and integrating the resulting identity for the variable \(\mathfrak{d_{2}}\) from 0 to ϱ, we get

$$\begin{aligned} \frac{1}{p}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{p}(\varrho)\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} +\frac{1}{q} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{q}( \varrho)\frac{\varPsi^{\frac{\rho}{\mathcal{K}}}(\varrho )}{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})} \geq\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{S}(\varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}( \varrho) \end{aligned}$$
(2.30)

and

$$\begin{aligned} \frac{1}{p}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{p}(\varrho) +\frac{1}{q}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{q}(\varrho) \geq \frac{\varGamma_{\mathcal{K}}(\rho+\mathcal{K})}{\varPsi^{\frac{\rho }{\mathcal{K}}}(\varrho)} \bigl[ \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}(\varrho) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho) \bigr], \end{aligned}$$
(2.31)

which implies part (a). The rest of inequalities can be shown in a similar manner by using the subsequent desire of parameters in the Young inequality:

$$\begin{aligned}& \text{(b)}\quad a=\mathcal{P}(\mathfrak{d}_{1})\mathcal{S}(\mathfrak {d_{2}}), \quad\quad b=\mathcal{P}(\mathfrak{d_{2}}) \mathcal {S}(\mathfrak{d}_{1}). \\& \text{(c)} \quad a=\frac{\mathcal{P}(\mathfrak{d}_{1})}{\mathcal {S}(\mathfrak{d}_{1})}, \quad\quad b=\frac{\mathcal{P}(\mathfrak {d_{2}})}{\mathcal{S}(\mathfrak{d_{2}})},\quad \mathcal{S}(\mathfrak {d}_{1})\mathcal{S}(\mathfrak{d_{2}}) \neq0. \\& \text{(d)} \quad a=\frac{\mathcal{P}(\mathfrak{d_{2}})}{\mathcal {P}(\mathfrak{d}_{1})}, \quad\quad b=\frac{\mathcal{S}(\mathfrak {d_{2}})}{\mathcal{S}(\mathfrak{d}_{1})},\quad \mathcal{P}(\mathfrak {d}_{1})\mathcal{S}(\mathfrak{d_{2}}) \neq0. \\& \text{(e)} \quad a=\mathcal{P}(\mathfrak{d}_{1})\mathcal{S}^{\frac {2}{p}}( \mathfrak{d_{2}}), \qquad b=\mathcal{P}^{\frac{2}{q}}(\mathfrak {d_{2}})\mathcal{S}(\mathfrak{d}_{1}). \\& \text{(f)} \quad a=\frac{\mathcal{P}^{\frac{2}{p}}(\mathfrak {d}_{1})}{\mathcal{P}(\mathfrak{d_{2}})}, \quad\quad b=\frac{\mathcal {S}^{\frac{2}{q}}(\mathfrak{d}_{1})}{\mathcal{S}(\mathfrak{d_{2}})},\quad \mathcal{P}(\mathfrak{d_{2}})\mathcal{S}(\mathfrak{d_{2}}) \neq0. \\& \text{(g)} \quad a=\frac{\mathcal{P}^{\frac{2}{p}}(\mathfrak{d}_{1})}{\mathcal {S}(\mathfrak{d_{2}})}, \quad\quad b=\frac{\mathcal{P}^{\frac{2}{q}}(\mathfrak{d_{2}})}{\mathcal {S}(\mathfrak{d}_{1})},\quad \mathcal{S}(\mathfrak{d}_{1})\mathcal {S}(\mathfrak{d_{2}}) \neq0. \end{aligned}$$

Repeating the foregoing argument, we can obtain parts (b)–(g). □

Example 2.18

Let \(\mathcal{K}, \rho, \delta>0\), \(\mathcal{P}\) and \(\mathcal{S}\) be two positive functions defined on \([0,\infty)\), Ψ be an increasing and positive function on \([0,\infty)\) such that \(\varPsi^{\prime}\) is continuous on \([0,\infty)\) and \(\varPsi(0)=0\), and m and \(\mathcal{M}\) be defined by

$$\begin{aligned} m=\min_{0\leq\mathfrak{d}_{1}\leq \varrho}\frac{\mathcal{P}(\mathfrak{d}_{1})}{\mathcal{S}(\mathfrak {d}_{1})}, \quad\quad \mathcal{M}= \max_{0\leq\mathfrak{d}_{1}\leq \varrho}\frac{\mathcal{P}(\mathfrak{d}_{1})}{\mathcal{S}(\mathfrak{d}_{1})}, \end{aligned}$$
(2.32)

respectively. Then we have

$$\begin{aligned}& \textup{(a)}\quad0\leq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2}( \varrho )\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{S}^{2}( \varrho) \leq\frac{(m+\mathcal{M})^{2}}{4m\mathcal{M}} \bigl(\mathfrak{J}_{\varPsi ,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}\mathcal{S}(\varrho) \bigr)^{2}, \\& \textup{(b)}\quad0\leq \sqrt{\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{2}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{2}(\varrho)} - \bigl(\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {P}(\varrho)\mathcal{S}(\varrho) \bigr) \\& \phantom{\textup{(b)}\quad0}\leq\frac{(\sqrt{\mathcal{M}}-\sqrt{m})^{2}}{2\sqrt{m\mathcal {M}}} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )\mathcal{S}( \varrho). \end{aligned}$$

Proof

It follows from (2.32) and

$$\begin{aligned} \biggl(\frac{\mathcal{P}(\mathfrak{d}_{1})}{\mathcal{S}(\mathfrak {d}_{1})}-m \biggr) \biggl(\mathcal{M}-\frac{\mathcal{P}(\mathfrak{d}_{1})}{\mathcal {S}(\mathfrak{d}_{1})} \biggr) \mathcal{S}^{2}(\mathfrak{d}_{1})\geq0 \quad(0 \leq\varrho\leq \mathfrak{d}_{1}) \end{aligned}$$

that

$$\begin{aligned} \mathcal{P}^{2}(\mathfrak{d}_{1})+m\mathcal{M} \mathcal{S}^{2}(\mathfrak {d}_{1})\leq(m+\mathcal{M}) \mathcal{P}(\mathfrak{d}_{1})\mathcal {S}(\mathfrak{d}_{1}). \end{aligned}$$
(2.33)

Multiplying (2.33) by \(\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} (\varPsi(\varrho )-\varPsi(\mathfrak{d}_{1}) )^{\frac{\rho}{\mathcal{K}}-1}\varPsi ^{\prime}(\mathfrak{d}_{1})\) and integrating with respect to \(\mathfrak{d}_{1}\) over \((0,\varrho)\), we get

$$\begin{aligned} &\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int_{0}^{\varrho } \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho }{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}^{2}(\mathfrak{d}_{1}) \, d\mathfrak{d}_{1}\\ &\qquad{}+ m\mathcal{M}\frac{1}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho)} \int _{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{S}^{2}(\mathfrak{d}_{1}) \, d\mathfrak{d}_{1} \\ &\quad\leq\frac{m+\mathcal{M}}{\mathcal{K}\varGamma_{\mathcal{K}}(\rho )} \int_{0}^{\varrho} \bigl(\varPsi(\varrho)-\varPsi( \mathfrak{d}_{1}) \bigr)^{\frac{\rho}{\mathcal{K}}-1} \varPsi^{\prime}( \mathfrak{d}_{1})\mathcal{P}(\mathfrak{d}_{1})\mathcal {S}(\mathfrak{d}_{1})\,d\mathfrak{d}_{1}, \end{aligned}$$

which implies that

$$\begin{aligned} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}^{2}(\varrho )+m\mathcal{M}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{2}(\varrho)\leq(m+\mathcal{M}) \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}(\varrho )\mathcal{S}(\varrho). \end{aligned}$$
(2.34)

Alternately, it follows from \(m,\mathcal{M}>0\) and

$$\begin{aligned} \bigl(\sqrt{\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{2}(\varrho)}-\sqrt{m\mathcal{M} \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{S}^{2}(\varrho )} \bigr)^{2}\geq0 \end{aligned}$$

that

$$\begin{aligned} 2\sqrt{\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{2}(\varrho)}\sqrt{m\mathcal{M}\mathfrak{J}_{\varPsi,0^{+}}^{\rho ,\mathcal{K}} \mathcal{S}^{2}(\varrho)} \leq \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal{P}^{2}(\varrho )+m\mathcal{M}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}} \mathcal {S}^{2}(\varrho). \end{aligned}$$
(2.35)

Therefore,

$$\begin{aligned} 4m\mathcal{M}\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {P}^{2}(\varrho)\mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal {S}^{2}(\varrho)\leq(m+\mathcal{M})^{2} \bigl( \mathfrak{J}_{\varPsi,0^{+}}^{\rho,\mathcal{K}}\mathcal{P}(\varrho )\mathcal{S}( \varrho) \bigr)^{2} \end{aligned}$$

follows from (2.34) and (2.35), and part (a) is proved. By using a few transformations to part (a), we can obtain part (b). □

3 Conclusion

This article begins with a succinct review of fractional integrals in the frame of a new fractional integral operator. We characterize the definition of generalized \(\mathcal{K}\)-fractional integral operators. We modify the Grüss type inequality by employing generalized \(\mathcal{K}\)-fractional integrals; specifically, the variant involving fractional integrals in the generalized Riemann–Liouville and \(\mathcal{K}\)-fractional integrals frame is provided. The associated significant variants including summed up generalized \(\mathcal{K}\)-fractional integrals are also outlined. Numerous consequences can be generalized for the utility of these recently presented fractional integral operators.

References

  1. Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundedness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012)

    Article  MATH  Google Scholar 

  2. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Cauchy problems with Caputo Hadamard fractional derivatives. J. Comput. Anal. Appl. 21(4), 661–681 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Nisar, K.S., Rahman, G., Baleanu, D., Mubeen, S., Arshad, M.: The \((k,s)\)-fractional calculus of k-Mittag-Leffler function. Adv. Differ. Equ. 2017, Article ID 118 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

    Article  MathSciNet  Google Scholar 

  6. Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

    Article  MathSciNet  Google Scholar 

  8. Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

    MATH  Google Scholar 

  10. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Hackensack (2012)

    Book  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  12. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  13. Akman, T., Yıldız, B., Baleanu, D.: New discretization of Caputo–Fabrizio derivative. Comput. Appl. Math. 37(3), 3307–3333 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oliveira, D.S., Capelas de Oliveira, E.: Hilfer–Katugampola fractional derivative (2017, submitted). arXiv:1705.07733

  15. Katugampola, U.N.: New approach to generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Jarad, F., Abdeljawad, T., Baleanu, B.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10(5), 2607–2619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jarad, F., Abdeljawad, T.: Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst., Ser. S 13(3), 709–722 (2020). https://doi.org/10.3934/dcdss.2020039

    Article  Google Scholar 

  18. Mubeen, S., Habibullah, G.M.: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Azam, M.K., Farid, G., Rehman, M.A.: Study of generalized type κ-fractional derivatives. Adv. Differ. Equ. 2017, Article ID 249 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequality for κ-fractional integrals. Appl. Math. Comput. 269, 29–34 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 670–691 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Qian, W.-M., Zhang, X.-H., Chu, Y.-M.: Sharp bounds for the Toader–Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 11(1), 121–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

    Article  Google Scholar 

  26. Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neumann means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019)

    Article  Google Scholar 

  27. Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. 480(2), Article ID 123388 (2019). https://doi.org/10.1016/j.jmaa.2019.123388

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B(5), 1440–1450 (2019)

    Article  MathSciNet  Google Scholar 

  30. Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, W.-J., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rashid, S., Akdemir, A.O., Jarad, F., Noor, M.A., Noor, K.I.: Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS Math. 4(4), 1087–1100 (2019). https://doi.org/10.3934/math.2019.4.1087

    Article  Google Scholar 

  35. Rashid, S., Noor, M.A., Noor, K.I.: Fractional exponentially m-convex functions and inequalities. Int. J. Anal. Appl. 17(3), 464–478 (2019). https://doi.org/10.28924/2291-8639

    Article  MATH  Google Scholar 

  36. Rashid, S., Noor, M.A., Noor, K.I.: Some generalize Riemann–Liouville fractional estimates involving functions having exponentially convexity property. Punjab Univ. J. Math. 51(11), Article ID 01 (2019)

    MathSciNet  Google Scholar 

  37. Rashid, S., Noor, M.A., Noor, K.I.: Inequalities pertaining fractional approach through exponentially convex functions. Fractal Fract. 3, Article ID 37 (2019). https://doi.org/10.3390/fractalfract3030037

    Article  Google Scholar 

  38. Rashid, S., Noor, M.A., Noor, K.I.: New estimates for exponentially convex functions via conformable fractional operator. Fractal Fract. 3, Article ID 19 (2019). https://doi.org/10.3390/fractalfract3020019

    Article  Google Scholar 

  39. Rashid, S., Noor, M.A., Noor, K.I., Safdar, F.: Integral inequalities for generalized preinvex functions. Punjab Univ. J. Math. 51(10), 77–91 (2019)

    MathSciNet  Google Scholar 

  40. Rashid, S., Noor, M.A., Noor, A.A.O.: Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal Fract. 3, Article ID 24 (2019). https://doi.org/10.3390/fractalfract3020024

    Article  Google Scholar 

  41. Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard inequalities for the class of convex functions on time scale. Mathematics 7, Article ID 956 (2019). https://doi.org/10.3390/math7100956

    Article  Google Scholar 

  42. Noor, M.A., Noor, K.I., Rashid, S.: Some new classes of preinvex functions and inequalities. Mathematics 7, Article ID 29 (2019). https://doi.org/10.3390/math7010029

    Article  Google Scholar 

  43. Adil Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)

    Article  MathSciNet  Google Scholar 

  44. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019)

    Article  MathSciNet  Google Scholar 

  46. Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2235–2251 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019)

    Article  MathSciNet  Google Scholar 

  49. Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)

    Article  MathSciNet  Google Scholar 

  50. Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019)

    Article  Google Scholar 

  54. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Deng, Y., Kalsoom, H., Wu, S.: Some new quantum Hermite–Hadamard-type estimates within a class of generalized \((s,m)\)-preinvex functions. Symmetry 10(11), Article ID 1283 (2019)

    Article  Google Scholar 

  56. Kalsoom, H., Amer, M., Junjua, M.-ud-D., Hussain, S., Shahzadi, G.: Some \((p,q)\)-estimates of Hermite–Hadamard-type inequalities for co-ordinated convex and quasi-convex functions. Mathematics 7(8), Article ID 683 (2019)

    Article  Google Scholar 

  57. Kalsoom, H., Wu, J., Hussain, S., Latif, M.: Simpson’s type inequalities for coordinated convex functions on quantum calculus. Symmetry 11(6), Article ID 768 (2019)

    Article  Google Scholar 

  58. Zafar, F., Kalsoom, H., Hussain, N.: Some inequalities of Hermite–Hadamard type for n-times differentiable \((\rho,m)\)-geometrically convex functions. J. Nonlinear Sci. Appl. 8(3), 201–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kalsoom, H., Hussain, S.: Some Hermite–Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019(10), 65–75 (2019)

    MathSciNet  Google Scholar 

  60. Grüss, G.: Über das Maximum des absoluten Betrages von \(\frac {1}{b-a}\int_{a}^{b}f(x)g(x)\,dx-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,dx\int _{a}^{b}g(x)\,dx\). Math. Z. 39(1), 215–226 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  61. Anastassiou, G.A.: Opial type inequalities involving fractional derivatives of two functions and applications. Comput. Math. Appl. 48(10–11), 1701–1731 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sulaiman, W.T.: Some new fractional integral inequalities. J. Math. Anal. 2(2), 23–28 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Denton, Z., Vatsala, A.S.: Fractional integral inequalities and applications. Comput. Math. Appl. 59(3), 1087–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)

    Book  MATH  Google Scholar 

  65. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)

    Article  MathSciNet  Google Scholar 

  67. Kilbas, S.G., Marichev, A.A.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon (1993)

    MATH  Google Scholar 

  68. Kacar, E., Kacar, Z., Yildirim, H.: Integral inequalities for Riemann–Liouville fractional integrals of a function with respect to another function. Iran. J. Math. Sci. Inform. 13(1), 1–13 (2018)

    MathSciNet  Google Scholar 

  69. Tariboon, J., Ntouyas, S.K., Sudsutad, W.: Some new Riemann–Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, Article ID 869434 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dumitru Baleanu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, S., Jarad, F., Noor, M.A. et al. On Grüss inequalities within generalized K-fractional integrals. Adv Differ Equ 2020, 203 (2020). https://doi.org/10.1186/s13662-020-02644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02644-7

MSC

Keywords