Theory and Modern Applications

# Positive solutions for integral boundary value problems of fractional differential equations with delay

## Abstract

In this article, a class of integral boundary value problems of fractional delayed differential equations is discussed. Based on the Guoâ€“Krasnoselskii theorem, some existence results on the positive solutions are derived. Two simple examples are given to show the validity of the conditions of our main theorems.

## 1 Introduction

Differential equation models have been widely used in control system, aerodynamics, fluid flows and many other branches of engineering [1â€“9]. Recently, fractional calculus has attracted great interest. There are several kinds of fractional operators have been proposed so far, among which we have the well-known GrÃ¼nwaldâ€“Letnikov, Riemannâ€“Liouville, Caputo derivative.

In the past several decades, fractional boundary value problems have obtained abundant theoretical achievements. In [10, 11], the nonexistence of positive solutions for differential equations of fractional order is analyzed with the help of reduction to absurdity. In [12], the authors study a class of Riemannâ€“Liouville fractional derivative equations and present sufficient condition on the unique positive solution by employing a $$u_{0}$$-positive operator. There are many articles devoted to the existence and multiplicity of positive solutions for the fractional boundary value problems, the approaches mainly include Lerayâ€“Schauder degree theory [13, 14], the monotone iterative method [15, 16], the Leggettâ€“Williams theorem [17, 18], the fixed point theorem on cones [17â€“19]. Especially, compared with the previous results, papers [11â€“13, 17, 20] contain integral boundary conditions. In [21], the authors first introduced a new method, called Averyâ€“Peterson theory, which illustrates the existence of at least three positive solutions. Since then, more and more attention [22â€“24] was paid to this method, and many questions were solved.

At present, fractional delayed equations have aroused the extensive attention of many scholars. They dealt with the existence of solutions under various boundary conditions by different methods. For details, one can refer to [20, 25â€“27] and the references therein.

In [28], Cabada and Wang considered a class of nonlinear fractional differential equations with integral boundary value conditions:

\begin{aligned} \textstyle\begin{cases} {}^{c}D^{\alpha }u(t)+f(t,u(t))=0, \quad 0< t< 1, \\ u(0)=u^{\prime \prime }(0)=0, \quad \quad u(1)=\lambda \int _{0}^{1}u(s)\,ds, \end{cases}\displaystyle \end{aligned}

where $$2<\alpha <3$$, $$0<\lambda <2$$, $$f:[0,1]\times [0,\infty )\rightarrow [0,\infty )$$ is a continuous function. The existence of at least one positive solution is obtained by using the Guoâ€“Krasnoselskii fixed point theorem.

Enlightened by the above literature, we discuss the following equation:

\begin{aligned} \textstyle\begin{cases} {}^{c}D^{\beta }z(t)+g(t,z_{t})=0, \quad t\in [0,1], \\ z(t)=\phi (t),\quad t\in [-\tau ,0], \\ z(0)=z^{\prime \prime }(0)=z^{\prime \prime \prime }(0)=0, \quad\quad z(1)=k\int _{0}^{1}z(\theta )\,d\theta , \end{cases}\displaystyle \end{aligned}
(1)

where $$3<\beta \leq 4$$, $$0< k<2$$, $${}^{c}D^{\beta }$$ is the Caputo fractional derivative, $$g:[0,1]\times C_{\tau }\longrightarrow [0,+\infty )$$ is a continuous function, $$z_{t}(s)=z(t+s)$$, for $$t\in [0,1]$$, $$s\in [-\tau ,0]$$. $$\phi \in C_{\tau }(:=C[-\tau ,0])$$, $$C_{\tau }$$ is a Banach space with $$\Vert \phi \Vert _{[-\tau ,0]}=\max_{s \in [-\tau ,0]} \vert \phi (s) \vert$$ and let $$C_{\tau }^{+}=\{z\in C[-\tau ,0]\vert z(t)\geq 0, t\in [-\tau ,0]\}$$.

In this paper, the sufficient conditions are obtained for the existence of at least two positive solutions for a class of integral boundary value problems of fractional differential equations with delay. The integral boundary value condition and the time delay make the results significant.

## 2 Preliminaries

This part introduce some useful definitions and important lemmas.

### Definition 2.1

([1])

The Î² order fractional integral for a function $$g(t)$$ is defined as follows:

$$I^{\beta }g(t)=\frac{1}{\varGamma (\beta )} \int ^{t}_{0}(t-\theta )^{ \beta -1}g(\theta )\,d \theta ,\quad \beta >0.$$

### Definition 2.2

([1])

The Î² order Caputo fractional derivative for a function $$g(t)$$ is defined as follows:

$${}^{c}D^{\beta }g(t)=\frac{1}{\varGamma (n-\beta )} \int ^{t}_{0}(t- \theta )^{n-\beta -1}g^{(n)}( \theta )\,d\theta ,\quad n-1< \beta \leq n.$$

### Definition 2.3

([2])

Let $$P \subseteq X$$ be a nonempty, convex closed set and X a real Banach space. The P is called a cone in X provided that

1. (i)

$$\mu z\in P$$, for all $$z\in P$$ and $$\mu \geq 0$$;

2. (ii)

$$z, -z\in P$$ imply $$z=0$$.

### Definition 2.4

([2])

Let P is a cone in real Banach spaceÂ X. If map $$\psi : P\rightarrow [0,\infty )$$ is continuous and satisfies

$$\psi \bigl(tz_{1}+(1-t)z_{2}\bigr)\geq t\psi (z_{1})+(1-t)\psi (z_{2}),\quad z_{1},z_{2} \in P, t\in [0,1],$$

then Ïˆ is called a nonnegative continuous concave functional onÂ P.

### Lemma 2.1

([1])

Assume that$$\beta >0$$and$$n=[\beta ]+1$$. If the function$$g\in L[0,1]\cap C[0,1]$$, then there exists$$c_{i}\in R$$, $$i=1,2,\ldots,n$$, such that

$$I^{\beta c}D^{\beta }g(t)=g(t)-c_{1}-c_{2}t- \cdots -c_{n}t^{n-1}.$$

### Lemma 2.2

Equation (1) has a unique solution as follows:

\begin{aligned} z(t)= \textstyle\begin{cases} \int _{0}^{1}G(t,\theta )g(\theta ,z_{\theta })\,d\theta , &t\in [0,1], \\ \phi (t), &t\in [-\tau ,0], \end{cases}\displaystyle \end{aligned}
(2)

where

\begin{aligned} G(t,\theta )= \textstyle\begin{cases} \frac{2t(1-\theta )^{\beta -1}(\beta -k+k\theta )-(2-k)\beta (t-\theta )^{\beta -1}}{(2-k)\varGamma (\beta +1)}, &0\leq \theta \leq t\leq 1, \\ \frac{2t(1-\theta )^{\beta -1}(\beta -k+k\theta )}{(2-k)\varGamma (\beta +1)}, &0\leq t\leq \theta \leq 1. \end{cases}\displaystyle \end{aligned}
(3)

### Proof

From LemmaÂ 2.1, we have

\begin{aligned} z(t)=-\frac{1}{\varGamma (\beta )} \int ^{t}_{0}(t-\theta )^{\beta -1}g( \theta ,z_{\theta })\,d\theta +c_{0}+c_{1}t+c_{2}t^{2}+c_{3}t^{3}. \end{aligned}

According to $$z(0)=z^{\prime \prime }(0)=z^{\prime \prime \prime }(0)=0$$, $$z(1)=k\int _{0}^{1}z(\theta )\,d\theta$$, we know that

\begin{aligned} c_{0}=c_{2}=c_{3}=0,\quad \quad c_{1}=\frac{1}{\varGamma (\beta )} \int ^{1}_{0}(1- \theta )^{\beta -1}g(\theta ,z_{\theta })\,d\theta +k \int _{0}^{1}z( \theta )\,d\theta . \end{aligned}

Thus, Eq.Â (1) has a unique solution

\begin{aligned}[b] z(t)&=-\frac{1}{\varGamma (\beta )} \int ^{t}_{0}(t-\theta )^{\beta -1}g( \theta ,z_{\theta })\,d\theta \\ &\quad{} +\biggl(\frac{1}{\varGamma (\beta )} \int ^{1}_{0}(1- \theta )^{\beta -1}g(\theta ,z_{\theta })\,d\theta +k \int _{0}^{1}z( \theta )\,d\theta \biggr)t. \end{aligned}
(4)

Letting $$J=\int _{0}^{1}z(\theta )\,d\theta$$, from (4) we get

\begin{aligned} J =& \int ^{1}_{0}z(t)\,dt \\ =&- \int _{0}^{1} \int ^{t}_{0} \frac{(t-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta \,dt \\ &{}+ \int _{0}^{1} \int ^{1}_{0} \frac{t(1-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta \,dt+ \int ^{1}_{0} kJt \,dt \\ =& - \int ^{1}_{0}\frac{(1-\theta )^{\beta }}{\beta \varGamma (\beta )}g( \theta ,z_{\theta })\,d\theta +\frac{1}{2} \int ^{1}_{0} \frac{(1-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta +\frac{1}{2}k J. \end{aligned}

It follows that

$$J=-\frac{2}{2-k} \int ^{1}_{0} \frac{(1-\theta )^{\beta }}{\beta \varGamma (\beta )}g(\theta ,z_{ \theta })\,d\theta +\frac{1}{2-k} \int ^{1}_{0} \frac{(1-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta .$$
(5)

Substituting (5) into (4), we derive

\begin{aligned} z(t) =& - \int ^{t}_{0}\frac{(t-\theta )^{\beta -1}}{\varGamma (\beta )}g( \theta ,z_{\theta })\,d\theta + \int _{0}^{1} \frac{t(1-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta \\ & {} - \frac{2k}{2-k} \int ^{1}_{0} \frac{t(1-\theta )^{\beta }}{\beta \varGamma (\beta )}g(\theta ,z_{ \theta })\,d\theta +\frac{k}{2-k} \int ^{1}_{0} \frac{t(1-\theta )^{\beta -1}}{\varGamma (\beta )}g(\theta ,z_{\theta })\,d \theta \\ =&- \int ^{t}_{0}\frac{(t-\theta )^{\beta -1}}{\varGamma (\beta )}g( \theta ,z_{\theta })\,d\theta + \int _{0}^{1} \frac{2t(1-\theta )^{\beta -1}(\beta -k+k \theta )}{(2-k)\varGamma (\beta +1)}g( \theta ,z_{\theta })\,d\theta \\ =& \int ^{1}_{0}G(t,\theta )g(\theta ,z_{\theta }) \,d\theta . \end{aligned}

The conclusion have been proved.â€ƒâ–¡

### Lemma 2.3

([28])

The function $$G(t,\theta )$$ satisfies

1. (1)

$$0< G(t,\theta )\leq \frac{2}{(2-k)\varGamma (\beta )}$$for$$t,\theta \in (0,1)$$if and only if$$0< k<2$$;

2. (2)

$$tG(1,\theta )\leq G(t,\theta )\leq MG(1,\theta )$$, $$M= \frac{2\beta }{k(\beta -2)}$$for all$$t,\theta \in (0,1)$$, $$3<\beta \leq 4$$and$$0< k<2$$.

### Lemma 2.4

([2])

Suppose thatPis a cone in Banach spaceÂ X. If$$\varOmega _{1}$$, $$\varOmega _{2}$$are bounded open sets inXsuch that$$0\in \varOmega _{1}$$, $$\overline{\varOmega _{1}}\subset \varOmega _{2}$$and operator$$T:P\cap (\overline{\varOmega _{2}}\setminus \varOmega _{1}) \longrightarrow P$$is completely continuous satisfying

1. (i)

$$\Vert Tz \Vert \geq \Vert z \Vert$$, $$z\in P\cap \partial \varOmega _{1}$$and$$\Vert Tz \Vert \leq \Vert z \Vert$$, $$z\in P\cap \partial \varOmega _{2}$$; or

2. (ii)

$$\Vert Tz \Vert \leq \Vert z \Vert$$, $$z\in P\cap \partial \varOmega _{1}$$and$$\Vert Tz \Vert \geq \Vert z \Vert$$, $$z\in P\cap \partial \varOmega _{2}$$,

then the operatorThas at least one fixed point in$$P\cap (\overline{\varOmega _{2}}\setminus \varOmega _{1})$$.

### Lemma 2.5

([29])

Suppose$$\sigma \in (0,\frac{1}{2})$$is a fixed number, for each$$z\in P$$and$$\theta \in [\sigma ,1-\sigma ]$$ (Pis defined in LemmaÂ 3.1), there exists a constant$$\lambda \in (0,1)$$that satisfies

$$\Vert z_{\theta } \Vert _{[-\tau ,0]}\geq \lambda \Vert z \Vert _{[0,1]}, \quad\quad \Vert z \Vert _{[0,1]}= \sup _{t\in [0,1]} \bigl\vert z(t) \bigr\vert .$$

## 3 Main results

Next, the problem of positive solutions for Eq.Â (1) are studied. For convenience, some notations and hypotheses are presented as follows:

\begin{aligned}& g_{\infty }=\lim_{z\in C_{\tau }^{+}, \Vert z \Vert _{[-\tau ,0]}\rightarrow + \infty } \frac{g(t,z)}{ \Vert z \Vert _{[-\tau ,0]}}, \quad\quad g_{0}=\lim_{z\in C_{ \tau }^{+}, \Vert z \Vert _{[-\tau ,0]}\rightarrow 0^{+}} \frac{g(t,z)}{ \Vert z \Vert _{[-\tau ,0]}}, \\& A=\frac{\lambda }{2} \int _{\sigma }^{1-\sigma }G(1,\theta )\,d\theta , \lambda \in (0,1), \sigma \in \biggl(0,\frac{1}{2}\biggr), \qquad B=M \int _{0}^{1}G(1, \theta )\,d\theta ; \end{aligned}
$$(C_{1})$$:

$$\phi (t)\geq 0$$ on $$[-\tau ,0]$$;

$$(C_{2})$$:

$$g(t,z)\geq 0$$ for $$t\in [0,1]$$ and $$z\in C_{\tau }^{+}$$;

$$(C_{3})$$:

$$g_{0}=g_{\infty }=+\infty$$;

$$(C_{4})$$:

$$g_{0}=g_{\infty }=0$$;

$$(C_{5})$$:

if there exists a constant $$m\geq \Vert \phi \Vert _{[-\tau ,0]}>0$$, then

$$g(t,z)\leq \frac{m}{B}, \quad \Vert z \Vert _{[-\tau ,0]}\in [0,m], t\in [0,1].$$
$$(C_{6})$$:

if there exists a constant $$n\geq \Vert \phi \Vert _{[-\tau ,0]}>0$$, then

$$g(t,z)\geq \frac{\lambda n}{A}, \quad \Vert z \Vert _{[-\tau ,0]}\in [ \lambda n,n], t\in [\sigma ,1-\sigma ].$$

On $$C[-\tau ,1]$$ define an operator T

\begin{aligned} Tz(t)= \textstyle\begin{cases} \int _{0}^{1}G(t,\theta )g(\theta ,z_{\theta })\,d\theta ,&t\in [0,1], \\ \phi (t),&t\in [-\tau ,0]. \end{cases}\displaystyle \end{aligned}

### Lemma 3.1

If$$(C_{1})$$, $$(C_{2})$$hold andPis a cone in Banach space$$X=C[-\tau ,1]$$with norm$$\Vert z \Vert _{[-\tau ,1]}=\max_{t\in [-\tau ,1]} \vert z(t) \vert$$as follows:

$$P=\bigl\{ z\in X\vert z\geq 0, z \textit{ is concave down on } [0,1]\bigr\} ,$$

then the following conclusions are true.

1. (i)

$$T(P)\subseteq P$$;

2. (ii)

$$T:P\rightarrow P$$is completely continuous.

### Proof

It is easy to check that (i) holds and T is continuous. So we only prove that (ii) is true. Assume that H be a bounded subset in P, which is to say there exists $$l>0$$ such that $$\Vert z \Vert \leq l$$ for all $$z\in H$$. Let

$$N=\sup_{t\in [0,1],z\in [0,l] } \bigl\vert g(t,z_{t}) \bigr\vert +1.$$

Then, for $$z\in H$$, we have

$$\bigl\vert Tz(t) \bigr\vert = \biggl\vert \int _{0}^{1}G(t,\theta )g(\theta ,z_{\theta }) \,d\theta \biggr\vert \leq \frac{2N}{(2-k)\varGamma (\beta )}.$$

That is, $$T(H)$$ is uniformly bounded.

Let $$z\in H$$ and $$t_{1}< t_{2}$$, $$t_{1}, t_{2}\in [-\tau ,1]$$. If $$0\leq t_{1}< t_{2}\leq 1$$, then

\begin{aligned}& \bigl\vert (Tz)^{\prime }(t) \bigr\vert \\& \quad = \biggl\vert - \int ^{t}_{0}\frac{(t-\theta )^{\beta -2}}{\varGamma (\beta -1)}g( \theta ,z_{\theta })\,d\theta + \int _{0}^{1} \frac{2(1-\theta )^{\beta -1}(\beta -k+k \theta )}{(2-k)\varGamma (\beta +1)}g( \theta ,z_{\theta })\,d\theta \biggr\vert \\& \quad \leq \int ^{t}_{0}\frac{(t-\theta )^{\beta -2}}{\varGamma (\beta -1)} \bigl\vert g( \theta ,z_{\theta }) \bigr\vert \,d\theta + \int _{0}^{1} \frac{2(1-\theta )^{\beta -1}(\beta -k+k \theta )}{(2-k)\varGamma (\beta +1)} \bigl\vert g( \theta ,z_{\theta }) \bigr\vert \,d\theta \\& \quad \leq N\biggl[\frac{t^{\beta -1}}{\varGamma (\beta )}+ \frac{2(\beta +1-k)}{(2-k)\varGamma (\beta +2)}\biggr] \\& \quad \leq N \frac{\beta (\beta +1)(2-k)+2(\beta +1-k)}{(2-k)\varGamma (\beta +2)}]:=N_{0}. \end{aligned}

Hence

$$\bigl\vert Tz(t_{2})-Tz(t_{1}) \bigr\vert \leq \int _{t_{1}}^{t_{2}} \bigl\vert (Tz)^{\prime }( \theta ) \bigr\vert \,d \theta \leq N_{0}(t_{2}-t_{1}).$$

If $$-\tau \leq t_{1}< t_{2}\leq 0$$, then

$$\bigl\vert Tz(t_{2})-Tz(t_{1}) \bigr\vert = \bigl\vert \phi (t_{2})-\phi (t_{1}) \bigr\vert .$$

If $$-\tau \leq t_{1}<0<t_{2}\leq 1$$, then

\begin{aligned} \bigl\vert Tz(t_{2})-Tz(t_{1}) \bigr\vert =& \bigl\vert Tz(t_{2})-Tz(0) \bigr\vert + \bigl\vert Tz(0)-Tz(t_{1}) \bigr\vert \\ \leq & \int ^{1}_{0} \bigl\vert G(t_{2},\theta )-G(0,\theta ) \bigr\vert \bigl\vert g(\theta ,z_{ \theta }) \bigr\vert \,d\theta + \bigl\vert \phi (0)-\phi (t_{1}) \bigr\vert \\ \leq & \frac{2N(\beta +1-k)}{(2-k)\varGamma (\beta +2)}t_{2}+ \bigl\vert \phi (0)- \phi (t_{1}) \bigr\vert \\ < & \frac{2N(\beta +1-k)}{(2-k)\varGamma (\beta +2)} \vert t_{2}-t_{1} \vert + \bigl\vert \phi (0)- \phi (t_{1}) \bigr\vert . \end{aligned}

Therefore, $$T(H)$$ is equicontinuous. On the basis of the Ascoliâ€“ArzelÃ  theorem we conclude that $$T(H)$$ is relatively compact. The conclusion has been proved.â€ƒâ–¡

### Theorem 3.1

If$$(C_{1})$$, $$(C_{2})$$, $$(C_{3})$$and$$(C_{5})$$are satisfied, then Eq.Â (1) has at least two positive solutions$$z_{1}$$and$$z_{2}$$with

$$0\leq \Vert z_{1} \Vert _{[-\tau ,1]}< m< \Vert z_{2} \Vert _{[-\tau ,1]}.$$

### Proof

Suppose that $$(C_{5})$$ holds. Let $$\varOmega _{m}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< m\}$$, for any $$z\in P\cap \partial \varOmega _{m}$$, we have

\begin{aligned} (Tz) (t) =& \textstyle\begin{cases} \int _{0}^{1}G(t,\theta )g(\theta ,z_{\theta })\,d\theta , &0\leq t \leq 1, \\ \phi (t), &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq & \textstyle\begin{cases} \frac{m}{B}M\int _{0}^{1}G(1,\theta )\,d\theta , &0\leq t\leq 1, \\ \Vert \phi \Vert _{[-\tau ,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq & \textstyle\begin{cases} m, &0\leq t\leq 1, \\ \Vert \phi \Vert _{[-\tau ,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq& \Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\leq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{m}.$$

Suppose that $$(C_{3})$$ holds. Since $$g_{0}=\infty$$, we may choose $$\Vert \phi \Vert _{[-\tau ,0]}< m_{1}< m$$, such that $$g(t,z)\geq K \Vert z \Vert _{[-\tau ,0]}$$, for $$0\leq \Vert z \Vert _{[-\tau ,0]}\leq m_{1}$$, where $$K>0$$ satisfies $$KA\geq 1$$.

Let $$\varOmega _{m_{1}}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< m_{1}\}$$, for any $$z\in P\cap \partial \varOmega _{m_{1}}$$, we have

\begin{aligned} (Tz) \biggl(\frac{1}{2}\biggr) \geq & \int _{\sigma }^{1-\sigma }G\biggl(\frac{1}{2}, \theta \biggr)g(\theta ,z_{\theta })\,d\theta \geq K \int _{\sigma }^{1- \sigma }G\biggl(\frac{1}{2},\theta \biggr) \Vert z_{\theta } \Vert _{[-\tau ,0]}\,d\theta \\ \geq & \frac{K\lambda }{2} \int _{\sigma }^{1-\sigma }G(1,\theta ) \Vert z \Vert _{[0,1]}\,d\theta =\frac{K\lambda }{2} \int _{\sigma }^{1-\sigma }G(1, \theta ) \Vert z \Vert _{[-\tau ,1]}\,d\theta \\ \geq & \Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\geq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{m_{1}}.$$

Next, since $$g_{\infty }=\infty$$, we may choose $$m_{2}>m> \Vert \phi \Vert _{[-\tau ,0]}$$, such that $$g(t,z)\geq L \Vert z \Vert _{[-\tau ,0]}$$, for $$\Vert z \Vert _{[-\tau ,0]}\geq \lambda m_{2}$$, where $$L>0$$ satisfies $$LA\geq 1$$.

Let $$\varOmega _{m_{2}}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< m_{2}\}$$, for any $$z\in P\cap \partial \varOmega _{m_{2}}$$, we have

\begin{aligned} (Tz) \biggl(\frac{1}{2}\biggr) \geq & \int _{\sigma }^{1-\sigma }G\biggl(\frac{1}{2}, \theta \biggr)g(\theta ,z_{\theta })\,d\theta \geq L \int _{\sigma }^{1- \sigma }G\biggl(\frac{1}{2},\theta \biggr) \Vert z_{\theta } \Vert _{[-\tau ,0]}\,d\theta \\ \geq & \frac{L\lambda }{2} \int _{\sigma }^{1-\sigma }G(1,\theta ) \Vert z \Vert _{[0,1]}\,d\theta =\frac{L\lambda }{2} \int _{\sigma }^{1-\sigma }G(1, \theta ) \Vert z \Vert _{[-\tau ,1]}\,d\theta \\ \geq & \Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\geq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{m_{2}}.$$

Therefore, the conclusion has been proved by (i) and (ii) of LemmaÂ 2.4.â€ƒâ–¡

### Theorem 3.2

If$$(C_{1})$$, $$(C_{2})$$, $$(C_{4})$$and$$(C_{6})$$are satisfied, then Eq.Â (1) has at least two positive solutions$$z_{1}$$and$$z_{2}$$with

$$0\leq \Vert z_{1} \Vert _{[-\tau ,1]}< n< \Vert z_{2} \Vert _{[-\tau ,1]}.$$

### Proof

Suppose that $$(C_{6})$$ holds. Letting $$\varOmega _{n}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< n\}$$, for any $$z\in P\cap \partial \varOmega _{n}$$, we have

\begin{aligned} (Tz) \biggl(\frac{1}{2}\biggr) \geq & \int _{\sigma }^{1-\sigma }G\biggl(\frac{1}{2}, \theta \biggr)g(\theta ,z_{\theta })\,d\theta \geq \frac{1}{2} \int _{\sigma }^{1- \sigma }G(1,\theta )g(\theta ,z_{\theta })\,d\theta \\ \geq & \frac{n\lambda }{2A} \int _{\sigma }^{1-\sigma }G(1,\theta )\,d \theta =n= \Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\geq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{n}.$$

Suppose that $$(C_{4})$$ holds. Since $$g_{0}=0$$, we may choose $$\Vert \phi \Vert _{[-\tau ,0]}< n_{1}<n$$, such that $$g(t,z)\leq C \Vert z \Vert _{[-\tau ,0]}$$, for $$0\leq \Vert z \Vert _{[-r,0]}\leq n_{1}$$, where $$C>0$$ satisfies $$CB\leq 1$$.

Let $$\varOmega _{n_{1}}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< n_{1}\}$$, for any $$z\in P\cap \partial \varOmega _{m_{2}}$$, we have

\begin{aligned} (Tz) (t) =& \textstyle\begin{cases} \int _{0}^{1}G(t,\theta )g(\theta ,z_{\theta })\,d\theta , &0\leq t \leq 1, \\ \phi (t), &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq & \textstyle\begin{cases} CM\int _{0}^{1}G(1,\theta ) \Vert z_{\theta } \Vert _{[-\tau ,0]}\,d\theta , &0 \leq t\leq 1, \\ \Vert \phi \Vert _{[-r,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq & \textstyle\begin{cases} CB \Vert z \Vert _{[-\tau ,1]}, &0\leq t\leq 1, \\ \Vert \phi \Vert _{[-r,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\ \leq &\Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\leq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{n_{1}}.$$

In addition, since $$g_{\infty }=0$$, there exists $$R>n$$, such that $$g(t,z)\leq D \Vert z \Vert _{[-\tau ,0]}$$, for $$\Vert z \Vert _{[-\tau ,0]}>R$$, where $$D>0$$ satisfies $$(D+1)B\leq 1$$.

Choose a constant $$n_{2}>0$$, such that $$n_{2}>\max \{n, \Vert \phi \Vert _{[-\tau ,0]},\max \{g(\theta ,z_{\theta })\vert 0 \leq \Vert z_{\theta } \Vert _{[-\tau ,0]}\leq R\}B\}$$. Let $$\varOmega _{n_{2}}=\{z\in P: \Vert z \Vert _{[-\tau ,1]}< n_{2}\}$$, for any $$z\in P\cap \partial \varOmega _{n_{2}}$$, we have

\begin{aligned}& (Tz) (t) \\& \quad\leq \textstyle\begin{cases} \int _{ \Vert z_{\theta } \Vert _{[-\tau ,0]}>R}MG(1,\theta )g(\theta ,z_{ \theta })\,d\theta \\ \quad{} +\int _{0\leq \Vert z_{\theta } \Vert _{[-\tau ,0]}\leq R}MG(1,\theta )g( \theta ,z_{\theta })\,d\theta , &0\leq t\leq 1, \\ \phi (t), &-\tau \leq t\leq 0, \end{cases}\displaystyle \\& \quad\leq \textstyle\begin{cases} \{Dn_{2}+\max \{g(\theta ,z_{\theta })\vert 0\leq \Vert z_{\theta } \Vert _{[-\tau ,0]} \leq R\}\}B, &0\leq t\leq 1, \\ \Vert \phi \Vert _{[-\tau ,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\& \quad \leq \textstyle\begin{cases} n_{2}, &0\leq t\leq 1, \\ \Vert \phi \Vert _{[-\tau ,0]}, &-\tau \leq t\leq 0, \end{cases}\displaystyle \\& \quad \leq n_{2}= \Vert z \Vert _{[-\tau ,1]}, \end{aligned}

which yields

$$\Vert Tz \Vert _{[-\tau ,1]}\leq \Vert z \Vert _{[-\tau ,1]}, \quad \text{for } z\in P\cap \partial \varOmega _{n_{2}}.$$

Therefore, the conclusion has been proved by (i) and (ii) of LemmaÂ 2.4.â€ƒâ–¡

From the ideas in the proofs of TheoremÂ 3.1 and TheoremÂ 3.2, we have TheoremÂ 3.3 and TheoremÂ 3.4.

### Theorem 3.3

If$$(C_{1})$$, $$(C_{2})$$are satisfied and the conditions$$g_{0}=\infty$$, $$g_{\infty }=0$$hold, then Eq.Â (1) has at least one positive solution.

### Theorem 3.4

If$$(C_{1})$$, $$(C_{2})$$are satisfied and the conditions$$g_{0}=0$$, $$g_{\infty }=\infty$$hold, then Eq.Â (1) has at least one positive solution.

## 4 Some examples

### Example 4.1

We consider the following equation:

$$\textstyle\begin{cases} {}^{c}D^{\frac{10}{3}}z(t)=-z^{\frac{1}{3}}(t-\frac{1}{2}), \quad t\in [0,1], \\ z(t)=t^{6}, \quad t\in [-\frac{1}{2},0], \\ z(0)=z^{\prime \prime }(0)=z^{\prime \prime \prime }(0)=0, \quad \quad z(1)=\frac{1}{2}\int _{0}^{1}z(\theta )\,d\theta , \end{cases}$$
(6)

where $$\alpha =\frac{10}{3}$$, $$k=\frac{1}{2}$$, $$\tau =\frac{1}{2}$$, $$g(t,z)=z^{ \frac{1}{3}}(-\frac{1}{2})$$; since

$$\frac{g(t,z)}{ \Vert z \Vert _{[-\frac{1}{2},0]}} = \frac{z^{\frac{1}{3}}(-\frac{1}{2})}{ \Vert z \Vert _{[-\frac{1}{2},0]}}\leq \frac{ \Vert z \Vert ^{\frac{1}{3}}_{[-\frac{1}{2},0]}}{ \Vert z \Vert _{[-\frac{1}{2},0]}} = \Vert z \Vert ^{-\frac{2}{3}}_{[-\frac{1}{2},0]}\rightarrow 0, \quad \text{as } \Vert z \Vert _{[- \frac{1}{2},0]}\rightarrow +\infty$$

we have $$g_{\infty }=0$$. In addition, there exists a constant $$c>0$$ with $$z(t)\geq c \Vert z \Vert _{[-r,0]}$$,

$$\frac{g(t,z)}{ \Vert z \Vert _{[-\frac{1}{2},0]}}= \frac{z^{\frac{1}{3}}(-\frac{1}{2})}{ \Vert z \Vert _{[-\frac{1}{2},0]}}\geq c \frac{ \Vert z \Vert ^{\frac{1}{3}}_{[-\frac{1}{2},0]}}{ \Vert z \Vert _{[-\frac{1}{2},0]}}=c \Vert z \Vert ^{-\frac{2}{3}}_{[-\frac{1}{2},0]}\rightarrow +\infty , \quad \text{as } \Vert z \Vert _{[- \frac{1}{2},0]}\rightarrow 0.$$

Thus, $$g_{0}=+\infty$$, Eq.Â (6) has at least one positive solution by TheoremÂ 3.3.

### Example 4.2

We consider the following equation:

$$\textstyle\begin{cases} {}^{c}D^{\frac{7}{2}}z(t)=-(z^{\frac{1}{2}}(t-\frac{1}{3})+z^{2}(t- \frac{1}{3})), \quad t\in [0,1], \\ z(t)=t^{4}, \quad t\in [-\frac{1}{3},0], \\ z(0)=z^{\prime \prime }(0)=z^{\prime \prime \prime }(0)=0, \quad \quad z(1)=\int _{0}^{1}z(\theta )\,d\theta , \end{cases}$$
(7)

where $$\alpha =\frac{7}{2}$$, $$k=1$$, $$\tau =\frac{1}{3}$$, $$g(t,z)=z^{\frac{1}{2}}(- \frac{1}{3})+z^{2}(-\frac{1}{3})$$, and there exists a constant $$c>0$$ with $$z(t)\geq c \Vert z \Vert _{[-r,0]}$$; since

\begin{aligned}& \frac{g(t,z)}{ \Vert z \Vert _{[-\frac{1}{3},0]}}= \frac{z^{\frac{1}{2}}(-\frac{1}{3})+z^{2}(-\frac{1}{3})}{ \Vert z \Vert _{[-\frac{1}{3},0]}} \geq c \frac{ \Vert z \Vert ^{\frac{1}{2}}_{[-\frac{1}{3},0]}+ \Vert z \Vert ^{2}_{[-\frac{1}{3},0]}}{ \Vert z \Vert _{[-\frac{1}{3},0]}} \rightarrow + \infty , \quad \text{as } \Vert z \Vert _{[-\frac{1}{3},0]}\rightarrow + \infty , \\& \frac{g(t,z)}{ \Vert z \Vert _{[-\frac{1}{3},0]}}= \frac{z^{\frac{1}{2}}(-\frac{1}{3})+z^{2}(-\frac{1}{3})}{ \Vert z \Vert _{[-\frac{1}{3},0]}} \geq c \frac{ \Vert z \Vert ^{\frac{1}{2}}_{[-\frac{1}{3},0]}+ \Vert z \Vert ^{2}_{[-\frac{1}{3},0]}}{ \Vert z \Vert _{[-\frac{1}{3},0]}} \rightarrow + \infty , \quad \text{as } \Vert z \Vert _{[-\frac{1}{3},0]}\rightarrow 0, \end{aligned}

we have $$g_{0}=+\infty$$, $$g_{\infty }=+\infty$$. Thus the condition $$(C_{3})$$ holds. Furthermore, $$M=\frac{2\alpha }{k(\alpha -2)}=\frac{14}{3}$$, $$\int _{0}^{1}G(1,s)\,ds= \int _{0}^{1} \frac{(1-s)^{\alpha -1}(k[2(s-1)+\alpha ])}{(2-k)\varGamma (\alpha +1)}\,ds= \frac{5}{9\varGamma (\frac{9}{2})}$$, $$B=M\int _{0}^{1}G(1,s)\,ds= \frac{224}{567\sqrt{\pi }}$$. Taking $$m=2$$, then when $$0\leq \Vert z \Vert _{[-\frac{1}{3},0]}\leq 2$$, we have $$g(t,z)\leq 6\leq \frac{m}{B}=\frac{567\sqrt{\pi }}{112}$$, which implies the condition $$(C_{5})$$ holds. Hence by TheoremÂ 3.1, Eq.Â (7) has at least two positive solutions $$z_{1}$$ and $$z_{2}$$ with

$$0< \Vert z \Vert _{[-\frac{1}{3},1]}< 2< \Vert z \Vert _{[-\frac{1}{3},1]}.$$

## 5 Conclusion

In this paper, on the basis of the Guoâ€“Krasnoselskii theorem, the sufficient conditions ensure that the existence and multiplicity of positive solutions are obtained. This research method can be extended to many fractional boundary value problems. It is worth noting that the equation involves time delay and an integral boundary value condition, to be compared to much previous work, which has never been considered. In addition, our work is inspiring for future research as regards triple positive solutions of fractional boundary value problems with delay.

## References

1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

2. Lakshmikantham, V., Guo, D.J.: Nonlinear Problems in Abstract Cone. Academic Press, Orlando (1988)

3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

4. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

5. Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

6. Diethelm, V.: The Analysis of Fractional Differential Equations. Springer, New York (2010)

7. Iqbal, Z., Ahmed, N., Baleanu, D., Rafiq, M., Iqbal, M.S., Rehman, M.A.: Structure preserving computational technique for fractional order Schnakenberg model. Comput. Appl. Math. 39(2), 61 (2020)

8. Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146â€“158 (2018)

9. Ahmed, N., Rafiq, M., Baleanu, D., Rehman, M.A.: Spatio-temporal numerical modeling of auto-catalytic Brusselator model. Rom. J. Phys. 64(7â€“8), 110 (2019)

10. Zhao, Y., Sun, S., Han, Z., Zhang, M.: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217(16), 6950â€“6958 (2011)

11. Feng, M.Q., Zhang, X.M., Ge, W.G.: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, Article ID 720702 (2011)

12. Qiao, Y., Zhou, Z.F.: Existence and uniqueness of positive solutions for a fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2016, 106 (2016)

13. Qiao, Y., Zhou, Z.F.: Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Bound. Value Probl. 2017, 11 (2017)

14. Ji, D.H.: Positive solutions of singular fractional boundary value problem with p-Laplacian. Bull. Malays. Math. Sci. Soc. 41, 249â€“263 (2018)

15. Wang, Y.Q., Liu, L.S.: Positive solutions for a class of fractional infinite-point boundary value problems. Bound. Value Probl. 2018, 118 (2018)

16. Tian, Y.S., Bai, Z.B., Sun, S.J.: Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator. Adv. Differ. Equ. 2019, 349 (2019)

17. Sun, Q., Ji, H.W., Cui, Y.J.: Positive solutions for boundary value problems of fractional differential equation with integral boundary conditions. J.Â Funct. Spaces Appl. 2018, Article ID 6461930 (2018)

18. Zhang, D.L., Liu, Y.S.: Multiple positive solutions for nonlinear fractional boundary value problems. Sci. WorldÂ J. 2013, Article ID 473828 (2013)

19. Zhang, X.Q., Zhong, Q.Y.: Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations. Bound. Value Probl. 2016, 65 (2016)

20. Zhao, K.H., Wang, K.: Existence of solutions for the delayed nonlinear fractional functional differential equations with three-point integral boundary value conditions. Adv. Differ. Equ. 2016, 284 (2016)

21. Avery, R.I., Peterson, A.C.: Three positive fixed points of nonlinear operators on ordered Banach spaces. Comput. Math. Appl. 42(3â€“5), 313â€“322 (2001)

22. Guo, L.M., Zhang, X.Q.: Existence of positive solutions for the singular fractional differential equations. J.Â Appl. Math. Comput. 44, 215â€“228 (2014)

23. Yang, L., Shen, C.F., Xie, D.P.: Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemannâ€“Liouville derivative. Adv. Differ. Equ. 2014, 284 (2014)

24. Li, Y.H.: Multiple positive solutions for nonlinear mixed fractional differential equation with p-Laplacian operator. Adv. Differ. Equ. 2019, 112 (2019)

25. Li, Y.N., Sun, S.R., Yang, D.W., Han, Z.L.: Three-point boundary value problems of fractional functional differential equations with delay. Bound. Value Probl. 2013, 38 (2013)

26. Niazi, A.U.K., Jiang, W., Rehman, M.U., Pang, D.H.: Boundary value problem for nonlinear fractional differential equations with delay. Adv. Differ. Equ. 2017, 24 (2017)

27. Jawaz, M., Ahmed, N., Baleanu, D., Rehman, M.A.: Positivity preserving technique for the solution of HIV/AIDS reaction diffusion model with time delay. Front. Phys. 7, 229 (2020)

28. Cabada, A., Wang, G.T.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J.Â Math. Anal. Appl. 389(1), 403â€“411 (2012)

29. Han, Z.L., Li, Y.A., Sui, M.Z.: Existence results for boundary value problems of fractional functional differential equations with delay. J.Â Appl. Math. Comput. 51(1â€“2), 367â€“381 (2016)

### Acknowledgements

The authors acknowledge the support by the National Natural Science Foundation of China (11601003; 11371027; 11471015).

Not applicable.

## Funding

This work is supported by the National Natural Science Foundation of China (no.11601003, no.11371027 and no.11471015)

## Author information

Authors

### Contributions

All authors contributed equally to this paper. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Zhixin Zhang.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions

Reprints and permissions

Li, S., Zhang, Z. & Jiang, W. Positive solutions for integral boundary value problems of fractional differential equations with delay. Adv Differ Equ 2020, 256 (2020). https://doi.org/10.1186/s13662-020-02695-w