Skip to main content

Theory and Modern Applications

Some results on degenerate Daehee and Bernoulli numbers and polynomials

Abstract

In this paper, we study a degenerate version of the Daehee polynomials and numbers, namely the degenerate Daehee polynomials and numbers, which were actually called the degenerate Daehee polynomials and numbers of the third kind and recently introduced by Jang et al. (J. Comput. Appl. Math. 364:112343, 2020). We derive their explicit expressions and some identities involving them. Further, we introduce the multiple degenerate Daehee numbers and higher-order degenerate Daehee polynomials and numbers which can be represented in terms of integrals on the unitcube. Again, we deduce their explicit expressions and some identities related to them.

1 Introduction

The degenerate versions of Bernoulli and Euler polynomials, namely the degenerate Bernoulli and Euler polynomials, were studied by Carlitz in [1]. In recent years, studying various degenerate versions of some special polynomials and numbers drew attention of some mathematicians and many arithmetic and combinatorial results were obtained [4, 5, 8, 12, 13, 15–17, 19, 20]. They can be explored by using various tools like combinatorial methods, generating functions, differential equations, umbral calculus techniques, p-adic analysis, and probability theory.

The aim of this paper is to study a degenerate version of the Daehee polynomials and numbers, namely the degenerate Daehee polynomials and numbers, in the spirit of [1]. They were actually called the degenerate Daehee polynomials and numbers of the third kind and recently introduced by Jang et al. in [4]. We derive their explicit expressions and some identities involving them. Further, we introduce the multiple degenerate Daehee numbers and higher-order degenerate Daehee polynomials and numbers. Again, we deduce their explicit expressions and some identities related to them.

This paper is organized as follows. In Sect. 1, we state what we need in the rest of the paper. These include the Stirling numbers of the first and second kinds, the higher-order Bernoulli polynomials, the higher-order Daehee polynomials, the higher-order degenerate Bernoulli polynomials, the degenerate exponential functions, and the degenerate Stirling numbers of the first and second kinds. In Sect. 2, we recall the degenerate Daehee polynomials and numbers (of the third kind) from [4] whose generating functions can be expressed in terms of integrals on the unit interval. We find their explicit expressions and some identities involving them. We also introduce the multiple degenerate Daehee numbers, the generating function of which can be expressed in terms of a multiple integral on the unitcube or of the modified polyexponential function [7]. We deduce an explicit expression of them and some identities involving them. In Sect. 3, we introduce the higher-order degenerate Daehee polynomials and numbers whose generating function can be represented as a multiple integral on the unitcube. We derive their explicit expressions and some identities relating to them. Finally, we conclude this paper in Sect. 4.

For \(n \ge 0\), the Stirling numbers of the first kind are defined by

$$ (x)_{n} = \sum _{l=0}^{n}S_{1}(n,l)x^{l} \quad \bigl(\mbox{see [8, 14]}\bigr), $$
(1.1)

where \((x)_{0} = 1\), \((x)_{n} = x(x-1)\cdots (x-n+1)\), \((n \geq 1)\).

As an inversion formula of (1.1), the Stirling numbers of the second kind are defined as

$$ \begin{aligned} x^{n} = \sum _{l=0}^{n}S_{2}(n,l) (x)_{l}, (n \ge 0) \quad \bigl(\mbox{see [8, 14, 16]}\bigr). \end{aligned} $$
(1.2)

For \(\alpha \in \mathbb{N}\), the Bernoulli polynomials of order α are defined as

$$ \begin{aligned} \biggl(\frac{t}{e^{t}-1} \biggr)^{\alpha }e^{xt} = \sum_{n=0}^{ \infty }B_{n}^{(\alpha )}(x) \frac{t^{n}}{n!} \quad \bigl(\mbox{see [4, 16]}\bigr). \end{aligned} $$
(1.3)

\(B_{n}(x) = B_{n}^{(1)}(x)\) are called the Bernoulli polynomials and \(B^{(\alpha )}_{n} = B^{(\alpha )}_{n}(0)\) the Bernoulli numbers of order α.

The Daehee polynomials are defined by

$$ \begin{aligned} \biggl( \frac{\log (1+t)}{t} \biggr) (1+t)^{x} = \sum_{n=0}^{ \infty }D_{n}(x) \frac{t^{n}}{n!}\quad \bigl(\mbox{see [2, 3, 6, 9--11, 14, 15, 18, 21--34]} \bigr). \end{aligned} $$
(1.4)

For \(x=0\), \(D_{n} = D_{n}(0)\) are called the Daehee numbers.

Recently, Jang–Kim–Kwon–Kim studied some new results on degenerate Daehee polynomials and numbers of the third kind (see [4]).

That is, they derived a new integral representation for the degenerate Daehee number and polynomials, the higher-order λ-Daehee numbers and polynomials, and the higher-order twisted λ-Daehee numbers and polynomials (see [4]).

The Daehee polynomials of order k are defined by

$$ \begin{aligned} \biggl(\frac{\log (1+t)}{t} \biggr)^{k}(1+t)^{x} = \sum _{n=0}^{ \infty }D_{n}^{(k)}(x) \frac{t^{n}}{n!} \quad \bigl(\mbox{see [4, 10]}\bigr). \end{aligned} $$
(1.5)

In [9], we note that

$$ \begin{aligned} D_{m}^{(k)}(z) = m!\sum_{n=0}^{m}\binom{z }{m-n}b_{m}^{(-k)}, \end{aligned} $$
(1.6)

where \(b_{n}^{(x)}\) are the higher-order Bernoulli numbers of the second kind given by

$$ \biggl(\frac{t}{\log (1+t)} \biggr)^{x}=\sum _{n=0}^{\infty }b_{n}^{(x)}t^{n}. $$
(1.7)

Recently, Daehee numbers and polynomials have been studied by many researchers in various areas (see [2, 3, 6, 9–11, 14, 15, 18, 21–34]).

In [1], Carlitz considered the degenerate Bernoulli polynomials given by

$$ \begin{aligned} \frac{t}{(1+\lambda t)^{\frac{1}{\lambda }}-1}(1+ \lambda t)^{\frac{x}{\lambda }} = \sum_{n=0}^{\infty } \beta _{n, \lambda }^{(x)}\frac{t^{n}}{n!} \quad(\lambda \in \mathbb{R}). \end{aligned} $$
(1.8)

When \(x=0\), \(\beta _{n,\lambda } = \beta _{n,\lambda }(0)\) are called the degenerate Bernoulli numbers. For \(r \in \mathbb{N}\), he also defined the higher–order degenerate Bernoulli polynomials as

$$ \begin{aligned} \biggl(\frac{t}{(1+\lambda t)^{\frac{1}{\lambda }}-1} \biggr)^{r}(1+\lambda t)^{\frac{x}{\lambda }} = \sum _{n=0}^{\infty } \beta _{n,\lambda }^{(r)}(x) \frac{t^{n}}{n!} \quad \bigl(\mbox{see [16]}\bigr). \end{aligned} $$
(1.9)

When \(x=0\), \(\beta _{n,\lambda }^{(r)} = \beta _{n,\lambda }^{(r)}(0)\) are called the degenerate Bernoulli numbers of order r.

The degenerate exponential functions are given by

$$ e^{x}_{\lambda }(t) = (1+\lambda t)^{\frac{x}{\lambda }}, e_{\lambda }(t) = e^{1}_{\lambda }(t) = (1+\lambda t)^{ \frac{1}{\lambda }} \quad \bigl(\mbox{see [7--9, 12--14, 16--20]}\bigr). $$
(1.10)

We note that

$$ e^{x}_{\lambda }(t) = \sum_{n=0}^{\infty } \frac{(x)_{n,\lambda }}{n!}t^{n} \quad \bigl(\mbox{see [8]}\bigr), $$
(1.11)

where \((x)_{0,\lambda } = 1\), \((x)_{n,\lambda } = x(x-\lambda )\cdots (x-(n-1)\lambda )\)\((n \ge 1)\).

Note that \(\lim_{\lambda \to 0} e_{\lambda }^{x}(t) = e^{xt}\), \(\lim_{\lambda \to 0}\beta ^{(r)}_{n,\lambda }(x) = B_{n}^{(r)}(x)\).

Recently, Kim considered the degenerate Stirling numbers of the second kind given by

$$ \begin{aligned} (x)_{n,\lambda } = \sum _{l=0}^{n}S_{2,\lambda }(n,l) (x)_{l}, (n \ge 0) \quad \bigl(\mbox{see [8]}\bigr). \end{aligned} $$
(1.12)

Note that \(\lim_{\lambda \to 0}S_{2,\lambda }(n,l) = S_{2}(n,l)\).

From (1.12), we note that

$$ \begin{aligned} \frac{1}{k!} \bigl(e_{\lambda }(t)-1\bigr)^{k} = \sum _{n=k}^{ \infty }S_{2,\lambda }(n,k) \frac{t^{n}}{n!}\quad (k \ge 0) \bigl(\mbox{see [8]}\bigr). \end{aligned} $$
(1.13)

As an inversion formula of (1.12), the Stirling numbers of the first kind are defined by

$$ \begin{aligned} (x)_{n} = \sum _{l=0}^{n}S_{1,\lambda }(n,l) (x)_{l, \lambda }\quad (n \ge 0) \bigl(\mbox{see [8]}\bigr). \end{aligned} $$
(1.14)

We see that \(\log _{\lambda }(t)=\frac{1}{\lambda }(t^{\lambda }-1)\) is the compositional inverse of \(e_{\lambda }(t)\) satisfying \(\log _{\lambda }(e_{\lambda }(t)) = e_{\lambda }(\log _{\lambda }(t)) = t\).

By (1.14), we get

$$ \begin{aligned} \frac{1}{k!} \bigl(\log _{\lambda }(1+t) \bigr)^{k} = \sum _{n=k}^{\infty }S_{1,\lambda }(n,k) \frac{t^{n}}{n!} \quad \bigl(\mbox{see [8]}\bigr). \end{aligned} $$
(1.15)

Note that \(\lim_{\lambda \to 0}\log _{\lambda }(1+t) = \log (1+t)\).

2 Degenerate Daehee numbers and polynomials

The degenerate Daehee polynomials are defined by (see [4])

$$ \begin{aligned} \frac{\log _{\lambda }(1+t)}{t}(1+t)^{x} = \sum_{n=0}^{ \infty }D_{n,\lambda }(x) \frac{t^{n}}{n!}, \quad(\lambda \in \mathbb{R}). \end{aligned} $$
(2.1)

When \(x=0\), \(D_{n,\lambda } = D_{n,\lambda }(0)\) are called the degenerate Daehee numbers.

From (1.4) and (2.1), we note that \(\lim_{\lambda \to 0}D_{n,\lambda }(x) = D_{n}(x)\)\((n \ge 0)\).

We observe that

$$ \begin{aligned} \frac{\log (1+t)}{t} \int _{0}^{1}(1+t)^{\lambda y+x}\,dy = \frac{\log _{\lambda }(1+t)}{t}(1+t)^{x} = \sum_{n=0}^{\infty }D_{n, \lambda }(x) \frac{t^{n}}{n!}. \end{aligned} $$

When \(x=0\), we have

$$ \begin{aligned} \frac{\log (1+t)}{t} \int _{0}^{1}(1+t)^{\lambda y} \,dy = \sum _{n=0}^{\infty }D_{n,\lambda } \frac{t^{n}}{n!}. \end{aligned} $$
(2.2)

On the other hand,

$$ \begin{aligned}[b] &\frac{\log (1+t)}{t} \int _{0}^{1}(1+t)^{\lambda y}\,dy\\ &\quad = \frac{\log (1+t)}{t}\sum_{m=0}^{\infty } \frac{\lambda ^{m}(\log (1+t))^{m}}{(m+1)!} \\ & \quad = \frac{1}{t}\sum_{m=0}^{\infty } \frac{(\log (1+t))^{m+1}}{(m+1)!}\lambda ^{m} = \frac{1}{t}\sum _{m=1}^{ \infty }\lambda ^{m-1} \frac{1}{m!}\bigl(\log (1+t)\bigr)^{m} \\ &\quad = \frac{1}{t}\sum_{m=1}^{\infty } \lambda ^{m-1}\sum_{n=m}^{ \infty }S_{1}(n,m) \frac{t^{n}}{n!} = \frac{1}{t}\sum_{n=1}^{\infty } \Biggl(\sum_{m=1}^{n}\lambda ^{m-1}S_{1}(n,m) \Biggr) \frac{t^{n}}{n!} \\ & \quad = \sum_{n=0}^{\infty } \Biggl( \frac{1}{n+1}\sum_{m=1}^{n+1} \lambda ^{m-1}S_{1}(n+1,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.3)

Therefore, by (2.2) and (2.3), we obtain the following theorem.

Theorem 2.1

For\(n\ge 0\), we have

$$ \begin{aligned} D_{n,\lambda } = \frac{1}{n+1}\sum _{m=1}^{n+1}\lambda ^{m-1}S_{1}(n+1,m). \end{aligned} $$

By replacing t by \(e_{\lambda }(t)-1\) in (2.1), we get

$$ \begin{aligned}[b] \frac{t}{e_{\lambda }(t)-1}e_{\lambda }^{x}(t) & = \sum_{m=0}^{ \infty }D_{m,\lambda }(x) \frac{1}{m!}\bigl(e_{\lambda }(t)-1\bigr)^{m} \\ & = \sum_{m=0}^{\infty }D_{m,\lambda }(x) \sum_{n=m}^{\infty }S_{2, \lambda }(n,m) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl(\sum _{m=0}^{n}D_{m,\lambda }(x)S_{2, \lambda }(n,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.4)

On the other hand,

$$ \frac{t}{e_{\lambda }(t)-1}e_{\lambda }^{x}(t) = \sum_{n=0}^{ \infty }\beta _{n,\lambda }(x)\frac{t^{n}}{n}. $$
(2.5)

Therefore, by (2.4) and (2.5), we obtain the following theorem.

Theorem 2.2

For\(n \ge 0\), we have

$$ \beta _{n,\lambda }(x) = \sum _{m=0}^{n} D_{m,\lambda }(x)S_{2, \lambda }(n,m). $$

Note that

$$ B_{n}(x) = \lim_{\lambda \to 0} \beta _{n,\lambda }(x) = \sum_{m=0}^{n}D_{m}(x)S_{2}(n,m) \quad (n \ge 0). $$

To find the inversion formula of Theorem 2.2, we replace t by \(\log _{\lambda }(1+t)\) in (1.8) and get

$$ \begin{aligned}[b] \frac{\log _{\lambda }(1+t)}{t}(1+t)^{x}& = \sum_{m=0}^{ \infty }\beta _{m,\lambda }(x)\frac{1}{m!} \bigl(\log _{\lambda }(1+t) \bigr)^{m} \\ & = \sum_{m=0}^{\infty }\beta _{m,\lambda }(x)\sum_{n=m}^{\infty }S_{1, \lambda }(n,m) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl(\sum _{m=0}^{n}\beta _{m,\lambda }(x)S_{1, \lambda }(n,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.6)

Therefore, by (2.1) and (2.6), we obtain the following theorem.

Theorem 2.3

For\(n \ge 0\), we have

$$ \begin{aligned} D_{n,\lambda }(x) = \sum _{m=0}^{n}\beta _{m,\lambda }(x)S_{1, \lambda }(n,m). \end{aligned} $$

Note that

$$ \begin{aligned} D_{n}(x) = \lim_{\lambda \to 0}D_{n,\lambda }(x) = \sum_{m=0}^{n}B_{m}(x)S_{1}(n,m) \quad (n \ge 0). \end{aligned} $$

From (1.10), we can derive the following equation:

$$\begin{aligned} \sum_{n=0}^{\infty }D_{n,\lambda }(x) \frac{t^{n}}{n!} =& \frac{\log _{\lambda }(1+t)}{t}(1+t)^{x} = \frac{\log _{\lambda }(1+t)}{t}e_{\lambda }^{x}\bigl(\log _{\lambda }(1+t)\bigr) \\ =& \frac{\log _{\lambda }(1+t)}{t} \sum_{m=0}^{\infty }(x)_{m, \lambda } \frac{(\log _{\lambda }(1+t))^{m}}{m!} \\ =& \frac{1}{t}\sum_{m=0}^{\infty }(m+1) (x)_{m,\lambda } \frac{1}{(m+1)!} \bigl(\log _{\lambda }(1+t) \bigr)^{m+1} \\ =& \frac{1}{t}\sum_{m=0}^{\infty }(m+1) (x)_{m,\lambda }\sum_{n=m+1}^{ \infty }S_{1,\lambda }(n,m+1) \frac{t^{n}}{n!} \end{aligned}$$
(2.7)
$$\begin{aligned} = &\sum_{m=0}^{\infty }(m+1) (x)_{m,\lambda }\sum_{n=m}^{ \infty } \frac{S_{1,\lambda }(n+1,m+1)}{n+1}\frac{t^{n}}{n!} \\ = &\sum_{n=0}^{\infty } \Biggl\{ \frac{1}{n+1}\sum_{m=0}^{n}(m+1) (x)_{m, \lambda }S_{1,\lambda }(n+1,m+1) \Biggr\} \frac{t^{n}}{n!}. \end{aligned}$$
(2.8)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.4

For\(n \ge 0\), we have

$$ D_{n,\lambda }(x) = \frac{1}{n+1}\sum _{m=0}^{n}(m+1) (x)_{m, \lambda }S_{1,\lambda }(n+1,m+1). $$

For \(s \in \mathbb{C}\), the polyexponential function is defined by Hardy as

$$ \begin{aligned} e(x,a|s) = \sum _{n=0}^{\infty } \frac{x^{n}}{(n+a)^{s}n!}, \bigl( \operatorname{Re}(a) > 0\bigr) \quad \bigl(\mbox{see [16]}\bigr). \end{aligned} $$
(2.9)

In [7], the modified polyexponential function is introduced as

$$ \begin{aligned} \mathrm{Ei}_{k}(x) = \sum _{n=1}^{\infty } \frac{x^{n}}{(n-1)!n^{k}}\quad (k \in \mathbb{Z}). \end{aligned} $$
(2.10)

Note that x\(e(x,1|k) = \mathrm{Ei}_{k}(x)\).

We observe that

$$ \begin{aligned} \frac{\partial }{\partial x_{1}}(1+t)^{\lambda x_{1}x_{2} \cdots x_{k}} = x_{2}\cdots x_{k}\lambda \log (1+t) (1+t)^{\lambda x_{1}x_{2} \cdots x_{k}}. \end{aligned} $$
(2.11)

Thus, by (2.11), we get

$$ \begin{aligned}[b] &\frac{\log (1+t)}{t} \int _{0}^{1}(1+t)^{\lambda x_{1}x_{2} \cdots x_{k}}\,dx_{1}\\ &\quad = \frac{1}{x_{2}x_{3}\cdots x_{k}} \frac{\log _{\lambda }(1+t)^{x_{2}\cdots x_{k}}}{t} \\ & \quad = \frac{1}{t}\frac{1}{x_{2}x_{3}\cdots x_{k}}\sum _{m=1}^{ \infty }\lambda ^{m-1} \frac{(\log (1+t))^{m}}{m!}x_{2}^{m}x_{3}^{m} \cdots x_{k}^{m} \\ & \quad = \frac{1}{t}\sum_{m=1}^{\infty } \frac{\lambda ^{m-1}(\log (1+t))^{m}}{(m-1)!m} x_{2}^{m-1}x_{3}^{m-1} \cdots x_{k}^{m-1}. \end{aligned} $$
(2.12)

From (2.12), we can derive the following equation:

$$ \begin{aligned}[b] & \frac{\log (1+t)}{t} \int _{0}^{1}\cdots \int _{0}^{1}(1+t)^{ \lambda x_{1}x_{2}\cdots x_{k}}\,dx_{1}\,dx_{2} \cdots \,dx_{k} \\ & \quad = \frac{1}{t}\sum_{m=1}^{\infty } \frac{\lambda ^{m-1}(\log (1+t))^{m}}{(m-1)!m^{k}} = \frac{1}{\lambda t}\mathrm{Ei}_{k}\bigl( \lambda \log (1+t)\bigr). \end{aligned} $$
(2.13)

Now, we define the multiple degenerate Daehee numbers as the multiple integral on the unitcube given by

$$ \frac{\log (1+t)}{t} \int _{0}^{1}\cdots \int _{0}^{1}(1+t)^{ \lambda x_{1}x_{2}\cdots x_{k}}\,dx_{1}\,dx_{2} \cdots dx_{k} = \sum_{n=0}^{\infty } \widehat{D}_{n,\lambda }^{(k)} \frac{t^{n}}{n!}. $$
(2.14)

Then, by (2.13) and (2.14), we get

$$ \frac{1}{\lambda t} \mathrm{Ei}_{k}\bigl(\lambda \log (1+t)\bigr) = \sum _{n=0}^{ \infty }\widehat{D}_{n,\lambda }^{(k)} \frac{t^{n}}{n!}. $$
(2.15)

Note that \(\widehat{D}_{n,\lambda }^{(1)} = D_{n,\lambda }\)\(( n \ge 0)\).

We observe that

$$ \begin{aligned}[b] \frac{1}{\lambda t} \mathrm{Ei}_{k}\bigl(\lambda \log (1+t)\bigr) &= \frac{1}{\lambda t} \sum_{m=1}^{\infty } \frac{\lambda ^{m}(\log (1+t))^{m}}{(m-1)!m^{k}} \\ & = \frac{1}{\lambda t} \sum_{m=1}^{\infty } \frac{\lambda ^{m}}{m^{k-1}}\frac{1}{m!}\bigl(\log (1+t)\bigr)^{m}\\ &= \frac{1}{\lambda t}\sum_{m=1}^{\infty } \frac{\lambda ^{m}}{m^{k-1}} \sum_{n=m}^{\infty }S_{1}(n,m) \frac{t^{n}}{n!} \\ & = \frac{1}{t}\sum_{n=1}^{\infty } \sum_{m=1}^{n} \frac{\lambda ^{m-1}}{m^{k-1}} S_{1}(n,m)\frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl( \frac{1}{n+1}\sum_{m=1}^{n+1} \frac{\lambda ^{m-1}}{m^{k-1}}S_{1}(n+1,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.16)

Therefore, by (2.15) and (2.16), we obtain the following theorem.

Theorem 2.5

For\(n \ge 0\), we have

$$ \begin{aligned} \widehat{D}_{n,\lambda }^{(k)} = \frac{1}{n+1}\sum_{m=1}^{n+1} \frac{\lambda ^{m-1}}{m^{k-1}}S_{1}(n+1,m). \end{aligned} $$

By replacing t by \(e^{t}-1\) in (2.15), we get

$$ \begin{aligned}[b] \sum_{m=0}^{\infty } \widehat{D}_{m,\lambda }^{(k)} \frac{1}{m!} \bigl(e^{t}-1\bigr)^{m} & = \frac{1}{\lambda (e^{t}-1)} \mathrm{Ei}_{k}( \lambda t) \\ & = \frac{t}{e^{t}-1}\frac{1}{\lambda t}\mathrm{Ei}_{k}( \lambda t) = \sum_{l=0}^{\infty }B_{l} \frac{t^{l}}{l!}\sum_{m=0}^{\infty } \frac{\lambda ^{m}}{(m+1)^{k}}\frac{t^{m}}{m!}. \\ & = \sum_{n=0}^{\infty } \Biggl(\sum _{l=0}^{n}\binom{n }{l} \frac{\lambda ^{n-l}B_{l}}{(n-l+1)^{k}} \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.17)

On the other hand,

$$ \begin{aligned}[b] \sum_{m=0}^{\infty } \widehat{D}_{m,\lambda }^{(k)} \frac{1}{m!} \bigl(e^{t}-1\bigr)^{m}& = \sum _{m=0}^{\infty }\widehat{D}_{m, \lambda }^{(k)} \sum_{n=m}^{\infty }S_{2}(n,m) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl(\sum _{m=0}^{n}\widehat{D}_{m, \lambda }^{(k)}S_{2}(n,m) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(2.18)

Therefore, by (2.17) and (2.18), we obtain the following theorem.

Theorem 2.6

For\(n \ge 0\), we have

$$ \sum_{m=0}^{n} \widehat{D}_{m,\lambda }^{(k)}S_{2}(n,m) = \sum _{l=0}^{n}\binom{n }{l} \frac{\lambda ^{n-l}B_{l}}{(n-l+1)^{k}}. $$

From (2.17), we note that

$$ \begin{aligned}[b] \frac{1}{\lambda t} \mathrm{Ei}_{k}(\lambda t) & = \frac{1}{t} \bigl(e^{t}-1\bigr) \sum_{m=0}^{\infty } \widehat{D}_{m,\lambda }^{(k)}\frac{1}{m!} \bigl(e^{t}-1\bigr)^{m} \\ & = \frac{1}{t}\sum_{m=1}^{\infty }m \widehat{D}_{m-1,\lambda }^{(k)} \frac{1}{m!} \bigl(e^{t}-1\bigr)^{m} \\ & = \frac{1}{t}\sum_{m=1}^{\infty }m \widehat{D}_{m-1,\lambda }^{(k)} \sum_{n=m}^{\infty }S_{2}(n,m) \frac{t^{n}}{n!} \\ & = \frac{1}{t}\sum_{n=1}^{\infty } \sum_{m=1}^{n}m\widehat{D}_{m-1, \lambda }^{(k)}S_{2}(n,m) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl( \frac{1}{n+1}\sum_{m=1}^{n+1}m \widehat{D}_{m-1,\lambda }^{(k)}S_{2}(n+1,m) \Biggr) \frac{t^{n}}{n!}. \end{aligned} $$
(2.19)

On the other hand,

$$ \begin{aligned} \frac{1}{\lambda t} \mathrm{Ei}_{k}(\lambda t) = \frac{1}{\lambda t}\sum _{n=1}^{\infty } \frac{\lambda ^{n}t^{n}}{(n-1)!n^{k}} = \sum _{n=0}^{\infty } \frac{\lambda ^{n}}{(n+1)^{k}} \frac{t^{n}}{n!}. \end{aligned} $$
(2.20)

Therefore, by (2.19) and (2.20), we obtain the following theorem.

Theorem 2.7

For\(n \ge 0\), we have

$$ \begin{aligned} \frac{\lambda ^{n}}{(n+1)^{k}} &= \frac{1}{n+1}\sum _{m=1}^{n}m \widehat{D}_{m-1,\lambda }^{(k)}S_{2}(n+1,m) \\ & = \frac{1}{n+1}\sum_{m=0}^{n-1}(m+1) \widehat{D}_{m,\lambda }^{(k)}S_{2}(n+1,m+1). \end{aligned} $$

3 Higher-order degenerate Daehee numbers and polynomials

As an additive version of (2.14), we consider the degenerate Daehee polynomials of order r given by the following multiple integral on the unit cube:

$$ \begin{aligned}[b] \sum_{n=0}^{\infty }D_{n,\lambda }^{(r)}(x) \frac{t^{n}}{n!} & = \biggl(\frac{\log (1+t)}{t} \biggr)^{r} \int _{0}^{1} \cdots \int _{0}^{1}(1+t)^{\lambda (x_{1}+\cdots +x_{r})+x}\,dx_{1} \cdots dx_{r} \\ & = \biggl(\frac{\log _{\lambda }(1+t)}{t} \biggr)^{r}(1+t)^{x}\quad (r \in \mathbb{N}). \end{aligned} $$
(3.1)

When \(x=0\), \(D_{n,\lambda }^{(r)} = D_{n,\lambda }^{(r)}(0)\)\((n \ge 0)\), are called the degenerate Daehee numbers of order r.

From (3.1), we note that

$$ \begin{aligned}[b] \sum_{n=0}^{\infty }D_{n,\lambda }^{(r)} \frac{t^{n}}{n!} & = \biggl(\frac{\log _{\lambda }(1+t)}{t} \biggr)^{r} = \frac{r!}{t^{r}}\frac{1}{r!}\bigl(\log _{\lambda }(1+t) \bigr)^{r} \\ & = \frac{r!}{t^{r}}\sum_{n=r}^{\infty }S_{1,\lambda }(n,r) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty }S_{1,\lambda }(n+r,r) \frac{r!n!}{(n+r)!} \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \frac{S_{1,\lambda }(n+r,r)}{\binom{n+r }{n}}\frac{t^{n}}{n!}. \end{aligned} $$
(3.2)

Therefore, by comparing the coefficients on both sides of (3.2), we obtain the following theorem.

Theorem 3.1

For\(n \ge 0\), we have

$$ \begin{aligned} D_{n,\lambda }^{(r)} = \frac{1}{{n+r \choose n}}S_{1, \lambda }(n+r,r)\quad (r \in \mathbb{N}). \end{aligned} $$

By replacing t by \(e_{\lambda }(t)-1\) in (3.1), we get

$$ \begin{aligned}[b] \sum_{k=0}^{\infty }D_{k,\lambda }^{(r)}(x) \frac{1}{k!}\bigl(e_{ \lambda }(t)-1\bigr)^{k} & = \biggl(\frac{t}{e_{\lambda }(t)-1} \biggr)^{r}e_{ \lambda }^{x}(t) \\ & = \sum_{n=0}^{\infty }\beta _{n,\lambda }^{(r)}(x)\frac{t^{n}}{n!}. \end{aligned} $$
(3.3)

On the other hand,

$$ \begin{aligned}[b] &\sum_{k=0}^{\infty }D_{k,\lambda }^{(r)}(x) \frac{1}{k!}\bigl(e_{\lambda }(t)-1\bigr)^{k} \\ &\quad = \sum_{k=0}^{\infty }D_{k,\lambda }^{(r)}(x) \sum_{n=k}^{ \infty }S_{2,\lambda }(n,k) \frac{t^{n}}{n!} \\ & \quad = \sum_{n=0}^{\infty } \Biggl(\sum _{k=0}^{\infty }D_{k, \lambda }^{(r)}(x)S_{2,\lambda }(n,k) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(3.4)

Therefore, by (3.3) and (3.4), we obtain the following theorem.

Theorem 3.2

For\(n \ge 0\), we have

$$ \beta _{n,\lambda }^{(r)}(x) = \sum _{k=0}^{n}D_{k, \lambda }^{(r)}(x)S_{2,\lambda }(n,k). $$

By replacing t by \(\log _{\lambda }(1+t)\) in (1.9), we get

$$ \begin{aligned}[b] \biggl(\frac{\log _{\lambda }(1+t)}{t} \biggr)^{r}(1+t)^{x} & = \sum _{k=0}^{\infty }\beta _{k,\lambda }^{(r)}(x) \frac{1}{k!}\bigl( \log _{\lambda }(1+t)\bigr)^{k} \\ & = \sum_{k=0}^{\infty }\beta _{k,\lambda }^{(r)}(x)\sum_{n=k}^{ \infty }S_{1,\lambda }(n,k) \frac{t^{n}}{n!} \\ & = \sum_{n=0}^{\infty } \Biggl(\sum _{k=0}^{n}\beta _{k,\lambda }^{(r)}(x)S_{1, \lambda }(n,k) \Biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(3.5)

On the other hand,

$$ \biggl(\frac{\log _{\lambda }(1+t)}{t} \biggr)^{r}(1+t)^{x} = \sum _{n=0}^{\infty }D_{n,\lambda }^{(r)}(x) \frac{t^{n}}{n!}. $$
(3.6)

Therefore, by (3.5) and (3.6), we obtain the following theorem.

Theorem 3.3

For\(n \ge 0\), we have

$$ D_{n,\lambda }^{(r)}(x) = \sum _{k=0}^{n}\beta _{k, \lambda }^{(r)}(x)S_{1,\lambda }(n,k). $$

From (3.1), we note that

$$ \begin{aligned}[b] \sum_{n=0}^{\infty }D_{n,\lambda }^{(r)} \frac{t^{n}}{n!}& = \underbrace{ \biggl(\frac{\log _{\lambda }(1+t)}{t} \biggr)\times \cdots \times \frac{\log _{\lambda }(1+t)}{t}}_{r\text{- times}} \\ & = \sum_{n=0}^{\infty } \biggl(\sum _{l_{1}+\cdots +l_{r}= n}\binom{n }{l_{1},\ldots l_{r}}D_{l_{1},\lambda }\cdots D_{l_{r},\lambda } \biggr)\frac{t^{n}}{n!}. \end{aligned} $$
(3.7)

By (3.7), we get

$$ \begin{aligned} D_{n,\lambda }^{(r)} = \sum_{l_{1}+\cdots +l_{r}= n} \binom{n }{l_{1},\ldots l_{r}}D_{l_{1},\lambda } \cdots D_{l_{r},\lambda } \quad (n \ge 0). \end{aligned} $$
(3.8)

On the other hand, by (3.2), we get

$$\begin{aligned} \sum_{n=0}^{\infty }D_{n,\lambda }^{(r)} \frac{t^{n}}{n!} =& \biggl(\frac{\log (1+t)}{t} \biggr)^{r} \int _{0}^{1} \cdots \int _{0}^{1}(1+t)^{\lambda (x_{1}+\cdots +x_{r})}\,dx_{1} \cdots dx_{r} \\ = &\biggl(\frac{\log (1+t)}{t} \biggr)^{r}\sum _{m=0}^{\infty } \lambda ^{m} \frac{(\log (1+t))^{m}}{m!} \int _{0}^{1}\cdots \int _{0}^{1}(x_{1}+ \cdots +x_{r})^{m}\,dx_{1}\cdots dx_{r} \\ = & \frac{1}{t^{r}}\sum_{m=0}^{\infty } \lambda ^{m}\sum_{l_{1}+ \cdots +l_{r}= m} \binom{m }{l_{1},\ldots ,l_{r}} \frac{1}{(l_{1}+1)\cdots (l_{r}+1)}\frac{(\log (1+t))^{m+r}}{m!} \\ = & \frac{1}{t^{r}}\sum_{m=0}^{\infty } \lambda ^{m}\sum_{l_{1}+ \cdots +l_{r}= m} \binom{m }{l_{1},\ldots ,l_{r}} \frac{1}{(l_{1}+1)\cdots (l_{r}+1)}\frac{(m+r)!}{m!} \\ &{} \times \sum_{n=m+r}^{\infty }S_{1}(n,m+r) \frac{t^{n}}{n!} \\ = & \sum_{m=0}^{\infty }\lambda ^{m}\sum_{l_{1}+\cdots +l_{r}= m}\binom{m }{l_{1},\ldots ,l_{r}} \frac{1}{(l_{1}+1)\cdots (l_{r}+1)} \frac{(m+r)!}{m!} \\ &{} \times \sum_{n=m}^{\infty }S_{1}(n+r,m+r) \frac{t^{n}}{(n+r)!} \\ = & \sum_{n=0}^{\infty } \Biggl(\sum _{m=0}^{n}\lambda ^{m} \sum _{l_{1}+\cdots + l_{r}= m} \frac{{n \choose l_{1},\ldots ,l_{r}}}{(l_{1}+1)\cdots (1_{r}+1)} S_{1}(n+r,m+r) \frac{{m+r\choose r}}{{n+r \choose r}} \Biggr)\frac{t^{n}}{n!}. \end{aligned}$$
(3.9)

Therefore, by comparing the coefficients on both sides of (3.9), we obtain the following theorem.

Theorem 3.4

For\(n \ge 0\), we have

$$ \begin{aligned}D_{n,\lambda }^{(r)} &= \sum _{l_{1}+\cdots +l_{r}= m}\binom{n }{l_{1},\ldots ,l_{r}}D_{l_{1},\lambda }\cdots D_{l_{r}, \lambda } \\ & = \sum_{m=0}^{n}\lambda ^{m}\sum_{l_{1}+\cdots +l_{r}= m}\binom{m }{l_{1},\ldots , l_{r}} \frac{S_{1}(n+r,m+r)}{(l_{1}+1)\cdots (1_{r}+1)} \frac{{m+r\choose r}}{{n+r \choose r}}. \end{aligned} $$

4 Conclusion

In the spirit of [1], we studied the degenerate Daehee polynomials and numbers which were actually called the degenerate Daehee polynomials and numbers of the third kind and recently introduced by Jang et al. in [4]. We derived their explicit expressions and some identities involving them. Further, we introduced the multiple degenerate Daehee numbers and higher-order degenerate Daehee polynomials and numbers and deduced their explicit expressions and some identities related to them.

The possible applications of our results are as follows. The first one is their applications to identities of symmetry. For example, in [13] many symmetric identities in three variables, related to degenerate Euler polynomials and alternating generalized falling factorial sums, were obtained. The second one is their applications to differential equations from which we can derive some useful identities. For example, in [12] an infinite family of nonlinear differential equations, having the generating function of the degenerate Bernoulli numbers as a solution, were derived. As a result, an identity, involving the degenerate Bernoulli and higher-order degenerate Bernoulli numbers, were obtained. Similar things had been done for the degenerate Euler numbers. The third one is their applications to probability theory. Indeed, in [19] it was shown that both the degenerate λ-Stirling polynomials of the second and the r-truncated degenerate λ-Stirling polynomials of the second kind appear in certain expressions of the probability distributions of appropriate random variables.

Finally, it is one of our future projects to continue to study various degenerate versions of some special polynomials and their applications to mathematics, science and engineering.

We studied the degenerate Daehee polynomials and numbers which are different from the degenerate Daehee polynomials and numbers of the third kind introduced by Jang et al. [4].

References

  1. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Dolgy, D.V., Jang, G.-W., Kim, D.S., Kim, T.: Explicit expressions for Catalan–Daehee numbers. Proc. Jangjeon Math. Soc. 20(1), 1–9 (2017)

    MathSciNet  MATH  Google Scholar 

  3. EI-Desouky, B.S., Mustafa, A.: New results on higher-order Daehee and Bernoulli numbers and polynomilas. Adv. Differ. Equ. 2016, 206 (2016)

    Article  Google Scholar 

  4. Jang, L.-C., Kim, W., Kwon, H.-I., Kim, T.: On degenerate Daehee polynomials and numbers of the third kind. J. Comput. Appl. Math. 364, Article ID 112343 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jang, L.-C., Kim, D. S., Kim, T., Lee, H.: p-Adic integral on \(\Bbb {Z}_{p}\) associated with degenerate Bernoulli polynomials of the second kind. Adv. Differ. Equ. 2020, Article ID 278 (2020)

    Article  Google Scholar 

  6. Kim, D., Kim, T.: Idntities arising from higher-order Daehee polynomial bases. Open Math. 13(1), 196–208 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Kim, D.S., Kim, T.: A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 26(1), 40–49 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, D.S., Kim, T.: A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 27(2), 227–235 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, D.S., Kim, T., Kwon, J., Lee, H.: A note on λ-Bernoulli numbers of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 30(2), 187–195 (2020)

    Google Scholar 

  10. Kim, D.S., Kim, T., Ryoo, C.S.: Generalized type 2 degenerate Euler numbers. Adv. Stud. Contemp. Math. (Kyungshang) 30(2), 165–169 (2020)

    Google Scholar 

  11. Kim, T., Jang, L.-C., Kim, D.S., Kim, H.Y.: Some identities on type 2 degenerate Bernoulli polynomials of the second kind. Symmetry 12(4), Article ID 510 (2020)

    Article  Google Scholar 

  12. Kim, T., Kim, D.S.: Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations. J. Nonlinear Sci. Appl. 9, 2086–2098 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, T., Kim, D.S.: Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran. J. Sci. Technol. Trans. A, Sci. 41(4), 939–949 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, T., Kim, D.S.: A note on type 2 Changhee and Daehee polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2783–2791 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Kim, T., Kim, D.S.: Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(2), 1159–1171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, T., Kim, D.S.: Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 487(2), 124017 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, T., Kim, D.S.: Degenerate binomial coefficients and degenerate hypergeometric functions. Adv. Differ. Equ. 2020, Article ID 115 (2020)

    Article  MathSciNet  Google Scholar 

  18. Kim, T., Kim, D.S.: A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 27(1), 76–81 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, T., Kim, D.S., Kim, H.Y., Kwon, J.: Degenerate Stirling polynomials of the second kind and some applications. Symmetry 11(8), 1046 (2019)

    Article  Google Scholar 

  20. Kim, T., Kim, D.S., Kwon, J., Lee, H.: Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 168 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kwon, J., Kim, T., Kim, D.S., Kim, H.Y.: Some identities for degenerate complete and incomplete r-Bell polynomials. J. Inequal. Appl. 2020, Article ID 23 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kwon, J., Kim, W.J., Rim, S.-H.: On the some identities of the type 2 Daehee and Changhee polynomials arising from p-adic integrals on \(Z_{p}\). Proc. Jangjeon Math. Soc. 22(3), 487–497 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Liu, C., Wuyungaowa, B.: Application of probabilistic method on Daehee sequences. Eur. J. Pure Appl. Math. 11(1), 69–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, G.-D., Srivastava, H.M.: Explicit formulas for the Nörlund polynomials \(B_{n}^{(x)}\) and \(b_{n}^{(x)}\). Comput. Math. Appl. 51, 1377–1384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo, Y.-N., Wuyungaowa, B.: Some combinatorial identities about Daehee sequences. J. Comb. Math. Comb. Comput. 108, 75–87 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Moon, E.-J., Park, J.-W., Rim, S.-H.: A note on the generalized q-Daehee numbers of higher order. Proc. Jangjeon Math. Soc. 17(4), 557–565 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Park, J.-W.: On the q-analogue of Daehee numbers and polynomials. Proc. Jangjeon Math. Soc. 19(3), 537–544 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Park, J.-W., Rim, S.-H., Kwon, J.: The twisted Daehee numbers and polynomials. Adv. Differ. Equ. 2014, 1 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pyo, S.-S., Kim, T., Rim, S.-S.: Degenerate Daehee numbers of the third kind. Mathematics 6(11), 239 (2018)

    Article  MATH  Google Scholar 

  30. Roman, S.: The Umbral Calculus. Pure and Applied Mathematics, vol. 111. Acsdemic Press, New York (1984)

    MATH  Google Scholar 

  31. Saif, M., Nadeem, R.: Evaluation of Apostol–Euler based poly Daehee polynomials. Int. J. Appl. Comput. Math. 6, Article ID 1 (2020)

    Article  MathSciNet  Google Scholar 

  32. Seo, J.J., Rim, S.H., Kim, T., Lee, S.H.: Sums products of generalized Daehee numbers. Proc. Jangjeon Math. Soc. 17(1), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Simsek, Y.: Apostol type Daehee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 26, 555–566 (2016)

    MATH  Google Scholar 

  34. Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 27, 199–212 (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their valuable comments and suggestions. Also, we would like to thank Jangjeon Institute for Mathematical Science for the support of this research.

Availability of data and materials

Not applicable.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2017R1E1A1A03070882).

Author information

Authors and Affiliations

Authors

Contributions

TK and DSK conceived of the framework and structured the whole paper; DSK and TK wrote the paper; JK and HYK checked the results of the paper; DSK and TK completed the revision of the article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jongkyum Kwon.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S., Kim, H.Y. et al. Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv Differ Equ 2020, 311 (2020). https://doi.org/10.1186/s13662-020-02778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-02778-8

MSC

Keywords