- Research
- Open Access
- Published:
Hermite–Jensen–Mercer type inequalities for conformable integrals and related results
Advances in Difference Equations volume 2020, Article number: 501 (2020)
Abstract
In this paper, certain Hermite–Jensen–Mercer type inequalities are proved via conformable integrals of arbitrary order. We establish some different and new fractional Hermite–Hadamard–Mercer type inequalities for a differentiable function f whose derivatives in the absolute values are convex.
1 Introduction
The concept of convex function differs from other function classes with its features such as high application areas in mathematics, statistics, and many other applied sciences. This is due to its special useful definition having geometric interpretation. Moreover, it is one of the indispensable parts of inequality theory and has become the main motivation point of many inequalities.
Although the concept of convex function has a useful place in many fields of mathematical analysis and statistics, it has revealed its main importance and effectiveness in the field of inequality theory with convex analysis. Many classical and analytical inequalities, especially Hadamard’s inequality, Jensen’s inequality, and Steffensen’s inequality, have been achieved with the help of this concept. Detailed information and effectiveness of this function class can be found in [1–6].
Let \(0<\mu_{1}\leq\mu_{2}\leq\cdots\leq\mu_{n}\), and let \(\xi = (\xi_{1},\xi_{2},\ldots,\xi_{n} )\) be nonnegative weights such that \(\sum_{i=1}^{n} \xi_{i}=1\). The famous Jensen inequality (see [7]) in the literature states that if ϒ is a convex function on the interval \([ a,b ]\), then
for all \(\mu_{i}\in[ \theta,\vartheta]\) and all \(\xi_{i}\in [ 0,1 ]\) (\(i=1,2,\ldots,n \)).
In 2003, Mercer gave a variant of Jensen’s inequality (see [8]) as follows.
Theorem 1.1
If ϒ is a convex function on \([ \theta,\vartheta ]\), then
\(\forall \mu_{i}\in [ \theta,\vartheta ]\)and all \(\xi _{i}\in [ 0,1 ] \) (\(i=1,2,\ldots,n \)).
Based on this useful inequality, several papers have been performed. One of them can be stated in Matkovic et al. This study includes some new findings on Jensen’s inequality of Mercer type for operators with applications [9]. Then, in 2009, Mercer’s result was expanded to higher dimensions by Niezgoda’s paper in [10]. Recently, notable contributions have been made on Jensen’s Mercer type inequality. In 2014, Kian gave a concept of Jensen’s inequality for superquadratic functions [11]. Therefore, Anjidani proved some motivating results on reverse Jensen–Mercer type operator inequalities and Jensen–Mercer operator inequalities for superquadratic functions (see [12, 13]). Ali and Khan generalized integral Mercer’s inequality and integral means in [14].
Another important inequality that characterizes convex functions is Hermite–Hadamard inequality, that is, if a mapping \(\Upsilon :J\subseteq{\Re} \to{\Re}\) is a convex function on J and \(\theta ,\vartheta\in J\), \(\theta<\vartheta\), then
(see [15–18] for the fractional setting). Fractional calculus, one of the areas where inequality theory has benefited most in recent years, is an area that continues its development with a high acceleration by defining new fractional derivative and integral operators. Operators’ applications in various fields, such as economics, applied mathematics, engineering, and mathematical biology, add strength to fractional analysis (see [19–26]).
Now, we recall the definition of conformable integral of arbitrary order including the higher order case, on which our proven inequalities will be based.
Definition 1.1
([27])
Let \(\alpha\in(n,n+1]\) and set \(\beta=\alpha-n\), then the left conformable operator starting at θ if order α is defined by
and right conformable fractional integral is defined by
if \(\alpha= n+1\), then \(\beta= \alpha-n = n+1-n = 1\), where \(n = 0,1,2,3,dots\), and hence \((I^{\theta}_{\alpha}\phi)(\kappa )=(J^{\theta}_{n+1}\phi)(\kappa)\).
Remark 1.1
Notice that the conformable derivatives of order \(\theta >1\) have memory effect with kernel whose power law is integer.
In this article, by using the Jensen–Mercer inequality, we prove Hermite–Hadamard type inequalities for fractional integrals, and we establish some new conformable integrals connected with the left and right sides of Hermite–Hadamard type inequalities for differentiable mappings whose derivatives in absolute value are convex. Moreover, there will be further equalities for differentiable functions using Hölder inequality and power mean inequality.
2 Hermite–Hadamard–Mercer type inequalities for conformable integrals
By using Jensen–Mercer inequality, Hermite–Hadamard type inequalities can be expressed via conformable integrals as follows.
Theorem 2.1
Let ϕ be a convex function. Then the following conformable integral inequalities hold:
and
\(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha >0\), and \(\Gamma ( \cdot )\)is the gamma function.
Proof
Using the convexity of ϕ, we can write
for all \(\tau,v\omega\in [ \theta,\vartheta ]\). By changing the variables \(\tau=\kappa\mu+(1-\kappa)\nu\) and \(\omega=(1-\kappa)\mu+\kappa\nu\), \(\kappa\in [ 0,1 ]\), we have
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa)^{\alpha -n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\). Let \(x= ( \theta+\vartheta- ( \kappa \mu+(1-\kappa)\nu ) )\), also let \(w= ( \theta +\vartheta- ( (1-\kappa)\mu+\kappa\nu ) )\), we get
where \(\int_{0}^{1}\kappa^{n}(1-\kappa)^{\alpha-n -1}\,d\kappa=B (n+1,\alpha-n )=\frac{\Gamma(n+1)\Gamma (\alpha-n)}{\Gamma(\alpha+1)}\), and so the first inequality of (2.1) is proved.
Now, to prove the second inequality of (2.1), we first remind that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ] \) it gives
and
By adding the inequalities of (2.3) and (2.4), we have
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have
Multiplying \(\frac{1}{2}\) to (2.5), we have
After further simplification we get the required result. Now, in order to prove (2.2), we employ Jensen–Mercer’s inequality as follows:
\(\forall \tau,\omega\in [ \theta,\vartheta ]\).
Now, by change of variables \(\tau=\kappa\mu+(1-\kappa)\nu\) and \(\omega=\kappa\nu+(1-\kappa)\mu\), \(\forall \mu,\nu\in [a,b ]\) and \(\kappa\in [ 0,1 ] \) in (2.6), we have
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have
and so the first inequality of (2.2) is proved.
Now, for the proof of the second inequality of (2.2), we first note that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ]\)
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have
Multiplying by \((-1)\), then adding \(\phi(\theta)+\phi(\vartheta)\) on both sides of the inequality, we get the desired result. □
Remark 2.1
For \(\alpha=n+1\) in Theorem 2.1, we get Theorem 3 proved in [28] in the integer case order.
Theorem 2.2
Let \(0\leq\theta<\vartheta\), \(\phi:[\theta,\vartheta]\rightarrow \Re\)be a positive function and \(\phi\in L_{1} [\theta,\vartheta ]\). Also, suppose that ϕ is a convex function on \([\theta ,\vartheta]\), \(\phi{'}\)on \((\theta,\vartheta)\)and \(\alpha\in (0,1)\). Then the following conformable integral inequalities hold:
\(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), and \(\Gamma ( \cdot )\)is the gamma function.
Proof
To prove the first part of the inequality, by using the Jensen–Mercer’s inequality and by changing the variables \(\tau=\frac {\kappa}{2}\mu+\frac{2-\kappa}{2}\nu\) and \(\omega=\frac{2-\kappa }{2}\mu+\frac{\kappa}{2}\nu\), \(\kappa\in [ 0,1 ]\), we can write the following inequality for \(\forall\tau,\omega\in [ \theta,\vartheta ]\):
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa)^{\alpha -n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ] \), let \(w= ( \theta+\vartheta- ( \frac {\kappa}{2}\mu+\frac{2-\kappa}{2}\nu ) )\) and \(x= ( \theta +\vartheta- ( \frac{2-\kappa}{2}\mu+\frac{\kappa}{2}\nu ) )\), we have
and so the first inequality of (2.7) is proved.
Now, for the proof of the second inequality of the theorem, we first note that if ϕ is a convex function, then for \(\kappa\in [ 0,1 ] \) it gives
and
By adding the inequalities of (2.8) and (2.9), we have
Multiplying both sides by \(\frac{1}{n!}\kappa^{n}(1-\kappa )^{\alpha-n-1}\) and then integrating the resulting inequality over \(\kappa\in [ 0,1 ]\), we have
Multiplying the above inequality by \(\frac{1}{2}\), we obtain
After further simplifications, we get the required inequality. □
Lemma 2.1
Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a differentiable mapping on \((\theta,\vartheta)\)with \(\theta<\vartheta\). If \(\phi {'}\in L[\theta,\vartheta]\), then the following equation holds:
\(\forall\mu,\nu\in [ \theta,\vartheta ] \), \(\alpha>0 \), \(\kappa\in [ 0,1 ]\), and \(\beta ( \cdot )\)is the beta function.
Proof
It suffices to note that
where
and
By combining (2.12) and (2.13) with (2.11), we get (2.10). □
Remark 2.2
If we set \(\mu=a\) and \(\nu=b\) in Lemma 2.1, we will get Lemma 3.1 in [29].
Theorem 2.3
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:
where \(\forall\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha >0\), \(\kappa\in [ 0,1 ]\), and \(B ( \cdot,\cdot )\) is the Euler beta function.
Proof
By using Lemma 2.1 and Jensen–Mercer’s inequality, we have
where
On the other hand, using the property of incomplete beta function, we have
where \(0 \leq\kappa\leq\frac{1}{2}\);
where \(\frac{1}{2} \leq\kappa\leq1\);
which completes the proof. □
Remark 2.3
If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.3, we get Theorem 3.1 for the case of \(s=1\) in [29].
Theorem 2.4
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:
for all \(\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), \(\kappa\in [ 0,1 ]\), and \(B ( \cdot,\cdot )\) is the Euler beta function and \(\Psi=2\int _{0}^{\frac{1}{2}} (\int_{0}^{1-\kappa} \mu^{n}(1-\mu )^{\alpha-n-1} )^{p}\).
Proof
By using Lemma 2.1 and Jensen–Mercer’s inequality, we have
After simplifications, we get the required result. □
Remark 2.4
If we select \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.4, we get Theorem 3.2 for the case of \(s=1\) in [29].
Lemma 2.2
Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a differentiable mapping on \((\theta,\vartheta)\)with \(\theta<\vartheta\). If \(\phi {'}\in L[\theta,\vartheta]\), then the following equality for conformable integrals holds:
with \(\alpha\in( n,n+1 ]\), \(n=0,1,2,3\dots\), where \(B_{\kappa} (a,b )\)is an incomplete beta function and Γ is the Euler gamma function.
Proof
Integrating by parts and changing the variables with \(u=\theta +\vartheta- (\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu )\), we get the following results via conformable integrals:
Similarly,
Adding equations (2.17), (2.18) and multiplying with \(\frac{\nu-\mu}{4}\), the proof is completed. □
Remark 2.5
If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Lemma 2.2, we get Lemma 2.1 in [30].
Theorem 2.5
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
where
with \(q\geq1\).
Proof
Taking modulus in Lemma 2.2 and using the well-known power mean inequality with convexity of \(|\phi{'}|^{q}\) and Jensen–Mercer’s inequality, we have
Integrating by parts, we get the following equalities:
Thus, combining (2.21) to (2.23) in (2.20), the proof is completed. □
Remark 2.6
If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.5, we get Theorem 2.1 in [30].
Theorem 2.6
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
where
with \(\frac{1}{p}+\frac{1}{q}=1\), \(q >1\).
Proof
Taking modulus in Lemma 2.2 and using the well-known Hölder inequality with convexity of \(|\phi{'}|^{q}\) and Jensen–Mercer’s inequality, we have
After some basic calculations, we get the required result. □
Remark 2.7
If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.6, we get Theorem 2.2 in [30].
Lemma 2.3
Let \(\phi:[\theta,\vartheta]\rightarrow\Re\)be a twice differentiable mapping on \((\theta,\vartheta)\)with \(\theta <\vartheta\). If \(\phi{'}\in L[\theta,\vartheta]\), then the following equality for conformable integrals holds:
with \(\alpha\in( n,n+1 ]\), \(n=0,1,2,3,\dots\), where \(B_{t} (\theta ,\vartheta )\)is an incomplete beta function and Γ is the Euler gamma function.
Proof
Integrating by parts and changing the variables with \(u=\theta +\vartheta- (\frac{\kappa}{2}\mu+\frac{2-\kappa}{2}\nu )\), we get the following results via conformable integrals:
Similarly,
Adding equations (2.26), (2.27) and multiplying with \(\frac{(\nu-\mu)^{2}}{8}\), we get the desired result. □
Remark 2.8
If we select \(\mu=\theta\) and \(\nu=\vartheta\) in Lemma 2.3, we get Lemma 2.1 in [31].
Theorem 2.7
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a twice differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
where
Proof
Taking modulus in Lemma 2.3 and using the well-known power mean inequality with convexity of \(|\phi{''}|^{q}\) and Jensen–Mercer’s inequality, we have
By using Lemma 2.2 in [31], we get the following equalities:
Thus, by combining (2.30) to (2.32) in (2.29), the proof is completed. □
Remark 2.9
If we choose \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.7, we get Theorem 2.1 for the case of \(m=1\) in [31].
Theorem 2.8
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a twice differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
where
with \(\frac{1}{p}+\frac{1}{q}=1\), \(q >1\).
Proof
Taking modulus in Lemma 2.3 and using the well-known Hölder inequality with convexity of \(|\phi{''}|^{q}\) and Jensen–Mercer’s inequality, we have
After computing the above integrals, we get the required result. □
Remark 2.10
If we set \(\mu=\theta\) and \(\nu=\vartheta\) in Theorem 2.8, we get Theorem 2.2 for the case of \(m=1\) in [31].
3 New inequalities via improved Hölder’s inequality
Theorem 3.1
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\)and \(\phi\in L [ \theta,\vartheta ] \). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta ]\),then the following inequality for conformable integrals holds:
for all \(\mu,\nu\in [ \theta,\vartheta ]\), \(\alpha>0\), \(\kappa\in [ 0,1 ]\), and \(\beta ( \cdot )\)is the Euler beta function.
Proof
By using Lemma 2.1 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{'} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write
By making use of the computations, one can have the required result. □
Theorem 3.2
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{'}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
Proof
By using Lemma 2.2 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{'} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write
By making use of the computations, one can have the required result. □
Theorem 3.3
Suppose that \(\phi: [ \theta,\vartheta ] \rightarrow R\)is a differentiable mapping on \((\theta,\vartheta )\)with \(\theta<\vartheta\). If \(|\phi{''}|^{q}\)is a convex function on \([\theta,\vartheta]\), then the following inequality for conformable integrals holds:
Proof
By using Lemma 2.3 with Jensen–Mercer’s inequality, the convexity of \(\vert \phi{''} \vert ^{q} \) and applying the Hölder–İşcan integral inequality that is given in (Theorem 2.1, [32]), we can write
By making use of the simple computations for the above integrals, one can have the required result. □
4 Conclusion
Conformable integrals act as inverse operators for conformable derivatives, which are related to a class of local derivatives. Conformable integrals of order between 0 and 1 have been used to generate nonlocal fractional integrals with kernel depending on a function \(\psi(t)=\frac{(t-a)^{\rho}}{\rho}\) [33], so that certain sequential conformable integrals become special cases of them. However, higher order conformable integrals, for which we have proved Hermite–Jensen–Mercer type inequalities in this work, have a different structure and cannot be considered as special cases of the nonlocal fractional ones. This observation, besides the fact that the conformable integrals with order larger than 1 have kernels of integer power law, adds more interest to the proven results in this article. In fact, this inequality work, to the best of our knowledge, is one among few for such higher order extension.
References
Özcan, S., İşcan, İ.: Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019(1), Article ID 201 (2019)
Rashid, S., Akdemir, A.O., Jarad, F., Noor, M.A., Noor, K.I.: Simpson’s type integral inequalities for κ-fractional integrals and their applications. AIMS Math. 4(4), 1087–1100 (2019). https://doi.org/10.3934/math.2019.4.1087
Rashid, S., Abdeljawad, T., Jarad, F., Noor, M.A.: Some estimates for generalized Riemann–Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 7(9), Article ID 807 (2019). https://doi.org/10.3390/math7090807
Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard type inequalities for the class of convex functions on time scale. Mathematics 7, Article ID 956 (2019). https://doi.org/10.3390/math7100956
Rashid, S., Jarad, F., Noor, M.A., Kalsoom, H., Chu, Y.-M.: Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 7, Article ID 1225 (2020). https://doi.org/10.3390/math7121225
Rashid, S., Latif, M.A., Hammouch, Z., Chu, Y.-M.: Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 11, Article ID 1448 (2019). https://doi.org/10.3390/sym11121448
Pečarić, J.E., Mitrinovic, D.S., Fink, A.M.: Classical and New Inequalities in Analysis, pp. 1–2 (1993)
Mercer, A.M.: A varient of Jensen’s inequality. J. Inequal. Pure Appl. Math. 4(4), Article ID 73 (2003)
Matkovic, A., Pečarić, J., Perić, I.: A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 418, 551–564 (2006)
Niezgoda, M.: A generalization of Mercer’s result on convex functions. Nonlinear Anal. 71, 2771–2779 (2009)
Kian, M.: Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 456, 82–87 (2014)
Anjidani, E., Changalvaiy, M.R.: Reverse Jensen–Mercer type operator inequalities. Electron. J. Linear Algebra 31, 87–99 (2016)
Anjidani, E.: Jensen–Mercer operator inequalities involving superquadratic functions. Mediterr. J. Math. 18, 1660–5446 (2018)
Ali, M.M., Khan, A.R.: Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 10(1), 60–76 (2019)
Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5784
Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, Article ID 69 (2020)
Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12, Article ID 610 (2019). https://doi.org/10.3390/sym12040610
Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Sarikaya, M.Z., Alp, N.: On Hermite–Hadamard–Fejer type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 3(1), 273–284 (2019)
Gorenflo, R.: Fractional calculus: some numerical methods. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 277–290. Springer, Wien (1997)
Farid, G.: Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 3(1), 210–216 (2019)
Mohammed, P.O., Abdeljawad, T.: Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, Article ID 148 (2020). https://doi.org/10.1186/s13660-020-02419-4
Aliev, F.A., Aliev, N.A., Safarova, N.A.: Transformation of the Mittag-Leffler function to an exponential function and some of its applications to problems with a fractional derivative. Appl. Comput. Math. 18(3), 316–325 (2019)
Rahman, G., Nisar, K.S., Abdeljawad, T., Ullah, S.: Certain fractional proportional integral inequalities via convex functions. Mathematics 8, Article ID 222 (2020)
Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Ögunmez, H., Sarikaya, M.Z.: Hermite–Hadamard–Mercer type inequalities for fractional integrals (2019)
Set, E., Gözpinar, A.: A study on Hermite Hadamard type inequality for s-convex function via conformable integrals. Stud. Univ. Babeş–Bolyai, Math. 62, 309–323 (2016)
Set, E., Sarikaya, M.Z., Gözpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities. Preprint
Set, E., Gözpinar, A., Choi, J.: Hermite–Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals. Far East J. Math. Sci.: FJMS 101(4), 873–891 (2017)
İşcan, İ.: New refinements for integral and sum forms of Hoölder inequality. J. Inequal. Appl. 2019, Article ID 304 (2019)
Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017)
Acknowledgements
The research of the first author has been fully supported by H.E.C. Pakistan under NRPU project 7906.
Availability of data and materials
Data sharing is not applicable to this paper as no datasets were generated or analyzed during the current study.
Funding
There is no funding for this work.
Author information
Authors and Affiliations
Contributions
All authors jointly worked on the results and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Butt, S.I., Nadeem, M., Qaisar, S. et al. Hermite–Jensen–Mercer type inequalities for conformable integrals and related results. Adv Differ Equ 2020, 501 (2020). https://doi.org/10.1186/s13662-020-02968-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-02968-4
Keywords
- Convex functions
- Hermite–Hadamard inequalities
- Jensen–Mercer inequality
- Conformable integrals