In this section we prove the local existence of solutions by applying the ideas in [1, 24]. Using the function
$$ y(x,\eta , t) = u_{t} (x, t - \eta \tau )\quad \text{for } (x, \eta , t) \in \Omega \times [0,1] \times (0,\infty ) , $$
(3.1)
problem (1.1)–(1.4) is rewritten as
$$\begin{aligned}& u_{tt}(x,t) - \Delta u(x,t) + \alpha u_{t}(x,t ) + \beta y (x, 1, t) \\& \quad = u(x,t ) \ln \bigl\vert u(x,t ) \bigr\vert ^{\gamma } \quad \text{for } (x,t) \in \Omega \times (0, \infty ), \end{aligned}$$
(3.2)
$$\begin{aligned}& \tau y_{t} (x,\eta ,t ) + y_{\eta } (x,\eta ,t ) =0\quad \text{for } (x, \eta ,t ) \in \Omega \times (0,1) \times (0, \infty ), \end{aligned}$$
(3.3)
$$\begin{aligned}& u(x,t)= 0\quad \text{for } (x,t) \in \partial \Omega \times (0, \infty ), \end{aligned}$$
(3.4)
$$\begin{aligned}& u(x,0) = u_{0} (x),\qquad u_{t}(x,0)= u_{1}(x) \quad \text{for } x\in \Omega , \end{aligned}$$
(3.5)
$$\begin{aligned}& y(x,\eta , 0) = j_{0} (x, -\eta \tau ) : = y_{0} (x, \eta ) \quad \text{for } (x, \eta ) \in \Omega \times ( 0,1 ). \end{aligned}$$
(3.6)
Definition 3.1
Let \(T>0\). We say that \((u,y)\) is a local solution of problem (3.2)–(3.6) if it satisfies the following:
$$\begin{aligned}& u \in C \bigl([0,T]; H^{1}_{0} (\Omega ) \bigr) \cap C^{1} \bigl([0,T]; L^{2} ( \Omega ) \bigr) \cap C^{2} \bigl([0,T ); H^{-1}(\Omega )\bigr), \\& \bigl(u_{tt}(t), v \bigr) + \bigl( \nabla u(t), \nabla v \bigr) + \alpha \bigl( u_{t}(t), v \bigr) + \beta \bigl( y(1,t), v \bigr) \\& \quad = \bigl( u(t) \ln \bigl\vert u(t ) \bigr\vert ^{\gamma } , v \bigr) \quad \text{for any } v \in H^{1}_{0} (\Omega ), \\& \tau \int ^{1}_{0} \bigl( y_{t}(\eta , t), \varphi (\eta ) \bigr) \,d\eta + \int ^{1}_{0} \bigl( y_{\eta }(\eta , t), \varphi (\eta ) \bigr)\,d\eta =0 \quad \text{for any } \varphi \in L^{2} \bigl(\Omega \times (0,1) \bigr), \end{aligned}$$
and
$$ u(0)=u_{0} \quad \text{in } H^{1}_{0} (\Omega ) , \qquad u_{t}(0) = u_{1}\quad \text{in } L^{2}(\Omega ), \qquad y(0)= y_{0} \quad \text{in } L^{2} \bigl(\Omega \times (0,1) \bigr) . $$
Theorem 3.1
Assume that \((H_{1})\) and \((H_{2})\) hold. Then, for the initial data \(u_{0} \in H^{1}_{0} (\Omega )\), \(u_{1} \in L^{2}(\Omega )\), \(y_{0} \in L^{2}(\Omega \times (0,1)) \), there exists a local solution \((u,y)\) of problem (3.2)–(3.6).
Proof
Let \(\{ v_{i} \}_{i\in {\mathbb{N}}}\) be orthogonal basis of \(H^{1}_{0} (\Omega )\) which is orthonormal in \(L^{2}(\Omega )\). Defining \(\varphi _{i} (x, 0) =v_{i} (x)\), we can extend \(\varphi _{i} (x, 0)\) by \(\varphi _{i} (x, \eta )\) over \(L^{2}( \Omega \times (0,1)) \). We denote \(V_{n} = \operatorname{span} \{ v_{1}, v_{2}, \ldots , v_{n} \}\) and \(W_{n} = \operatorname{span} \{ \varphi _{1}, \varphi _{2}, \ldots , \varphi _{n} \}\) for \(n \geq 1\). We consider the Faedo–Galerkin approximation solution \((u^{n}, y^{n}) \in V_{n} \times W_{n}\) of the form
$$ u^{n} (x,t) = \sum^{n}_{i=1} h^{n}_{i}(t) v_{i}(x) \quad \text{and} \quad y^{n} (x,\eta , t) = \sum ^{n}_{i=1} g^{n}_{i}(t) \varphi _{i}(x, \eta ) ,\quad n= 1,2, \ldots , $$
solving the approximate system
$$\begin{aligned}& \bigl( u^{n}_{tt}(t), v \bigr) + \bigl( \nabla u^{n}(t), \nabla v \bigr) + \alpha \bigl( u^{n}_{t}(t),v \bigr) + \beta \bigl(y^{n}(1, t) , v \bigr) \\& \quad = \int _{\Omega } u^{n}(x,t) \ln \bigl\vert u^{n}(x,t ) \bigr\vert ^{\gamma } v(x) \,dx \quad \text{for } v \in V_{n}, \end{aligned}$$
(3.7)
$$\begin{aligned}& \tau \int ^{1}_{0} \bigl( y^{n}_{t}( \eta , t), \varphi (\eta ) \bigr) \,d\eta + \int ^{1}_{0} \bigl( y^{n}_{\eta }( \eta , t), \varphi (\eta ) \bigr)\,d\eta =0 \quad \text{for } \varphi \in W_{n} , \end{aligned}$$
(3.8)
$$\begin{aligned}& u^{n}(0) = u_{0}^{n} , \qquad u^{n}_{t}(0)= u^{n}_{1},\qquad y^{n}(0) = y^{n}_{0}, \end{aligned}$$
(3.9)
where
$$ u^{n}_{0} \to u_{0} \quad \text{in } H^{1}_{0} (\Omega ), \qquad u^{n}_{1} \to u_{1} \quad \text{in } L^{2} (\Omega ), \qquad y^{n}_{0} \to y_{0} \quad \text{in } L^{2} \bigl( \Omega \times (0,1) \bigr). $$
Since problem (3.7)–(3.9) is a normal system of ordinary differential equations, there exists a solution \((u^{n}, y^{n})\) on the interval \([0, t_{n})\), \(t_{n} \in (0,T] \). The extension of this solution to the whole interval \([0,T)\) is a consequence of the estimate below.
Replacing v by \(u^{n}_{t}(t) \) in (3.7) and using the relation
$$ \int _{\Omega } u^{n}(x,t) \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{\gamma } u^{n}_{t} (x,t) \,dx = \frac{d}{dt} \biggl\{ \frac{1}{2} \int _{\Omega } \bigl(u^{n}(x,t) \bigr)^{2} \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{\gamma } \,dx - \frac{\gamma }{4} \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \biggr\} , $$
we have
$$\begin{aligned}& \frac{d}{dt} \biggl\{ \frac{1}{2} \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} + \frac{1}{2} \bigl\Vert \nabla u^{n}(t) \bigr\Vert ^{2} + \frac{\gamma }{4} \bigl\Vert u^{n}(t) \bigr\Vert ^{2} - \frac{1}{2} \int _{\Omega } \bigl(u^{n}(x,t) \bigr)^{2} \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{ \gamma } \,dx \biggr\} \\& \quad = - \alpha \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} - \beta \bigl( y^{n}(1, t), u^{n}_{t}(t) \bigr). \end{aligned}$$
(3.10)
Replacing φ by \(\omega y^{n}(\eta ,t) \) in (3.8), one sees
$$ \frac{\omega \tau }{2} \frac{d}{dt} \int _{\Omega } \int ^{1}_{0} \bigl(y^{n}(x, \eta , t) \bigr)^{2} \,d\eta \,dx = - \frac{\omega }{2} \bigl\Vert y^{n}(1, t) \bigr\Vert ^{2} + \frac{\omega }{2} \bigl\Vert y^{n}(0, t) \bigr\Vert ^{2}. $$
(3.11)
Collecting (3.10) and (3.11), we get
$$ \frac{d}{dt} E^{n}(t) = - \alpha \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} - \beta \bigl(y^{n}(1,t), u^{n}_{t}(t) \bigr) - \frac{\omega }{2} \bigl\Vert y^{n}(1, t) \bigr\Vert ^{2} + \frac{\omega }{2} \bigl\Vert y^{n}(0, t) \bigr\Vert ^{2}, $$
where
$$\begin{aligned} E^{n}(t) = & \frac{1}{2} \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} + \frac{1}{2} \bigl\Vert \nabla u^{n}(t) \bigr\Vert ^{2} + \frac{\gamma }{4} \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \\ &{} - \frac{1}{2} \int _{\Omega } \bigl(u^{n}(x,t) \bigr)^{2} \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{ \gamma } \,dx + \frac{\omega \tau }{2} \bigl\Vert y^{n}(t) \bigr\Vert ^{2}_{L^{2}(\Omega \times (0,1))} , \end{aligned}$$
here
$$ \vert \beta \vert < \omega < 2 \alpha - \vert \beta \vert . $$
(3.12)
By Young’s inequality and the fact \(y^{n}(x,0,t)=u^{n}_{t}(x,t)\), we get
$$ \frac{d}{dt} E^{n}(t) \leq - \biggl( \alpha - \frac{ \vert \beta \vert }{2} - \frac{\omega }{2} \biggr) \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} - \biggl( \frac{\omega }{2} - \frac{ \vert \beta \vert }{2} \biggr) \bigl\Vert y^{n}(1, t) \bigr\Vert ^{2} \leq 0 $$
(3.13)
and
$$ E^{n}(t) + C_{1} \int ^{t}_{0} \bigl\Vert u^{n}_{t} (s) \bigr\Vert ^{2} \,ds + C_{2} \int ^{t}_{0} \bigl\Vert y^{n}(1,s) \bigr\Vert ^{2} \,ds \leq E^{n}(0), $$
(3.14)
where
$$ C_{1} = \alpha - \frac{ \vert \beta \vert }{2} - \frac{\omega }{2} >0 \quad \text{and} \quad C_{2} = \frac{\omega }{2} - \frac{ \vert \beta \vert }{2} >0. $$
(3.15)
From this and Lemma 2.1, we observe
$$\begin{aligned}& \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} + \biggl( 1 - \frac{\gamma k^{2} }{2\pi } \biggr) \bigl\Vert \nabla u^{n}(t) \bigr\Vert ^{2} + \frac{\gamma }{2} \bigl( 1+ N ( 1+ \ln k) \bigr) \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \\& \qquad {} + 2 C_{1} \int ^{t}_{0} \bigl\Vert u^{n}_{t} (s) \bigr\Vert ^{2} \,ds + 2 C_{2} \int ^{t}_{0} \bigl\Vert y^{n}(1,s) \bigr\Vert ^{2} \,ds + \omega \tau \bigl\Vert y^{n}(t) \bigr\Vert ^{2}_{L^{2}( \Omega \times (0,1))} \\& \quad \leq 2E^{n} (0) + \frac{\gamma }{2} \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \ln \bigl\Vert u^{n}(t) \bigr\Vert ^{2} . \end{aligned}$$
(3.16)
Thanks to (2.5), we have
$$ 1 - \frac{\gamma k^{2} }{2\pi } >0 \quad \text{and}\quad \frac{\gamma }{2} \bigl( 1+ N ( 1+ \ln k) \bigr) >0, $$
and hence
$$ \begin{aligned}[b] & \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} + \bigl\Vert \nabla u^{n}(t) \bigr\Vert ^{2} + \bigl\Vert u^{n}(t) \bigr\Vert ^{2} + \int ^{t}_{0} \bigl\Vert u^{n}_{t}(s) \bigr\Vert ^{2} \,ds \\ &\qquad {} + \int ^{t}_{0} \bigl\Vert y^{n}(1,s) \bigr\Vert ^{2} \,ds + \bigl\Vert y^{n}(t) \bigr\Vert ^{2}_{L^{2}( \Omega \times (0,1))} \\ &\quad \leq c_{1} \bigl( 1 + \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \ln \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \bigr), \end{aligned} $$
(3.17)
here and in the sequel \(c_{j}\), \(j=1,2, \ldots \) , denotes a generic positive constant. On the other hand, it is noted that
$$ u^{n}(x,t) = u^{n}(x,0) + \int ^{t}_{0} u^{n}_{t} (x,s) \,ds. $$
Applying Cauchy–Schwarz’ inequality and (3.17), we get
$$\begin{aligned} \bigl\Vert u^{n}(t) \bigr\Vert ^{2} = & 2 \bigl\Vert u^{n}(0) \bigr\Vert ^{2} + 2T \int ^{t}_{0} \bigl\Vert u^{n}_{t} (s) \bigr\Vert ^{2} \,ds \\ \leq & 2 \bigl\Vert u^{n}(0) \bigr\Vert ^{2} + 2T \int ^{t}_{0} c_{1} \bigl( 1 + \bigl\Vert u^{n}(s) \bigr\Vert ^{2} \ln \bigl\Vert u^{n}(s) \bigr\Vert ^{2} \bigr) \,ds \\ \leq & c_{2} \biggl( 1 + \int ^{t}_{0} \bigl\Vert u^{n}(s) \bigr\Vert ^{2} \ln \bigl\Vert u^{n}(s) \bigr\Vert ^{2} \,ds \biggr). \end{aligned}$$
By Lemma 2.2, we find
$$ \bigl\Vert u^{n}(t) \bigr\Vert ^{2} \leq c_{3} e^{c_{4} T} . $$
(3.18)
Since the function \(f(s)=s \ln s \) is continuous \((0, \infty )\), \({ \lim_{s \to 0^{+}} f(s) =0 }\), \({ \lim_{s \to + \infty } f(s) = +\infty }\), and f decreases on \((0, e^{-1}) \) and increases on \((e^{-1}, + \infty )\), we have from (3.18) and (3.17)
$$\begin{aligned}& \bigl\Vert u^{n}_{t} (t) \bigr\Vert ^{2} + \bigl\Vert \nabla u^{n}(t) \bigr\Vert ^{2} + \bigl\Vert u^{n}(t) \bigr\Vert ^{2} + \int ^{t}_{0} \bigl\Vert u^{n}_{t}(s) \bigr\Vert ^{2} \,ds \\& \quad + \int ^{t}_{0} \bigl\Vert y^{n}(1,s) \bigr\Vert ^{2} \,ds + \bigl\Vert y^{n}(t) \bigr\Vert ^{2}_{L^{2}( \Omega \times (0,1))} \leq c_{5}. \end{aligned}$$
(3.19)
So, there exists a subsequence of \(\{ ( u^{n} , y^{n} ) \} \), which we still denote \(\{ ( u^{n} , y^{n} ) \} \), such that
$$\begin{aligned}& u^{n} \to u \quad \text{weakly star in } L^{\infty } \bigl(0,T; H^{1}_{0}( \Omega ) \bigr), \end{aligned}$$
(3.20)
$$\begin{aligned}& u^{n}_{t} \to u_{t} \quad \text{weakly star in } L^{\infty } \bigl(0,T; L^{2}( \Omega ) \bigr), \end{aligned}$$
(3.21)
$$\begin{aligned}& y^{n} \to y \quad \text{weakly star in } L^{\infty } \bigl(0,T; L^{2} \bigl(\Omega \times (0,1) \bigr) \bigr), \end{aligned}$$
(3.22)
$$\begin{aligned}& y^{n}(1) \to y(1) \quad \text{weakly in } L^{2} \bigl(0,T; L^{2}(\Omega ) \bigr). \end{aligned}$$
(3.23)
By Aubin–Lions’ compactness theorem, we find
$$ u^{n} \to u \quad \text{strongly in } L^{2} \bigl(0,T; L^{2}(\Omega ) \bigr) $$
and
$$ u^{n}(x,t) \to u(x,t) \quad \text{a.e. in } \Omega \times (0,T). $$
Since the function \(s \to s \ln |s|^{\gamma }\) is continuous on \(\mathbb{R}\),
$$ u^{n}(x,t)\ln \bigl\vert u^{n}(x,t) \bigr\vert ^{\gamma } \to u(x,t) \ln \bigl\vert u(x,t) \bigr\vert ^{\gamma }\quad \text{a.e. in } \Omega \times (0,T). $$
(3.24)
Now, we let
$$ \Omega _{1} = \bigl\{ x\in \Omega \mid \bigl\vert u^{n}(x,t) \bigr\vert < 1 \bigr\} \quad \text{and}\quad \Omega _{2} = \bigl\{ x\in \Omega \mid \bigl\vert u^{n}(x,t) \bigr\vert \geq 1 \bigr\} . $$
Then we have
$$\begin{aligned}& \int _{\Omega } \bigl( u^{n}(x,t) \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{\gamma } \bigr)^{2} \,dx \\& \quad = \gamma ^{2} \biggl\{ \int _{\Omega _{1}} \bigl( u^{n}(x,t) \ln \bigl\vert u^{n}(x,t) \bigr\vert \bigr)^{2} \,dx + \int _{\Omega _{2}} \bigl( u^{n}(x,t) \ln \bigl\vert u^{n}(x,t) \bigr\vert \bigr)^{2} \,dx \biggr\} \\& \quad \leq \gamma ^{2} \biggl\{ e^{-2} \vert \Omega _{1} \vert + e^{-2} \biggl( \frac{2}{q-2} \biggr)^{2} \int _{\Omega _{2}} \bigl(u^{n}(x,t) \bigr)^{q} \,dx \biggr\} \quad \text{for any } q>2, \end{aligned}$$
(3.25)
here we used the fact
$$ \vert s \ln s \vert \leq \frac{1}{e} \quad \text{for } 0< s < 1 \quad \text{and} \quad s^{- \kappa }\ln s \leq \frac{1}{e \kappa }\quad \text{for } s\geq 1 \text{ and } \kappa >0 . $$
From (3.25) and (3.17), we arrive at
$$ \int _{\Omega } \bigl( u^{n}(x,t) \ln \bigl\vert u^{n}(x,t) \bigr\vert ^{\gamma } \bigr)^{2} \,dx \leq \gamma ^{2} \biggl\{ e^{-2} \vert \Omega _{1} \vert + e^{-2} \biggl( \frac{2}{q-2} \biggr)^{2} B_{2}^{q} \bigl\Vert \nabla u^{n} \bigr\Vert ^{q} \biggr\} \leq c_{6}, $$
(3.26)
where \(B_{2}\) is the best Sobolev imbedding constant of
$$ H^{1}_{0}(\Omega ) \subset L^{q}(\Omega ) \quad \text{for } q>2, \text{if } N=1,2 ; 2< q< \frac{2N}{N-2}, \text{ if } N \geq 3 . $$
Thus, we have from (3.26)
$$ u^{n} \ln \bigl\vert u^{n} \bigr\vert ^{\gamma } \text{ is uniformly bounded in } L^{ \infty } \bigl(0,T; L^{2}(\Omega ) \bigr). $$
(3.27)
By the Lebesgue bounded convergence theorem, (3.24), and (3.27), we infer
$$ u^{n} \ln \bigl\vert u^{n} \bigr\vert ^{\gamma } \to u \ln \vert u \vert ^{\gamma } \quad \text{strongly in } L^{2} \bigl(0,T; L^{2}(\Omega ) \bigr) . $$
Now, we are ready to pass to the limit \(m\to \infty \) in (3.7) and (3.8). The proof of the remainder is standard and can be done as in [1, 19]. □