 Research
 Open access
 Published:
A hybrid method for solving time fractional advection–diffusion equation on unbounded space domain
Advances in Difference Equations volume 2020, Article number: 596 (2020)
Abstract
In this article, a hybrid method is developed for solving the time fractional advection–diffusion equation on an unbounded space domain. More precisely, the Chebyshev cardinal functions are used to approximate the solution of the problem over a bounded time domain, and the modified Legendre functions are utilized to approximate the solution on an unbounded space domain with vanishing boundary conditions. The presented method converts solving this equation into solving a system of algebraic equations by employing the fractional derivative matrix of the Chebyshev cardinal functions and the classical derivative matrix of the modified Legendre functions together with the collocation technique. The accuracy of the presented hybrid approach is investigated on some test problems.
1 Introduction
Mathematical description of physical phenomena in which physical quantities are transferred inside a physical system due to diffusion and convection leads to the wellknown advection–diffusion equation [1, 2]. Specifically, this type of partial differential equation is used to describe dispersion in twodimensional tidal currents, transport of pollutants in the atmosphere, heat transfer in a draining film, dispersion in finite porous media, and water transfer in soils [3–7]. Motivated by these significant applications, researchers have taken considerable efforts to solve advection–diffusion equation. In [8], Zhang et al. provided the finite element method for the fractional advection–diffusion equation with nonhomogeneous initialboundary condition. Authors in [9] developed an implicit meshless approach for numerical simulation of fractional advection–diffusion equation. The numerical method is presented by using a Lax–Wendrofftype time discretization procedure for solving the fractional advection–diffusion equation [10]. Ding and Jiang considered the fractional Laplacian operator for analytical solutions of multiterm time space fractional advection–diffusion equation with mixed boundary conditions on a finite domain in [11]. Recently, researchers have used several numerical methods to solve approximate fractional advection–diffusion equation involving the Kansa method, the finite difference method, a moving least squares meshless, Laplace transform, Bernstein dual Petrov–Galerkin method, the finite volume method, and the local discontinuous Galerkin method [12–19]. Moreover, Cartaladea et al. introduced an approximation for the fractional advection–diffusion equation according to lattice Boltzmann method by Bhatnagar–Gross–Krook or multiplerelaxation time collision operators [20]. To solve fractional advection–diffusion equation, Chen formulated a fullydiscrete numerical method by using the classical finite difference method [21]. In [22], an efficient shifted Legendre collocation method was proposed for numerical solution of the variableorder fractional Galilei advection–diffusion equation. Also, a Legendre–Gauss–Lobatto collocation method was proposed to solve the fractional advection diffusion equation in [23].There have also been some studies on solving fractional advection–diffusion equation with other derivatives. Partohaghighi et al. [24] used a transformation involving a fictitious coordinate to solve the fractional advection–diffusion equation with the Atangana–Baleanu–Caputo derivative. The Riesz derivative is approximated by the secondorder fractional weighted and shifted Gruünwald–Letnikov formula to solve the timespace fractional advection–diffusion equation [25].
The major purposes of this study are briefly given as follows:

Introducing a new version of the time fractional advection–diffusion equation on an unbounded space domain with vanishing boundary conditions.

Establishing a hybrid method based on the Chebyshev cardinal functions and the modified Legendre functions for solving this equation.
So, we focus on the equation
where \({}^{c}_{0}{D_{t}^{\alpha }}\) is the Caputo fractional derivative of order \(\alpha \in (0,1]\), λ and γ are positive real constants, and f and g are known functions.
The proposed method uses mutually the Chebyshev cardinal functions and the modified Legendre functions together with the collocation method to transform equation (1.1) into a system of algebraic equations which can be easily solved. To do this, first, using an appropriate change of variable, the problem expressed in relation (1.1) is transformed into an equivalent problem over bounded time and space domains. Then, the Chebyshev cardinal functions and the modified Legendre functions are employed to approximate solution of the elicited problem over time and space domains, respectively. Next, by inserting this approximation into the transformed equation, employing the fractional derivative matrix of the Chebyshev cardinal functions and the ordinary derivative matrix of the modified Legendre functions, and applying the collocation technique, we derive a system of algebraic equations. Eventually, solution of this system leads to the solution of the original problem.
The framework of this paper is as follows: In Sect. 2 the fractional calculus is stated. Shifted Chebyshev cardinal and the modified Legendre functions are introduced in Sect. 3. The hybrid method is presented in Sect. 4. Some examples are studied in Sect. 5. Conclusion of this study is given in Sect. 6.
2 Fractional calculus
In this section, we review the definition of fractional derivative in the Caputo sense.
Definition 1
([26])
Assume that \(\alpha \in (n1,n]\), \(n\in \mathbb{N}\), and \(f(t)\) is sufficiently continuous. Then
is called the Caputo fractional derivative of order α.
Corollary 1
([8])
If \(\alpha \in (n1,n]\), \(n \in \mathbb{N}\), \(r,s \in \mathbb{R}\), and \({}^{c}_{0}{D_{t}^{\alpha }}f(t)\) and \({}^{c}_{0}{D_{t}^{\alpha }}g(t)\) exist, then
which confirms that the Caputo fractional derivative is a linear operator.
Corollary 2
([26])
If \(k\in \mathbb{N}\cup \{0\}\) and \(\alpha \in (n1,n]\), then
3 Basis functions
Herein, we introduce two classes of the basis functions which will be used in approximating solution of the problem under consideration.
3.1 The shifted Chebyshev cardinal functions
Definition 2
([27])
The shifted Chebyshev cardinal functions of order m are defined over \([0,T]\) by
where \(t_{i}=\frac{T}{2} (1\cos (\frac{(2i1)\pi }{2(m+1)} ) )\).
A function \(u(t)\in C ([0,T] )\) can be expressed by the shifted Chebyshev cardinal functions as follows:
where
and
Remark 1
([27])
The cardinal functions in relation (3.1) can be redefined simpler as follows:
where
and
in which
Theorem 3.1
If \(\varPhi _{m}(t)\) is the vector defined in relation (3.4) and \(\alpha \in (0,1]\), then
where \(D_{m}^{(\alpha )}\) is an \((m+1)\times (m+1)\) matrix (known as the fractional derivative matrix of the shifted Chebyshev cardinal functions) with entries
in which the coefficients \(\hat{b}_{ik}\) have been already introduced in Remark 1.
Proof
From relations (2.2) and (3.5), we get
From Eq. (2.3) and the above relation, we obtain
Now, we can approximate \({}^{c}_{0}{D_{t}^{\alpha }}\varphi _{i}(t)\) for \(i=1,2,\ldots , m+1\) as follows:
where
Thus, the proof is completed. □
3.2 The modified Legendre functions
The modified Legendre functions are defined over \([1,1]\) by
where \(L_{i}\) is the ith Legendre polynomial of order i that can be generated by the recurrence relation
with \(L_{0}(x)=1\) and \(L_{1}(x)=x\). The modified Legendre functions are orthogonal on \([1,1]\) with respect to the weight function \(\varpi (x)=\frac{1}{\sqrt{1x^{2}}}\) and
We can approximate a function \(u(x) \in L_{\varpi }^{2}([1,1])\) with conditions \(u(1)=u(1)=0\) via the modified Legendre functions as follows:
where
in which
and
The differentiation of the vector \(\Psi _{s}(x)\) can be expressed as follows:
where \(P_{s}^{(1)}\) is a matrix of order \(s+1\) with entries
Moreover, for any natural number r, we have
where
4 Analysis of the method
In this section, we establish a numerical method for solving problem (1.1) by using the basis functions introduced in the previous section. To solve Eq. (1.1), first the problem is transformed from \(\mathbb{R}\times [0,T]\) into \([1,1]\times [0,T]\) by using the change of variable \(x=\operatorname{arctanh}(\vartheta )\). Thus, by defining \(u(\operatorname{arctanh}(\vartheta ),t)\triangleq \bar{u}(\vartheta ,t) \), we obtain
and
Now, by replacing Eqs. (4.1) (4.2) into Eq. (1.1), we obtain the equivalent problem
where \(\bar{f}(\vartheta ,t)=f (\operatorname{arctanh}(\vartheta ),t )\) and \(\bar{g}(\vartheta )=g (\operatorname{arctanh}(\vartheta ) )\). For solving Eq. (4.3), let
in which \(U=[u_{ij}]\) is an \((s+1)\times (m+1)\) unknown matrix, and \(\Psi _{s}(\vartheta )\) and \(\Phi _{m}(t)\) are defined in Eqs. (3.9) and (3.4), respectively. From Eqs. (3.6) and (3.10), we obtain
Using Eq. (4.5), we define the following residual function for problem (4.3):
Moreover, using Eqs. (4.3) and (4.4), we define
Eventually, we obtain a system of \((s+1)(m+1)\) equations by inserting the collocation points \(\vartheta _{i}=\cos (\frac{(2i1)\pi }{2(s+1)} )\) and \(t_{j}=\frac{T}{2} (1\cos (\frac{(2j1)\pi }{2(m+1)} ))\) into Eqs. (4.6) and (4.7) as follows:
Solving the above system leads to obtaining an approximate solution for problem (4.3). Finally, the approximate solution of Eq. (1.1) is obtained as \(u(x,t)=\bar{u}(\tanh (x),t)\) for \((x,t)\in \mathbb{R}\times [0,T]\).
5 Numerical simulation
This section demonstrates the accuracy of the presented scheme for solving the problem introduced in Eq. (1.1) by solving some test problems.
Example 1
As the first example, we consider Eq. (1.1) with \(\lambda =\gamma =2\) and the exact solution \(u(x,t)=\frac{\sin (t)}{(1+x^{2})^{10}}\). Note that the initial condition and the righthand side function can be identified using the exact solution. The proposed method has been used to solve this equation for various values of α. The maximum absolute errors of the obtained numerical solutions for various values of α have been presented in Table 1. Figure 1 shows the approximate solution and the absolute error function for \(\alpha =0.9\) with (\(s=30\), \(m=15\)). By considering these results, it is clear that the presented hybrid method is very accurate for solving this example.
Example 2
Consider the time fractional advection–diffusion equation (1.1) with \(\lambda =1\), \(\gamma =2\) and the exact solution \(u(x,t)=\sinh (t)\exp (5x^{2}) \). The maximum absolute errors of the obtained numerical results for various values of α are given in Table 2. The obtained results of solving this equation for \(\alpha =0.9\) when (\(s=30\), \(m=15\)) are plotted in Fig. 2. From the obtained results, we conclude that the presented scheme is an efficient tool for solving this example.
Example 3
Consider the time fractional advection–diffusion equation (1.1) with \(\lambda =2\), \(\gamma =1\) and the exact solution \(u(x,t)=\frac{\exp (t)}{(1+x^{2})^{10}}\). The presented scheme is used to solve this equation and the maximum absolute errors of the obtained numerical results are given in Table 3. The obtained results for \(\alpha = 0.8\) with (\(s=30\), \(m = 15\)) are shown in Fig. 3. According to the obtained results, we see that the proposed method is very accurate for solving this example.
Example 4
Finally, consider the time fractional advection–diffusion equation (1.1) with \(\lambda =\gamma =1\) and the exact solution \(u(x,t)=\cos (t)\exp (5x^{2}) \). Table 4 provides the maximum absolute errors of the obtained numerical solutions for various values α. The obtained results for \(\alpha = 0.8\) with (\(s=30\), \(m = 15\)) are plotted in Fig. 4. These results confirm that the presented approach is an efficient tool for solving this problem.
6 Conclusion
In this paper, we have used two types of orthogonal basis functions (namely the Chebyshev cardinal functions and the modified Legendre functions) to solve the time fractional advection–diffusion equation on an unbounded space domain with vanishing boundary conditions. In the proposed method, first, by using a suitable change of variable that satisfies the boundary conditions, the problem under consideration is mapped on a bounded space domain. Then, the Chebyshev cardinal functions are used to approximate solution of the problem over the time domain and the modified Legendre functions are utilized to approximate the solution over the space domain. The numerical results obtained by solving some test problems confirm high accuracy of the method.
Availability of data and materials
Not applicable.
References
Baukal, J.R., Gershtein, V., Li, X.J.: Computational Fluid Dynamics in Industrial Combustion. CRC Press, Boca Raton (2000)
Noye, B.J.: Numerical Solution of Partial Differential Equations. Lecture Notes (1990)
Isenberg, J., Gutfinger, C.: Heat transfer to a draining film. Int. J. Heat Mass Transf. 16, 505–512 (1973)
Parlarge, J.: Water transport in soils. Annu. Rev. Fluid Mech. 12, 77–102 (1980)
Fattah, Q., Hoopes, J.: Dispersion in anisotropic homogeneous porous media. Appl. Math. Comput. 111, 810–827 (1985)
Holly, F., UsseglioPolatera, J.: Dispersion simulation in twodimensional tidal flow. J. Hydraul. Eng. 111, 905–926 (1984)
Kumar, N.: Unsteady flow against dispersion in finite porous media. J. Hydrol. 63, 345–358 (1988)
Zhenga, Y., Li, C., Zhaoa, Z.: A note on the finite element method for the spacefractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)
Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Timedependent fractional advection–diffusion equations by an implicit MLS meshless method. Int. J. Numer. Methods Eng. 88(13), 1346–1362 (2011)
Sousa, E.: A second order explicit finite difference method for the fractional advection–diffusion equation. Comput. Math. Appl. 64, 3141–3152 (2012)
Ding, X.L., Jiang, Y.L.: Analytical solutions for the multiterm time–space fractional advection–diffusion equations with mixed boundary conditions. Nonlinear Anal., Real World Appl. 14, 1026–1033 (2013)
Pang, G., Chen, W., Fu, Z.: Spacefractional advection–dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)
Yang, J.Y., Zhao, Y.M., Liu, N., Bu, W.P., Xu, T.L., Tang, Y.F.: An implicit MLS meshless method for 2D time dependent fractional diffusion wave equation. Appl. Math. Model. 39, 1229–1240 (2015)
Mirza, I.A., Vieru, D.: Fundamental solutions to advection–diffusion equation with timefractional Caputo Fabrizio derivative. Comput. Math. Appl. 73, 1–10 (2017)
Jani, M., Javadi, S., Babolian, E., Bhatta, D.: Bernstein dualPetrov–Galerkin method: application to 2D time fractional diffusion equation. Comput. Appl. Math. 37, 2335–2353 (2018)
Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributedorder advection–diffusion equation. Appl. Math. Model. 46, 536–553 (2017)
Mardani, A., Hooshmandasl, M.R., Heydari, M.H., Cattani, C.: A meshless method for solving the time fractional advection–diffusion equation with variable coefficients. Comput. Math. Appl. 75, 122–133 (2018)
Tayebia, A., Shekari, Y., Heydari, M.H.: A meshless method for solving twodimensional variableorder time fractional advection–diffusion equation. J. Comput. Phys. 340, 655–669 (2017)
Sun, X., Li, C., Zhao, F.: Local discontinuous Galerkin methods for the time tempered fractional diffusion equation. Appl. Math. Comput. 365, 124725 (2020)
Cartaladea, A., Younsiab, A., Néelc, M.C.: Multiplerelaxationtime lattice Boltzmann scheme for fractional advection–diffusion equation. Comput. Phys. Commun. 234, 40–54 (2019)
Chen, R., Liu, F., Anh, V.: Numerical methods and analysis for a multiterm time–space variableorder fractional advection–diffusion equations and applications. J. Comput. Appl. Math. 352, 437–452 (2019)
Zaky, M.A., Baleanu, D., Alzaidy, J.F., Hashemizadeh, E.: Operational matrix approach for solving the variableorder nonlinear Galilei invariant advection–diffusion equation. Adv. Differ. Equ. 2018, 102 (2018)
Bhrawy, A.H.: A spectral Legendre–Gauss–Lobatto collocation method for a spacefractional advection diffusion equations with variable coefficients. Rep. Math. Phys. 72(2), 219–233 (2013)
Partohaghighi, M., Inc, M., Bayram, M., Baleanu, D.: On numerical solution of the time fractional advection–diffusion equation involving Atangana–Baleanu–Caputo derivative. Open Phys. 17(1), 816–822 (2019)
Arshad, S., Baleanu, D., Huang, J., Al Qurashi, M.M., Tang, Y., Zhao, Y.: Finite difference method for time–space fractional advection–diffusion equations with Riesz derivative. Entropy 20(5), 321 (2018)
Li, C., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives (2020)
Heydari, M.H.: A new direct method based on the Chebyshev cardinal functions for variableorder fractional optimal control problems. J. Franklin Inst. 355, 4970–4995 (2018)
Acknowledgements
We thank the reviewers for their valuable comments and suggestions.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Azin, H., Mohammadi, F. & Heydari, M.H. A hybrid method for solving time fractional advection–diffusion equation on unbounded space domain. Adv Differ Equ 2020, 596 (2020). https://doi.org/10.1186/s13662020030536
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662020030536