 Research
 Open access
 Published:
\(L^{p}L^{q}\)Maximal regularity of the Van Wijngaarden–Eringen equation in a cylindrical domain
Advances in Difference Equations volume 2020, Article number: 591 (2020)
Abstract
We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operatorvalued Fourier multipliers.
1 Introduction
In this paper, we study the following model arising in acoustics propagation in viscous, isothermal bubbly liquids known as the Van Wijngaarden–Eringen (VWE) equation [14, p. 1121]:
where Δ denotes the Laplacian operator defined in a domain \(\Omega \subset \mathbb{R}^{N}\) and subject to appropriate boundary conditions. The parameter \(\operatorname {Re}_{d}=c_{e} L/\delta \) is a Reynolds number, where \(c_{e}\ (>0)\) is the adiabatic sound speed, δ is the diffusivity of sound [25], and L is a characteristic (macroscopic length). The constant \(a_{0}>0\) is a Knudsen number that corresponds to the dimensionless bubble radius.
In the case \(N=1\), equation (1.1) was obtained by Van Wijngaarden [26] to describe the propagation of linear acoustic waves in isothermal bubbly liquids. In the case \(N=3\), Eringen [10] rederived equation (1.1) based on a microcontinuum theory. Later, Rubin et al. [23] found that equation (1.1) also describes acoustic waves in a thermoelastic compressible Newtonian viscous fluid, and Hayes and Saccomandi [13] showed that it also governs the propagation of transverse plane waves in a particular class of viscoelastic media.
When the Knudsen number \(a_{0}\) is less than 1, it was proved in [7] that model (1.1) can exhibit chaotic behavior. However, the analysis of mathematical behavior of the model for the case \(a_{0}>1\) was left open.
In the present paper we are concerned with the \(L^{p}L^{q}\)maximal regularity problem in a cylindrical domain \(\Omega = U \times V\subset \mathbb {{R}}^{n+d}\) for the following inhomogeneous version of the VWE equation subject to Dirichlet boundary conditions:
where \(U=\mathbb {{R}}_{+}^{n}\), \(n \in \mathbb {{N}}\) and \(V\subset \mathbb {{R}}^{d}\), \(d\in \mathbb{N}_{0}\) is bounded, open, and connected, Δ denotes a cylindrical decomposition of the Dirichlet Laplacian operator on \(L^{q}(\Omega )\) with respect to the two crosssections, i.e., \(\Delta = \Delta _{1} + \Delta _{2}\) and each \(\Delta _{i}\) acts on the according component of Ω. It is well known that many situations in applied sciences naturally lead to problems in cylindrical domains Ω. We refer, e.g., to the textbooks [5] and [6] and the references [9, 20, 22] for a demonstration of the significance of problems on such Ω.
Suppose that we know something about the behavior of the forcing function f in (1.2). For example, f could be bounded or asymptotically periodic, or f might satisfy \(f \in L^{p}(\mathbb{T};L^{q}(\Omega ))\), where \(1< p\), \(q <\infty \). In the last case, the \(L^{p}L^{q}\)maximal regularity problem consists of obtaining conditions on the parameters \(a_{0}^{2}\), \((\operatorname {Re}_{d})^{1}\) in order to conclude that the solution u of (1.2) has the same behavior as f and the following estimate
holds.
One of the main tools to address the maximal regularity problem for equation (1.2) is the theory of discrete operatorvalued Fourier multipliers. Taking the Fourier series, we are faced with the question under which conditions an operatorvalued Fourier series defines a bounded operator in \(L^{p} (\mathbb{T}; X)\) where X is a Banach space. This question was answered by Arendt and Bu in [2], where a discrete operatorvalued Fourier multiplier result for \(UMD\) spaces X and applications to Cauchy problems of first and second order in Lebesgue spaces can be found. A generalization of the results in [2] to first order integrodifferential equations in Lebesgue, Besov, and Hölder spaces is given in [16]. In [17] one finds a comprehensive treatment of second order differential equations in Lebesgue and Hölder spaces. In particular, the special case of the linearized Kuznetsov equation, i.e., \(a_{0}=0\) is investigated. More references concerning abstract degenerate Volterra integrodifferential equations can be found in [4, 11, 18, 24].
Replacing in (1.2) the negative Laplacian operator −Δ by a closed linear operator A with domain \(D(A)\) defined on a Banach space X, one of the main difficulties we are faced with in order to analyze maximal regularity for (1.2) relies in the unbounded operator \(M:=I+a_{0}^{2} A\) in front of the second order term \(\partial _{tt}\) which, for general A, produces a kind of degenerate second order problem. When M is bounded, this problem was studied by Anufrieva [1]. Very recently, Bu and Cai [3] treated the case of M unbounded.
On the other hand, the usage of operatorvalued Fourier multipliers to treat cylindrical in space boundary value problems was first carried out in [12] in a Besov space setting. In that paper the author constructs semiclassical fundamental solutions for a class of elliptic operators on infinite cylindrical domains \(\mathbb {{R}}^{n} \times V\). This proves to be a strong tool for the treatment of related elliptic and parabolic, as well as hyperbolic problems. Operators in cylindrical domains with a similar splitting property as in the present paper were, in the case of an infinite cylinder, also considered by Nau et al. in [9, 19–22].
In this paper, we directly apply general results of [3] and [20] to our case of the VWE equation and obtain a \(L^{p}L^{q}\)maximal regularity result. The main difficulty relies in the verification of the socalled Rboundedness property that must be satisfied by certain sets of operators. To overcome this difficulty, we will employ the criteria established by Denk, Hieber, and Prüss in the reference [8] that reduce the problem to the localization of the spectrum of the Laplacian. We highlight that our method is sufficiently general to admit a wider class of operators than the Laplacian in (1.2) allowing also the possibility of the fractional Laplacian, the biLaplacian \(\Delta ^{2}\), or other operators of practical interest. Therefore, we first establish our main result in an abstract setting that roughly states that under certain conditions of sectoriality of the operator A, and for all \(\eta >0\), the equation
has \(L^{p}L^{q}\)maximal regularity. Then, using the results of [20], we establish our main findings concerning (1.2), namely: for any given \(f\in L^{p}(\mathbb{T}, L^{q}(\Omega ))\) and under the condition
the solution u of problem (1.2) exists, is unique, and belongs to the space \(W^{2,p}_{per}(\mathbb{T}, [D(\Delta _{q})]) \cap W^{2,p}_{per}( \mathbb{T},X) \). Moreover, for any \(1< p\), \(q<\infty \), the a priori estimate (1.3) holds.
2 Preliminaries
We will use recent results obtained in [3] where \(L^{p}\)maximal regularity was obtained for an abstract degenerate model of second order given by
where a, α are real numbers and B and M are linear operators with domains \(D(B)\) and \(D(M)\) defined on a Banach space X such that \(D(B)\subset D(M)\).
We recall the notion of the Mresolvent set of B as follows:
Observe that \(D(B)\) and \(D(M)\) are Banach spaces when endowed with the graph norm.
For any \(n \in \mathbb{N}\) and \(1\leq p<\infty \), we define the vectorvalued function spaces [3, Definition 2.4]:
Let \(u\in L^{p}(\mathbb{T};X)\), then \(u \in W^{n,p}_{per}(\mathbb{T};X)\) if and only if u is ntimes differentiable a.e. on \(\mathbb{T}\) and \(u^{(n)} \in L^{p}(\mathbb{T},X)\), in this case \(u^{(k)}(0)=u^{(k)}(2\pi )\), \(0\leq k \leq n1\) [2, Lemma 2.1]. We refer to [2] and [3] for more information about these spaces.
Let \(1< p\leq \infty \), we define the solution space of (2.1) by
We have that \(S_{p}(B,M)\) is a Banach space with the norm
The notion of \(L^{p}\)maximal regularity is given as follows.
Definition 2.1
Let \(1< p<\infty \) and \(f\in L^{p}(\mathbb{T},X)\) be given. We say that (2.1) has \(L^{p}\)maximal regularity if there exists a unique \(u\in S_{p}(B,M)\) that solves equation (2.1) on \(\mathbb{T}\) and there exists a constant \(C>0\) such that the estimate
holds.
In particular, for \(X=L^{q}(\Omega )\), \(1< q< \infty \), we say that (2.1) has \(L^{p}L^{q}\)maximal regularity. Since the characterization given by Bu and Cai in the reference [3] is provided in terms of the Rboundedness of certain sets of operators, we first recall this definition.
Definition 2.2
Let X and Y be Banach spaces. A set \(\mathcal{T} \subset \mathcal{B}(X,Y)\) is called Rbounded if there is a constant \(c\geq 0\) such that
for all \(T_{1},\ldots,T_{n} \in \mathcal{T}\), \(x_{1},\ldots,x_{n} \in X\), \(n \in \mathbb{N}\), where
The least c such that (2.3) is satisfied is called the Rbound of \(\mathcal{T}\) and is denoted by \(R( \mathcal{T})\).
The property of Rboundedness is preserved under sum or product by a constant. Moreover, if X and Y are Hilbert spaces, Rboundedness is equivalent to uniform boundedness. More information about these properties is summarized in [8].
The class of Banach spaces X such that the Hilbert transform defined by
is bounded in \(L^{p}(\mathbb{R};X)\) for some \(p\in (1, \infty )\) is denoted by \(\mathcal{HT}\) (or \(UMD\)).
The \(UMD\) spaces include Hilbert spaces, Sobolev spaces \(H^{s}_{p}(\Omega ), 1 < p < \infty \), Lebesgue spaces \(L^{p}(\Omega , \mu ), \ell _{p}, 1 < p < \infty \), and vectorvalued Lebesgue spaces \(L^{p}(\Omega ,\mu ;X)\), where X is a \(UMD\) space. On the other hand, the space of continuous functions \(C(K)\) does not have the \(UMD\) property.
We next recall the result obtained in [3].
Theorem 2.3
Let \(1< p<\infty \) and \(\alpha ,a\in \mathbb {{R}}\). Assume that B and M are closed linear operators defined on a \(UMD\) space X such that \(D(B)\subset D(M)\). The following assertions are equivalent:

(i)
Equation (2.1) has \(L^{p}\)maximal regularity;

(ii)
\(\mathbb {{Z}}\subset \rho _{M}(B)\) and the sets \(\{k^{2} MN_{k}:k\in \mathbb {{Z}}\}\) and \(\{kN_{k}:k\in \mathbb {{Z}}\}\) are Rbounded where
$$ N_{k}:=\bigl[k^{2}M+(a+i\alpha k)B \bigr]^{1},\quad k \in \mathbb {{Z}}. $$(2.4)
We also need to recall some preliminaries on sectorial operators. Let \(\Sigma _{\phi } \subset \mathbb{C}\) denote the open sector \(\Sigma _{\phi } = \{ \lambda \in \mathbb{C} \setminus \{ 0 \} :  \arg \lambda  < \phi \}\). We define the spaces of functions as follows: \(\mathcal{H}(\Sigma _{\phi }) = \{ f : \Sigma _{\phi } \to \mathbb{C} \mbox{ holomorphic} \} \), and
which is endowed with the norm \(\ f \_{\infty }^{\phi } = \sup_{\arg \lambda  < \phi }  f( \lambda )\). We further define the subspace \(\mathcal{H}_{0} (\Sigma _{\phi })\) of \(\mathcal{H}(\Sigma _{\phi })\) as follows:
with \(\f\_{\alpha , \beta }^{\phi } = \sup_{ \lambda  \leq 1}  \lambda ^{\alpha } f(\lambda ) + \sup_{ \lambda  \geq 1} \lambda ^{ \beta } f(\lambda )\).
Definition 2.4
Given a closed linear operator A in X, we say that A is sectorial if the following conditions hold:

(i)
\(\overline{ D(A)} = X \), \(\overline{ R(A) } = X\), \((\infty , 0 ) \subset \rho (A)\);

(ii)
\(\t(t+A)^{1} \ \leq M\) for all \(t >0\) and some \(M>0\).
A is called Rsectorial if the set \(\{ t(t+A)^{1} \}_{t >0}\) is Rbounded.
If A is sectorial, then \(\Sigma _{\phi } \subset \rho (A) \) for some \(\phi >0\) and
We denote the spectral angle of a sectorial operator A by
Definition 2.5
Given a sectorial operator A, we say that it admits a bounded \(\mathcal{H}^{\infty }\)calculus if there exist \(\phi > \phi _{A}\) and a constant \(K_{\phi } >0\) such that
The class of sectorial operators A which admit a bounded \(\mathcal{H}^{\infty }\)calculus is denoted by \(\mathcal{H}^{\infty }(X)\). Moreover, the \(\mathcal{H}^{\infty }\)angle is defined by \(\phi _{A}^{\infty } = \inf \{ \phi > \phi _{A} : \text{(2.5) holds} \} \). When \(A \in \mathcal{H}^{\infty }(X)\), we say that A admits an Rbounded \(\mathcal{H}^{\infty }\)calculus if the set
is Rbounded for some \(\theta >0\). We denote the class of such operators by \(\mathcal{RH}^{\infty }(X)\). The corresponding angle is defined in an obvious way and is denoted by \(\theta _{A}^{R_{\infty }}\).
Remark 2.6
If A is a sectorial operator on a Hilbert space, Lebesgue spaces \(L^{p}(\Omega ), 1< p<\infty \), Sobolev spaces \(W^{s,p}( \Omega ), 1< p<\infty \), \(s \in \mathbb{R}\), or Besov spaces \(B^{s}_{p,q}(\Omega ), 1< p\), \(q<\infty \), \(s \in \mathbb{R}\) and A admits a bounded \(\mathcal{H}^{\infty }\)calculus of angle β, then A admits a \(\mathcal{RH}^{\infty }\)calculus on the same angle β on each of the above described spaces (see Kalton and Weis [15]). More generally, this property is true whenever X is a \(UMD\) space with the socalled property \((\alpha )\) (see [15]).
There exist wellknown examples for general classes of closed linear operators with bounded \(\mathcal{H}^{\infty }\) such as: normal sectorial operators in a Hilbert space; maccretive operators in a Hilbert space; generators of bounded \(C_{0}\)groups on \(L^{p}\)spaces, and negative generators of positive contraction semigroups on \(L^{p}\)spaces.
We also recall the following result [8, Proposition 4.10], which will be needed for our characterization, which shows under suitable conditions of uniform boundedness the Rboundedness of certain sets of operators.
Proposition 2.7
Let \(A \in \mathcal{RH}^{\infty }(X)\) and suppose that \(\{h_{\lambda } \}_{\lambda \in \Lambda } \subset \mathcal{H}^{\infty }( \Sigma _{\theta })\) is uniformly bounded for some \(\theta > \theta _{A}^{R_{\infty }}\), where Λ is an arbitrary index set. Then the set \(\{h_{\lambda }(A) \}_{\lambda \in \Lambda }\) is Rbounded.
3 Main results
Let \(1\leq p<\infty \), \(\eta >0\) and X be a Banach space. In this section, we want to give necessary conditions on a given sectorial operator A with domain \(D(A)\) defined on X that describe the \(L^{p}L^{q}\)maximal regularity of the VWE equation given in an abstract form as follows:
where \(a_{0}>0\), \(\operatorname {Re}_{d} >0\), and \(f \in L^{p}(\mathbb{T};X)\). We state the main abstract result of this paper.
Theorem 3.1
Assume that X is a \(UMD\)space, \(1< p<\infty \), \(a_{0}>1\), and suppose that \(A \in \mathcal{RH}^{\infty }(X) \) with angle \(\theta _{A}^{R_{\infty }} \in (0, \frac{\pi }{2 \eta })\) and \(0 \in \rho (A)\). Then, for all \(\eta >0\), equation (3.1) admits \(L^{p}L^{q}\)maximal regularity.
Proof
We first point out that our equation (3.1) labels into (2.1) for \(M=(I+a_{0}^{2}A^{\eta })\), \(a=1\), \(\alpha =(\operatorname {Re}_{d})^{1}\), and \(B=A^{\eta }\). Moreover, it is clear that \(D(A^{\eta })= D(I+a_{0}^{2}A^{\eta })\). In order to prove wellposedness for (3.1), we only need to show that condition (ii) in Theorem 2.3 holds, that is, we have to prove that the sets \(\{k^{2} MN_{k}:k\in \mathbb {{Z}}\}\) and \(\{kN_{k}:k\in \mathbb {{Z}}\}\) are Rbounded. Indeed, we have
It follows that
where \(d_{k}:=\frac{k^{2}}{(1  a_{0}^{2} k^{2})+ ik(\operatorname {Re}_{d})^{1}}\). A computation shows that
and
Since \(a_{0}>1\), by hypothesis, we obtain \(\theta ^{*}:= \sup_{k\in \mathbb {{Z}}}\arg (d_{k}) < \pi /2\).
On the other hand, we have \(0< \theta _{A}^{R_{\infty }} < \frac{\pi }{2 \eta }\), and hence there exists \(s>\theta _{A}^{R_{\infty }}\) such that \(s < \frac{\pi }{2 \eta }\). For every \(z \in \Sigma _{s}\) and \(k \in \mathbb{Z}\), \(k \neq 0\), we can define
Observe that \(\frac{z^{\eta }}{d_{k}}\) belongs to the sector \(\Sigma _{s \eta + \pi /2}\). We immediately get that the distance from the sector \(\Sigma _{s \eta +\pi /2}\) to −1 is always positive. Consequently, there exists a constant \(M>0\) independent of \(k \in \mathbb{Z}\) and \(z \in \Sigma _{s}\) such that
Now, from Proposition 2.7 it follows that
is Rbounded. In particular, since A is invertible, the operators \(H(k):= ( d_{k} + A^{\eta })^{1} \) exist for all \(k \in \mathbb{Z}\), then \(H(k)\) belongs to \(\mathcal{B}(X)\) for all \(k \in \mathbb{Z}\) and the sequence
is Rbounded. Since the following identity holds \(A^{\eta }(d_{k}+A^{\eta })^{1}= I d_{k}(d_{k}+A^{\eta })^{1} \), we obtain
Due to the Rboundedness of the sets \(\{d_{k}\}_{k \in \mathbb {{Z}}}\) and \(\{ d_{k} d_{k}(d_{k}+A^{\eta })^{1}\}\), we can state that the set \(\{k^{2} MN_{k}:k\in \mathbb {{Z}}\}\) is also Rbounded. On the other hand, we have
which implies that the set \(\{ kN_{k} \}_{k\in \mathbb {{Z}}}\) is Rbounded, too. From Theorem 2.3 we conclude that equation (3.1) admits \(L^{p}L^{q}\)maximal regularity. □
Taking into account Remark 2.6, we obtain the following corollary.
Corollary 3.2
Let \(1< p\), \(q<\infty \) be given. Suppose that \(a_{0}>1\) and that A is a sectorial operator that admits a bounded \(\mathcal{H}^{\infty }\)calculus of angle \(\theta _{A}^{\mathcal{R}_{\infty }} \in (0, \frac{\pi }{2\eta })\) and \(0 \in \rho (A)\). Then, for all \(\eta >0\), equation (3.1) admits \(L^{p}L^{q}\)maximal regularity.
Finally, we consider the Van Wijngaarden–Eringen equation in a cylindrical domain \(\Omega = U \times V\subset \mathbb {{R}}^{n+d}\), where \(U=\mathbb {{R}}_{+}^{n}\), \(n \in \mathbb {{N}}\) and \(V\subset \mathbb {{R}}^{d}\), \(d\in \mathbb{N}_{0}\) is bounded, open, and connected
where Δ denotes a cylindrical decomposition of the Dirichlet Laplacian operator on \(L^{q}(\Omega )\) with respect to the two crosssections, i.e., \(\Delta = \Delta _{1} + \Delta _{2}\), where \(\Delta _{i}\) acts on the according component of Ω. Following [20] we introduce \(L^{q}\)realizations \(\Delta _{q,i} = \Delta _{i}\) as follows:
see also [27] for the description of \(\Delta _{q,2}\). We define the Laplacian \(\Delta _{q}\) in \(L^{q}(\Omega )\) subject to the Dirichlet boundary conditions \(\mathcal{B}_{U}\) and \(\mathcal{B}_{V}\) to be
Suppose now that V is a \(C^{2}\)standard domain (see [20, Definition 3.1] for the precise definition). Then, applying [20, Theorem 4.2], we have that \(\Delta _{q} \in \mathcal{RH}^{\infty }(L^{q}(\Omega ))\) and \(0 \in \rho (\Delta _{q})\). Moreover, by [20, Proposition 5.1(i)], we have \(\theta _{\Delta _{q}}^{\mathcal{R}_{\infty }}<\frac{\pi }{2}\).
From Corollary 3.2 with \(\eta =1\) and \(A=\Delta _{q}\), we deduce the following result.
Theorem 3.3
Let \(1< p\), \(q<\infty \) and assume the condition
Then, for any given \(f\in L^{p}(\mathbb{T}, L^{q}(\Omega ))\), the solution u of problem (3.2) exists, is unique, and belongs to the space \(W^{2,p}_{per}(\mathbb{T},[D(\Delta _{q})]) \cap W^{2,p}_{per}( \mathbb{T},X) \). Moreover, for any \(1< p\), \(q<\infty \), the estimate
holds.
We remark that an analogous result holds when we replace the Laplacian by the fractional Laplacian \((\Delta _{q})^{\eta }, 0<\eta <1\).
Availability of data and materials
Not applicable.
References
Anufrieva, U.A.: A degenerate Cauchy problem for a secondorder equation. A wellposedness criterion. Differ. Uravn. 34(8), 1131–1133 (1998) (Russian). Translation in: Differ. Equ. 34(8), 1135–1137 (1999)
Arendt, W., Bu, S.: The operatorvalued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240(2), 311–343 (2002)
Bu, S., Cai, G.: Periodic solutions of second order degenerate differential equations with delay in Banach spaces. Can. Math. Bull. 61(4), 717–737 (2018)
Carroll, R.W., Showalter, R.E.: Singular and Degenerate Cauchy Problems. Academic Press, New York (1976)
Chipot, M.: ℓ Goes to Plus Infinity. Birkhaüser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2002)
Chipot, M.: Elliptic Equations: An Introductory Course. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser, Basel (2009)
Conejero, A., Lizama, C., Murillo, M.: On the existence of chaos for the viscous Van Wijngaarden–Eringen equation. Chaos Solitons Fractals 89, 100–104 (2016)
Denk, R., Hieber, M., Prüss, J.: RBoundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, 788 (2003)
Denk, R., Nau, T.: Discrete Fourier multipliers and cylindrical boundaryvalue problems. Proc. R. Soc. Edinb., Sect. A 143(6), 1163–1183 (2013)
Eringen, A.C.: Theory of thermomicrostretch fluids and bubbly liquids. Int. J. Eng. Sci. 28(2), 133–143 (1990)
Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. Chapman and Hall/CRC Pure and Applied Mathematics, New York (1998)
Guidotti, P.: Elliptic and parabolic problems in unbounded domains. Math. Nachr. 272, 32–45 (2004)
Hayes, M.A., Saccomandi, G.: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59, 213–225 (2000)
Jordan, P.M., Feuillade, C.: On the propagation of harmonic acoustic waves in bubbly liquids. Int. J. Eng. Sci. 42(11–12), 1119–1128 (2004)
Kalton, N., Weis, L.: The \(\mathcal{H}^{\infty }\)calculus and sums of closed operators. Math. Ann. 321, 319–345 (2001)
Keyantuo, V., Lizama, C.: Fourier multipliers and integrodifferential equations in Banach spaces. J. Lond. Math. Soc. (2) 69(3), 737–750 (2004)
Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253(3), 489–514 (2006)
Kostic, M.: Abstract Degenerate Volterra IntegroDifferential Equations. Mathematical Institute SANU, Belgrade (2020)
Nau, T.: \(L^{p}\)theory of cylindrical boundary value problems. An operatorvalued Fourier multiplier and functional calculus approach. Dissertation, University of Konstanz, Konstanz (2012). Springer Spektrum, Wiesbaden (2012)
Nau, T.: The Laplacian on cylindrical domains. Integral Equ. Oper. Theory 75, 409–431 (2013)
Nau, T., Saal, J.: \(\mathcal{R}\)Sectoriality of cylindrical boundary value problems. In: Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 479–505. Birkhäuser, Basel (2011)
Nau, T., Saal, J.: Jürgen \(\mathcal{H}^{\infty }\)calculus for cylindrical boundary value problems. Adv. Differ. Equ. 17(7–8), 767–800 (2012)
Rubin, M.B., Rosenau, P., Gottlieb, O.: Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77, 4054–4063 (1995)
Sviridyuk, G.A., Fedorov, V.E.: Linear Sobolev Type Equations and Degenerate Semigroups of Operators. Inverse and IllPosed Problems, vol. 42. VSP, Utrecht (2003)
Thompson, P.A.: CompressibleFluid Mechanics. McGrawHill, New York (1992)
Wijngaarden, L.V.: Onedimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972)
Wood, I.: Maximal \(L_{p}\)regularity for the Laplacian on Lipschitz domains. Math. Z. 255(4), 855–875 (2007)
Acknowledgements
Not applicable.
Funding
The first author is partially supported by FONDECYT grant number 1180041 and DICYT, Universidad de Santiago de Chile, USACH. The second author is supported by MEC, grants MTM201675963P and PID2019105011GBI00.
Author information
Authors and Affiliations
Contributions
The authors declare they have equally contributed to the preparation of the paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Lizama, C., MurilloArcila, M. \(L^{p}L^{q}\)Maximal regularity of the Van Wijngaarden–Eringen equation in a cylindrical domain. Adv Differ Equ 2020, 591 (2020). https://doi.org/10.1186/s13662020030545
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662020030545