We now discuss our main results. The first result is the fractional analogue of Hermite–Hadamard’s inequality using s-convexity property of the functions involving \(\chi _{{\kappa }}\)-Hilfer fractional integrals.
Theorem 2.1
Let \(0\leq a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a positive function and \({\Xi }\in L_{1}[a_{1},a_{2}]\), Also suppose that Ξ is an s-convex function on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} &2^{s-1}{\Xi } \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \\ &\quad \leq \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1}) ^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad \leq \biggl[\frac{3\alpha }{\alpha +ks}- \frac{\alpha }{(\alpha +sk)2^{\frac{\alpha +sk}{{\kappa }}}} \biggr] \frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}. \end{aligned}$$
Proof
Let \(x_{1},x_{2} \in [a_{1},a_{2}]\) and using the s-convexity of Ξ, we have
$$ {\Xi } \biggl(\frac{x_{1}+x_{2}}{2} \biggr)\leq \frac{{\Xi }(x_{1})}{2^{s}}+ \frac{{\Xi }(x_{2})}{2^{s}}. $$
Let \(x_{1}={\lambda }a_{1}+(1-{\lambda })a_{2}\) and \(x_{2}=(1-{\lambda })a_{1}+{\lambda }a_{2}\), we have
$$ 2^{s}{\Xi } \biggl(\frac{a_{1}+a_{2}}{2} \biggr)\leq {\Xi } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)+{\Xi } \bigl((1-{\lambda })a_{1}+{\lambda }a_{2} \bigr). $$
Multiplying both sides by \({\lambda }^{\frac{\alpha }{{\kappa }}-1}\) and then integrating, we have
$$ \frac{2^{s}{\kappa }}{\alpha }{\Xi } \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \leq \int _{0}^{1}{\lambda }^{\frac{\alpha }{{\kappa }}-1}{\Xi } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }+ \int _{0}^{1}{\lambda }^{ \frac{\alpha }{{\kappa }}-1}{\Xi } \bigl((1-{\lambda })a_{1}+{\lambda }a_{2} \bigr) \, \mathrm{d} {\lambda }. $$
Now
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad = \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \frac{1}{{\kappa }\Gamma _{{\kappa }}(\alpha )} \biggl[ \int ^{\chi ^{-1}(a_{2})}_{ \chi ^{-1}(a_{1})} \bigl(a_{2}-\chi (v) \bigr)^{\frac{\alpha }{{\kappa }}}({\Xi } \circ \chi ) (v)\chi ^{\prime }(v) \, \mathrm{d}v \\ &\qquad {}+ \int ^{\chi ^{-1}(a_{2})}_{\chi ^{-1}(a_{1})} \bigl(\chi (v)-a_{1} \bigr)^{ \frac{\alpha }{{\kappa }}}({\Xi }\circ \chi ) (v)\chi ^{\prime }(v) \, \mathrm{d}v \biggr] \\ &\quad =\frac{\alpha }{2{\kappa }} \biggl[ \int _{0}^{1}{\lambda }^{ \frac{\alpha }{{\kappa }}-1}{\Xi } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }+ \int _{0}^{1}{\lambda }^{\frac{\alpha }{{\kappa }}-1}{ \Xi } \bigl((1-{\lambda })a_{1}+{\lambda }a_{2} \bigr) \, \mathrm{d} {\lambda } \biggr] \\ &\quad \geq 2^{s-1}{\Xi } \biggl(\frac{a_{1}+a_{2}}{2} \biggr). \end{aligned}$$
To prove the right-hand side, we use the fact that Ξ is an s-convex function, then
$$ {\Xi } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \leq {\lambda }^{s}{\Xi }(a_{1})+(1-{ \lambda })^{s}{\Xi }(a_{2}) $$
and
$$ {\Xi } \bigl((1-{\lambda })a_{1}+{\lambda }a_{2} \bigr) \leq (1-{\lambda })^{s}{\Xi }(a_{1})+{ \lambda }^{s}{\Xi }(a_{2}). $$
Now
$$ {\Xi } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr)+{\Xi } \bigl((1-{\lambda })a_{1}+{ \lambda }a_{2} \bigr)\leq \bigl({\lambda }^{s}+(1-{\lambda })^{s} \bigr) \bigl({\Xi }(a_{1})+{ \Xi }(a_{2}) \bigr). $$
Multiplying both sides by \({\lambda }^{\frac{\alpha }{{\kappa }}-1}\) and then integrating with respect to λ on \([0,1]\), we obtain
$$\begin{aligned} &\int _{0}^{1}{\lambda }^{\frac{\alpha }{{\kappa }}-1}{\Xi } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }+ \int _{0}^{1}{\lambda }^{ \frac{\alpha }{{\kappa }}-1}{\Xi } \bigl((1-{\lambda })a_{1}+{\lambda }a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad \leq \biggl[\frac{3{\kappa }}{\alpha +ks}- \frac{{\kappa }}{(\alpha +sk) 2^{\frac{\alpha +sk}{{\kappa }}}} \biggr] \bigl[{ \Xi }(a_{1})+{\Xi }(a_{2}) \bigr]. \end{aligned}$$
This implies
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad \leq \biggl[\frac{3\alpha }{\alpha +ks}- \frac{\alpha }{(\alpha +sk)2^{\frac{\alpha +sk}{{\kappa }}}} \biggr] \frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}. \end{aligned}$$
The proof is complete. □
We now prove two new fractional integral identities which will be used as auxiliary results in the development of our next results.
Lemma 2.2
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \({\Xi }\in L[a_{1},a_{2}]\), then, for \({\kappa }>0\), we have
$$\begin{aligned} &\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}- \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+ {}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl( \chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}-{\lambda }^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }. \end{aligned}$$
Proof
From [1], we have
$$\begin{aligned} &\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}- \frac{\Gamma _{{\kappa }} (\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+ {}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl( \chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{1}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \int ^{\chi ^{-1}(a_{2})}_{ \chi ^{-1}(a_{1})} \bigl[ \bigl(\chi (v)-a_{1} \bigr)^{\frac{\alpha }{{\kappa }}}- \bigl(a_{2}- \chi (v) \bigr)^{\frac{\alpha }{{\kappa }}} \bigr] \bigl({\Xi }^{\prime }\circ \chi \bigr) (v) \chi ^{\prime }(v)\,\mathrm{d}v \\ &\quad =\frac{1}{2} \int ^{\chi ^{-1}(a_{2})}_{\chi ^{-1}(a_{1})} \biggl[ \biggl( \frac{\chi (v)-a_{1}}{a_{2}-a_{1}} \biggr)^{ \frac{\alpha }{{\kappa }}}- \biggl(\frac{a_{2}-\chi (v)}{a_{2}-a_{1}} \biggr)^{\frac{\alpha }{{\kappa }}} \biggr] \bigl({\Xi }^{\prime }\circ \chi \bigr) (v) \chi ^{\prime }(v)\,\mathrm{d}v \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}-{\lambda }^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }. \end{aligned}$$
This completes the proof. □
Example 2.3
Let \(a_{1}=2\), \(a_{2}=3\), \(\alpha =\frac{1}{2}\), \({\kappa }=2\), \({\Xi }(x)=x^{2}\), \(\chi (x)=x\). Then all the assumptions in Lemma 2.2 are satisfied.
One can observe that \(\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}=\frac{13}{2}\). We have
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{\Gamma _{2}(\frac{1}{2})}{8} \biggl[ \frac{1}{\Gamma _{2}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2}(3-{ \lambda })^{-\frac{3}{4}}\,\mathrm{d} {\lambda }+ \frac{1}{\Gamma _{2}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2}({ \lambda }-2)^{- \frac{3}{4}}\,\mathrm{d} {\lambda } \biggr]=\frac{577}{90}. \end{aligned}$$
It follows that
$$\begin{aligned}& \frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}- \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }} I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\& \quad = \frac{4}{45}. \end{aligned}$$
On the other hand
$$\begin{aligned} &\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}-{\lambda }^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad =\frac{1}{2} \int _{0}^{1} \bigl[(1-{\lambda })^{\frac{1}{4}}-{\lambda }^{ \frac{1}{4}} \bigr](6-2{\lambda })\,\mathrm{d} { \lambda }=\frac{4}{45}. \end{aligned}$$
Example 2.4
Let \(a_{1}=2\), \(a_{2}=3\), \(\alpha =\frac{1}{2}\), \({\kappa }=\frac{1}{2}\), \({\Xi }(x)=x^{2}\), \(\chi (x)=x\). Then all the assumptions in Lemma 2.2 are satisfied.
One can observe that \(\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}=\frac{13}{2}\). We have
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{\Gamma _{\frac{1}{2}}(\frac{1}{2})}{2} \biggl[ \frac{1}{\Gamma _{\frac{1}{2}}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2} \, \mathrm{d} {\lambda }+\frac{1}{\Gamma _{\frac{1}{2}}(\frac{1}{2})} \int _{2}^{3}{ \lambda }^{2} \, \mathrm{d} {\lambda } \biggr]=\frac{19}{3}. \end{aligned}$$
It follows that
$$\begin{aligned}& \frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}- \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }} I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\& \quad = \frac{1}{6}. \end{aligned}$$
On the other hand
$$\begin{aligned} &\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}-{\lambda }^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad =\frac{1}{2} \int _{0}^{1}(1-2{\lambda }) (6-2{\lambda }) \, \mathrm{d} { \lambda }=\frac{1}{6}. \end{aligned}$$
Lemma 2.5
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \({\Xi }\in L[a_{1},a_{2}]\), then, for \({\kappa }>0\), we have
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[\mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }, \end{aligned}$$
where
$$ \mu = \textstyle\begin{cases} 1, & \textit{for } 0\leq {\lambda }< \frac{1}{2}, \\ -1 , & \textit{for } \frac{1}{2}\leq {\lambda }< 1. \end{cases} $$
Proof
It suffices to show that
$$\begin{aligned} &\frac{a_{2}-a_{1}}{2} \int ^{1}_{0}\mu {\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)\, \mathrm{d} { \lambda } \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{\frac{1}{2}}_{0}{\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)\,\mathrm{d} { \lambda }-\frac{a_{2}-a_{1}}{2} \int ^{1}_{ \frac{1}{2}} {\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \,\mathrm{d} { \lambda } \\ &\quad =\frac{{\Xi }(a_{2})-{\Xi } (\frac{a_{1}+a_{2}}{2} )}{2}+ \frac{{\Xi }(a_{1})-{\Xi } (\frac{a_{1}+a_{2}}{2} )}{2} \\ &\quad =\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr). \end{aligned}$$
By Lemma 2.2, we have
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+ {}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl( \chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \\ &\quad = \biggl[\frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2}-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr] \\ &\qquad {}- \biggl\{ \frac{{\Xi }(a_{1})+{\Xi }(a_{2})}{2} \\ &\qquad {}- \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+ {}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl( \chi ^{-1}(a_{1}) \bigr) \bigr] \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0}\mu {\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)\, \mathrm{d} { \lambda } \\ &\qquad {}-\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[(1-{ \lambda })^{\frac{\alpha }{{\kappa }}}-{\lambda }^{ \frac{\alpha }{{\kappa }}} \bigr] {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[\mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \,\mathrm{d} {\lambda }. \end{aligned}$$
This completes the proof. □
Example 2.6
Let \(a_{1}=2\), \(a_{2}=3\), \(\alpha =\frac{1}{2}\), \({\kappa }=2\), \({\Xi }(x)=x^{2}\), \(\chi (x)=x\). Then all the assumptions in the Lemma 2.5 are satisfied.
One can observe that \({\Xi }(\frac{a_{1}+a_{2}}{2})=\frac{25}{4}\).
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{\Gamma _{2}(\frac{1}{2})}{8} \biggl[ \frac{1}{\Gamma _{2}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2}(3-{ \lambda })^{-\frac{3}{4}}\,\mathrm{d} {\lambda }+ \frac{1}{\Gamma _{2}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2}({ \lambda }-2)^{- \frac{3}{4}}\,\mathrm{d} {\lambda } \biggr] \\ &\quad =\frac{577}{90}. \end{aligned}$$
It follows that
$$\begin{aligned}& \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \\& \quad =\frac{29}{180}. \end{aligned}$$
On the other hand
$$\begin{aligned} &\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[\mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0}\mu {\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)\, \mathrm{d} { \lambda } \\ &\qquad {}-\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[{ \lambda }^{\frac{\alpha }{{\kappa }}}-(1-{\lambda })^{ \frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }=\frac{29}{180}. \end{aligned}$$
Example 2.7
Let \(a_{1}=2\), \(a_{2}=3\), \(\alpha =\frac{1}{2}\), \({\kappa }=\frac{1}{2}\), \({\Xi }(x)=x^{2}\), \(\chi (x)=x\). Then all the assumptions in Lemma 2.5 are satisfied.
One can observe that \({\Xi }(\frac{a_{1}+a_{2}}{2})=\frac{25}{4}\). We have
$$\begin{aligned} &\frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr] \\ &\quad =\frac{\Gamma _{\frac{1}{2}}(\frac{1}{2})}{2} \biggl[ \frac{1}{\Gamma _{\frac{1}{2}}(\frac{1}{2})} \int _{2}^{3}{\lambda }^{2} \, \mathrm{d} {\lambda }+\frac{1}{\Gamma _{2}(\frac{1}{2})} \int _{2}^{3}{ \lambda }^{2} \, \mathrm{d} {\lambda } \biggr]=\frac{19}{3}. \end{aligned}$$
It follows that
$$\begin{aligned}& \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \\& \quad =\frac{1}{12}. \end{aligned}$$
On the other hand
$$\begin{aligned} &\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[\mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{ \prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda } \\ &\quad =\frac{a_{2}-a_{1}}{2} \int ^{1}_{0}\mu {\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{ \lambda })a_{2} \bigr)\, \mathrm{d} { \lambda } \\ &\qquad {}-\frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl[{ \lambda }^{\frac{\alpha }{{\kappa }}}-(1-{\lambda })^{ \frac{\alpha }{{\kappa }}} \bigr]{\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \, \mathrm{d} {\lambda }=\frac{1}{12}. \end{aligned}$$
Theorem 2.8
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|\) is s-convex on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2(1+s)} \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert + \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert \bigr). \end{aligned}$$
Proof
Using Lemma 2.5 and the fact that \(|{\Xi }^{\prime }|\) is s-convex, we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl\vert \mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr\vert \bigl|{ \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|\,\mathrm{d} {\lambda } \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl[{ \lambda }^{s} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert +(1-{\lambda })^{s}\bigl|{\Xi }^{\prime }(a_{2})\bigr| \bigr] \,\mathrm{d} {\lambda } \\ &\qquad {} + \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl[{ \lambda }^{s} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert +(1-{\lambda })^{s}\bigl|{\Xi }^{\prime }(a_{2})\bigr| \bigr] \,\mathrm{d} {\lambda } \biggr] \\ &\quad =\frac{a_{2}-a_{1}}{2} \biggl\{ \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert \biggl[ \int _{0}^{ \frac{1}{2}} \bigl[{\lambda }^{s}-{\lambda }^{s}(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}+{ \lambda }^{\frac{\alpha }{{\kappa }}+s} \bigr] \,\mathrm{d} {\lambda } \\ &\qquad {} + \int _{\frac{1}{2}}^{1} \bigl[{\lambda }^{s}+{\lambda }^{s}(1-{ \lambda })^{\frac{\alpha }{{\kappa }}}-{ \lambda }^{ \frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \biggr] \\ &\qquad {} + \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert \biggl[ \int _{0}^{\frac{1}{2}} \bigl[(1-{ \lambda })^{s}+{\lambda }^{\frac{\alpha }{{\kappa }}}(1-{\lambda })^{s}-(1-{ \lambda })^{\frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \\ &\qquad {} + \int _{\frac{1}{2}}^{1} \bigl[(1-{\lambda })^{s}-{ \lambda }^{\frac{\alpha }{{\kappa }}}(1-{\lambda })^{s}+(1-{ \lambda })^{ \frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \biggr] \biggr\} \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl\{ \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert \biggl[ \int _{0}^{\frac{1}{2}}{\lambda }^{s} \, \mathrm{d} {\lambda } + \int _{ \frac{1}{2}}^{1}{\lambda }^{s} \, \mathrm{d} {\lambda } \biggr] \\ &\qquad {}+ \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert \biggl[ \int _{0}^{\frac{1}{2}}(1-{\lambda })^{s} \, \mathrm{d} {\lambda }+ \int _{\frac{1}{2}}^{1}(1-{\lambda })^{s} \, \mathrm{d} {\lambda } \biggr] \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2} \biggl\{ \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert \int _{0}^{1}{ \lambda }^{s} \, \mathrm{d} {\lambda }+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert \int _{0}^{1}(1-{ \lambda })^{s} \,\mathrm{d} {\lambda } \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2(1+s)} \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert + \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert \bigr). \end{aligned}$$
This completes the proof. □
Theorem 2.9
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|^{q}\) is s-convex on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq (a_{2}-a_{1}) \biggl( \frac{{\kappa }}{(\alpha p+{\kappa })2^{\frac{\alpha p+{\kappa }}{{\kappa }}}} \biggr)^{\frac{1}{p}} \biggl(\frac{1}{(s+1)2^{s+1}} \biggr)^{ \frac{1}{q}} \bigl\{ \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \\ &\qquad {} + \bigl(2^{s+1}-1 \bigr) \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} )^{\frac{1}{q}} \bigr\} , \end{aligned}$$
(2.1)
where \(p^{-1}+q^{-1}=1\)
Proof
Using Lemma 2.5, Hölder’s integral inequality and the fact that \(|{\Xi }^{\prime }|^{q}\) is s-convex, we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl\vert \mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr\vert \bigl|{ \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|\,\mathrm{d} {\lambda } \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \\ &\qquad {} + \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \biggr] \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{ \lambda }^{\frac{\alpha }{{\kappa }}}-(1-{\lambda })^{ \frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \biggl( \int ^{1}_{ \frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert ^{q} \,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \\ &\qquad {}\times\biggl\{ \biggl( \int _{0}^{ \frac{1}{2}} \bigl({\lambda }^{s} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+(1-{\lambda })^{s} \bigl\vert { \Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr) \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl({\lambda }^{s} \bigl\vert {\Xi }^{ \prime }(a_{1}) \bigr\vert ^{q}+(1-{\lambda })^{s} \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr) \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2} \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \\ &\qquad {}\times\biggl\{ \biggl( \frac{1}{(s+1)2^{s+1}} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+\frac{1}{s+1} \biggl(1- \frac{1}{2^{s+1}} \biggr) \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \biggr)^{ \frac{1}{q}} \\ &\qquad {} + \biggl(\frac{1}{s+1} \biggl(1-\frac{1}{2^{s+1}} \biggr) \bigl\vert {\Xi }^{ \prime }(a_{1}) \bigr\vert ^{q}+\frac{1}{(s+1)2^{s+1}} \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl(2^{p} \int _{0}^{\frac{1}{2}}{ \lambda }^{\frac{\alpha p}{{\kappa }}} \, \mathrm{d} {\lambda } \biggr)^{ \frac{1}{p}} \biggl(\frac{1}{(s+1)2^{s+1}} \biggr)^{\frac{1}{q}} \bigl\{ \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert { \Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \\ &\qquad {} + \bigl(2^{s+1}-1 \bigr) \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} )^{\frac{1}{q}} \bigr\} \\ &\quad =(a_{2}-a_{1}) \biggl( \frac{{\kappa }}{(\alpha p+{\kappa })2^{\frac{\alpha p+{\kappa }}{{\kappa }}}} \biggr)^{\frac{1}{p}} \biggl(\frac{1}{(s+1)2^{s+1}} \biggr)^{ \frac{1}{q}} \bigl\{ \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr)^{\frac{1}{q}} \\ &\qquad {} + \bigl(2^{s+1}-1 \bigr) \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} )^{\frac{1}{q}} \bigr\} . \end{aligned}$$
This completes the proof. □
Corollary 2.10
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|^{q}, q>1\), is s-convex on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq (a_{2}-a_{1}) \biggl( \frac{{\kappa }}{(\alpha p+{\kappa })2^{\frac{\alpha p+{\kappa }}{{\kappa }}}} \biggr)^{\frac{1}{p}} \biggl(\frac{1}{(s+1)2^{s+1}} \biggr)^{ \frac{1}{q}} \\ &\qquad {} \times \bigl(1+ \bigl(2^{s+1}-1 \bigr)^{\frac{1}{q}} \bigr) \bigl( \bigl\vert { \Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr), \end{aligned}$$
where \(p^{-1}+q^{-1}=1\).
Proof
Use (2.1) and let \(a_{1}=|{\Xi }^{\prime }(a_{1})|^{q}\), \(b_{1}= (2^{s+1}-1 )|{ \Xi }^{\prime }(a_{2})|^{q}\), \(a_{2}= (2^{s+1}-1 )|{\Xi }^{ \prime }(a_{1})|^{q}\), \(b_{2}=|{\Xi }^{\prime }(a_{2})|^{q}\). Here \(0<\frac{1}{q}<1\) for \(q>1\). Then using (1.1), we obtain the required result. □
Theorem 2.11
Let \(a_{1}< a_{2}\), \(q>1\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|^{q}\) is s-convex on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \biggl( \frac{1}{(s+1)2^{s+1}} \biggr)^{\frac{1}{q}} \\ &\qquad {} \times \bigl\{ \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert { \Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr)^{\frac{1}{q}}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert { \Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} )^{ \frac{1}{q}} \bigr\} . \end{aligned}$$
(2.2)
Proof
Using Lemma 2.5, the power mean integral inequality and the fact that \(|{\Xi }^{\prime }|^{q}\) is s-convex, we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl\vert \mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr\vert \bigl|{ \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|\,\mathrm{d} {\lambda } \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \\ &\qquad {} + \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \biggr] \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{ \lambda }^{\frac{\alpha }{{\kappa }}}-(1-{\lambda })^{ \frac{\alpha }{{\kappa }}} \bigr]\,\mathrm{d} {\lambda } \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} { \lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \,\mathrm{d} {\lambda } \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl( \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} { \lambda } \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \,\mathrm{d} {\lambda } \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl\{ \biggl( \int _{0}^{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl({ \lambda }^{s} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+(1-{\lambda })^{s} \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} \bigr) \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl({ \lambda }^{s} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+(1-{\lambda })^{s} \bigl\vert {\Xi }^{ \prime }(a_{2}) \bigr\vert ^{q} \bigr) \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \biggr\} \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl\{ \biggl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q} \int _{0}^{ \frac{1}{2}} \bigl[{\lambda }^{s}-{\lambda }^{s}(1-{\lambda })^{ \frac{\alpha }{{\kappa }}}+{ \lambda }^{\frac{\alpha }{{\kappa }}+s} \bigr] \,\mathrm{d} {\lambda } \\ &\qquad {} + \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \int _{0}^{\frac{1}{2}} \bigl[(1-{ \lambda })^{s}+{\lambda }^{\frac{\alpha }{{\kappa }}}(1-{\lambda })^{s}-(1-{ \lambda })^{\frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \biggr)^{ \frac{1}{q}} \\ &\qquad {} + \biggl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q} \int _{\frac{1}{2}}^{1} \bigl[{ \lambda }^{s}+{\lambda }^{s}(1-{\lambda })^{\frac{\alpha }{{\kappa }}}-{ \lambda }^{\frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \\ &\qquad {} + \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \int _{\frac{1}{2}}^{1} \bigl[(1-{ \lambda })^{s}-{\lambda }^{\frac{\alpha }{{\kappa }}}(1-{\lambda })^{s}+(1-{ \lambda })^{\frac{\alpha }{{\kappa }}+s} \bigr]\,\mathrm{d} {\lambda } \biggr)^{ \frac{1}{q}} \biggr\} \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl\{ \biggl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q} \int _{0}^{ \frac{1}{2}}{\lambda }^{s} \, \mathrm{d} {\lambda }+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \int _{0}^{\frac{1}{2}}(1-{\lambda })^{s} \, \mathrm{d} {\lambda } \biggr)^{ \frac{1}{q}} \\ &\qquad {} + \biggl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q} \int _{\frac{1}{2}}^{1}{ \lambda }^{s} \, \mathrm{d} {\lambda }+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \int _{ \frac{1}{2}}^{1}(1-{\lambda })^{s} \, \mathrm{d} {\lambda } \biggr)^{ \frac{1}{q}} \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \\ &\qquad {} \times \biggl\{ \biggl(\frac{1}{(s+1)2^{s+1}} \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \frac{1}{s+1} \biggl(1-\frac{1}{2^{s+1}} \biggr) \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl(\frac{1}{s+1} \biggl(1-\frac{1}{2^{s+1}} \biggr) \bigl\vert {\Xi }^{ \prime }(a_{1}) \bigr\vert ^{q}+\frac{1}{(s+1)2^{s+1}} \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} \\ &\quad =\frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \biggl( \frac{1}{(s+1)2^{s+1}} \biggr)^{\frac{1}{q}} \\ &\qquad {} \times \bigl\{ \bigl( \bigl\vert {\Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert { \Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr)^{\frac{1}{q}}+ \bigl(2^{s+1}-1 \bigr) \bigl\vert { \Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} )^{ \frac{1}{q}} \bigr\} . \end{aligned}$$
This completes the proof. □
Corollary 2.12
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|^{q}, q>1\) is s-convex on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl(\frac{{\kappa }}{\alpha +{\kappa }} \biggr)^{1-\frac{1}{q}} \biggl(\frac{\alpha -{\kappa }}{2{\kappa }}+ \frac{1}{2^{\frac{\alpha }{{\kappa }}}} \biggr)^{1-\frac{1}{q}} \biggl( \frac{1}{(s+1)2^{s+1}} \biggr)^{\frac{1}{q}} \\ &\qquad {} \times \bigl(1+ \bigl(2^{s+1}-1 \bigr)^{\frac{1}{q}} \bigr) \bigl( \bigl\vert { \Xi }^{\prime }(a_{1}) \bigr\vert ^{q}+ \bigl\vert {\Xi }^{\prime }(a_{2}) \bigr\vert ^{q} \bigr). \end{aligned}$$
Proof
Using the same technique as in the proof of Corollary 2.10, the proof is complete. □
Theorem 2.13
Let \(a_{1}< a_{2}\) and \({\Xi }:[a_{1},a_{2}]\rightarrow \mathbb{R}\) be a differentiable mapping on \((a_{1},a_{2})\). Also suppose that \(|{\Xi }^{\prime }|^{q}\) is s-concave on \([a_{1},a_{2}]\), \(\chi (x)\) is an increasing and positive monotone function on \((a_{1},a_{2}]\), having a continuous derivative \(\chi ^{\prime }(x)\) on \((a_{1},a_{2})\) and \(\alpha \in (0,1)\), then, for \({\kappa }>0\), we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq (a_{2}-a_{1}) \biggl( \frac{{\kappa }}{(\alpha p+{\kappa })2^{\alpha p+{\kappa }}} \biggr)^{ \frac{1}{p}} \biggl(\frac{1}{2} \biggr)^{\frac{1}{q}} \biggl( \biggl\vert { \Xi }^{\prime } \biggl(\frac{a_{1}+3a_{2}}{4} \biggr) \biggr\vert + \biggl\vert { \Xi }^{\prime } \biggl( \frac{3a_{1}+a_{2}}{4} \biggr) \biggr\vert \biggr), \end{aligned}$$
where \(p^{-1}+q^{-1}=1\).
Proof
Using Lemma 2.5, Hölder’s integral inequality and the fact that \(|{\Xi }^{\prime }|^{q}\) is s-concave, we have
$$\begin{aligned} & \biggl\vert \frac{\Gamma _{{\kappa }}(\alpha +{\kappa })}{2(a_{2}-a_{1})^{\frac{\alpha }{{\kappa }}}} \bigl[{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{1})^{+}}({ \Xi } \circ \chi ) \bigl(\chi ^{-1}(a_{2}) \bigr)+{}_{{\kappa }}I^{\alpha :\chi }_{\chi ^{-1}(a_{2})^{-}}({ \Xi }\circ \chi ) \bigl(\chi ^{-1}(a_{1}) \bigr) \bigr]-{\Xi } \biggl( \frac{a_{1}+a_{2}}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \int ^{1}_{0} \bigl\vert \mu +{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr\vert \bigl|{ \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|\,\mathrm{d} {\lambda } \\ &\quad \leq \frac{a_{2}-a_{1}}{2} \biggl[ \int _{0}^{\frac{1}{2}} \bigl[1+{\lambda }^{ \frac{\alpha }{{\kappa }}}-(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \\ &\qquad {} + \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr] \bigl\vert { \Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert \,\mathrm{d} {\lambda } \biggr] \\ &\quad \leq \frac{a_{2}-a_{1}}{2}\biggl[ \biggl( \int _{0}^{\frac{1}{2}} \bigl[1+{ \lambda }^{\frac{\alpha }{{\kappa }}}-(1-{\lambda })^{ \frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl[1-{\lambda }^{ \frac{\alpha }{{\kappa }}}+(1-{\lambda })^{\frac{\alpha }{{\kappa }}} \bigr]^{p} \, \mathrm{d} {\lambda } \biggr)^{\frac{1}{p}} \biggl( \int ^{1}_{ \frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{\lambda })a_{2} \bigr) \bigr\vert ^{q} \,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}}\biggr] \\ &\quad =(a_{2}-a_{1}) \biggl( \frac{{\kappa }}{(\alpha p+{\kappa })2^{\alpha p+{\kappa }}} \biggr)^{ \frac{1}{p}} \biggl( \int _{0}^{\frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} \\ &\qquad {} + \biggl( \int ^{1}_{\frac{1}{2}} \bigl\vert {\Xi }^{\prime } \bigl({\lambda }a_{1}+(1-{ \lambda })a_{2} \bigr) \bigr\vert ^{q}\,\mathrm{d} {\lambda } \biggr)^{\frac{1}{q}} ]. \end{aligned}$$
Since \(|{\Xi }^{\prime }|^{q}\) is a concave function on \([a_{1},a_{2}]\) and using the Jensen integral inequality, we have
$$\begin{aligned} \int _{0}^{\frac{1}{2}}\bigl|{\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|^{q} \,\mathrm{d} {\lambda }&\leq \biggl( \int _{0}^{\frac{1}{2}}{\lambda }^{*} \, \mathrm{d} {\lambda } \biggr) \biggl\vert {\Xi }^{\prime } \biggl( \frac{ (\int _{0}^{\frac{1}{2}}({\lambda }a_{1}+(1-{\lambda })a_{2})\,\mathrm{d}{\lambda } )}{ (\int _{0}^{\frac{1}{2}}{\lambda }^{*}\,\mathrm{d}{\lambda } )} \biggr) \biggr\vert \\ &\leq \frac{1}{2} \biggl\vert {\Xi }^{\prime } \biggl( \frac{a_{1}+3a_{2}}{4} \biggr) \biggr\vert . \end{aligned}$$
Similarly
$$\begin{aligned} \int _{\frac{1}{2}}^{1}\bigl|{\Xi }^{\prime } \bigl({ \lambda }a_{1}+(1-{\lambda })a_{2} \bigr)\bigr|^{q} \,\mathrm{d} {\lambda }&\leq \biggl( \int _{\frac{1}{2}}^{1}{\lambda }^{*} \, \mathrm{d} {\lambda } \biggr) \biggl\vert {\Xi }^{\prime } \biggl( \frac{ (\int _{\frac{1}{2}}^{1}({\lambda }a_{1}+(1-{\lambda })a_{2})\,\mathrm{d}{\lambda } )}{ (\int _{0}^{\frac{1}{2}}{\lambda }^{*}\,\mathrm{d}{\lambda } )} \biggr) \biggr\vert \\ &\leq \frac{1}{2} \biggl\vert {\Xi }^{\prime } \biggl( \frac{3a_{1}+a_{2}}{4} \biggr) \biggr\vert . \end{aligned}$$
This completes the proof. □