In this section, we present some preliminary results including estimates for Green functions and solvability of non-homogeneous fractional p-Laplacian BVPs. These results constitute key ingredients of the proof of our main result (Theorem 3.1). All the function spaces considered below consist of scalar functions. The two lemmas following below are well known.
Lemma 2.1
([29])
\((1)\) If \(F\in L(0,1)\) and \(\mu > \nu >0\), then
$$ D_{0+}^{\nu }I_{0+}^{\mu }F(x)=I_{0+}^{\mu -\nu }F(x), \qquad D_{0+}^{\nu }I_{0+}^{ \nu }F(x)=F(x). $$
\((2)\) If \(\mu , \nu >0\), then
$$ D_{0+}^{\mu }x^{\nu -1}=\frac{\Gamma (\nu )}{\Gamma (\nu -\mu )}x^{ \nu -\mu -1}. $$
Lemma 2.2
([11])
Let \(A_{i}\in R\), \(i=1,2,\ldots ,N\), and \(N=[\alpha ]+1\). Then
$$ I_{0+}^{\alpha }D_{0+}^{\alpha }F(x)=F(x)+A_{1} x^{\alpha -1}+A_{2} x^{ \alpha -2}+\cdots +A_{N} x^{\alpha -N}, $$
where \(\alpha >0\), \(F \in C(0,1)\cap L(0,1)\), \(D_{0+}^{\alpha }F \in C(0,1)\cap L(0,1)\).
Let \(B_{1}= b^{p-1}\eta ^{\alpha -1}\neq1\), \(B_{2}=a\Gamma (\beta )\xi ^{\frac{\beta -1}{2}}\neq\Gamma (\frac{\beta +1}{2})\), and denote
$$\begin{aligned}& G(t,z)= \textstyle\begin{cases} \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-(\Gamma (\frac{\beta +1}{2})-B_{2})(t-z)^{\beta -1}-a\Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}} }{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})}, & 0\leq z\leq t\leq 1,z\leq \xi , \\ \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-(\Gamma (\frac{\beta +1}{2})-B_{2})(t-z)^{\beta -1 }}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})}, & 0< \xi \leq z \leq t\leq 1, \\ \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-a\Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}} }{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})}, & 0\leq t \leq z\leq \xi \leq 1, \\ \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})}, & 0\leq t\leq z\leq 1,\xi \leq z, \end{cases}\displaystyle \end{aligned}$$
(2.1)
$$\begin{aligned}& M(z,r)= \textstyle\begin{cases} \frac{[z(1-r)]^{\alpha -1}-b^{p-1}z^{\alpha -1}(\eta -r)^{\alpha -1}-(1-B_{1}) (z-r)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})}, & 0\leq r\leq z\leq 1,r\leq \eta , \\ \frac{[z(1-r)]^{\alpha -1}-(1-B_{1}) (z-r)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})}, & 0 \leq \eta \leq r\leq z\leq 1, \\ \frac{[z(1-r)]^{\alpha -1}-b^{p-1}z^{\alpha -1}(\eta -r)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})}, & 0\leq z \leq r\leq \eta \leq 1, \\ \frac{[z(1-r)]^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})},& 0\leq z\leq r\leq 1,\eta \leq r. \end{cases}\displaystyle \end{aligned}$$
(2.2)
The following technical statement plays an important role in studying Green functions relevant to our considerations.
Lemma 2.3
Let G and M be defined by (2.1) and (2.2), respectively. If \(a \Gamma (\beta )\xi ^{\frac{\beta -1}{2}}< \Gamma (\frac{\beta +1}{2})\) and \(b^{p-1}\eta ^{\alpha -1}<1\), then:
(a) \(G, M \in C([0,1]\times [0,1])\);
(b) \(G(t,z)>0\), \(M(t,z)>0\) for all \(t,z\in (0,1)\);
(c) there exist two positive functions \(\mu ,\nu \in C((0,1),(0,+\infty ))\) such that, for all \(z \in (0,1)\), one has
$$ \mu (z) \geq \max_{0\leq t\leq 1}G(t,z), \qquad \nu (z) \geq \max _{0\leq t\leq 1}M(t,z). $$
Proof
(i) This statement follows immediately from (2.1) and (2.2).
(ii) In order to prove that \(G(t,z)>0\) for all \(t,z\in (0,1)\), consider, first, the case
$$ 0\leq z\leq t\leq 1,\quad z\leq \xi . $$
Put
$$ g(t,z)= \frac{t^{\beta -1}(1-z)^{\beta -1}-(t-z)^{\beta -1}}{\Gamma (\beta )}. $$
(2.3)
Obviously, in the considered case, \(g(t,z)> 0\).
On the other hand, \(\forall \xi \in (0,\frac{1}{2}]\), \(z\in [0,\xi ]\), we have
$$ 1-\frac{z}{\xi }\leq (1-z)^{2}. $$
Then
$$ \biggl(1-\frac{z}{\xi }\biggr)^{\frac{\beta -1}{2}}\leq (1-z)^{\beta -1}, $$
which implies that
$$ (\xi -z)^{\frac{\beta -1}{2}}\leq {\xi }^{\frac{\beta -1}{2}}(1-z)^{ \beta -1}. $$
Obviously,
$$ g^{*}(\xi ,z)={\xi }^{\frac{\beta -1}{2}}(1-z)^{\beta -1}-(\xi -z)^{ \frac{\beta -1}{2}}\geq 0. $$
Therefore,
$$\begin{aligned} G(t,z) =&\frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-(\Gamma (\frac{\beta +1}{2})-B_{2})(t-z)^{\beta -1}-a \Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&\frac{1}{\Gamma (\beta )} \biggl(1+ \frac{B_{2}}{\Gamma (\frac{\beta +1}{2})-B_{2}} \biggr)\bigl[t(1-z) \bigr]^{ \beta -1}-\frac{(t-z)^{\beta -1}}{\Gamma (\beta )}- \frac{a \Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&\frac{t^{\beta -1}(1-z)^{\beta -1}-(t-z)^{\beta -1}}{\Gamma (\beta )}+ \frac{B_{2}t^{\beta -1}(1-z)^{\beta -1}-a \Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}} }{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&g(t,z)+\frac{a t^{\beta -1}}{(\Gamma (\frac{\beta +1}{2})-B_{2})}g^{*}( \xi ,z) \\ >& 0. \end{aligned}$$
The remaining three cases \(0< \xi \leq z\leq t < 1 \) or \(0 < t \leq z \leq \xi < 1 \) or \(0 \leq t\leq z <1 \), \(\xi \leq z\), can be treated using the similar method, so that we omit the obvious modifications. Thus, \(G(t,z)>0\) for all \(t,z\in (0,1)\).
Similarly, to prove that \(M(t,z)>0\), for all \(t,z\in (0,1)\), consider, first, the case
$$ 0\leq z\leq t\leq 1,\quad z\leq \eta . $$
Put
$$ m(t,z)= \frac{(1-z)^{\alpha -1}t^{\alpha -1}-(t-z)^{\alpha -1}}{\Gamma (\alpha )}. $$
(2.4)
Obviously, \(m(t,z)> 0 \) for \(0\leq z\leq t\leq 1\) in the considered case. So
$$\begin{aligned} M(t,z) =&\frac{[t(1-z)]^{\alpha -1}-b^{p-1}t^{\alpha -1}(\eta -z)^{\alpha -1}-({1-B_{1}}) (t-z)^{\alpha -1} }{\Gamma (\alpha )({1-B_{1}})} \\ =&\frac{1}{\Gamma (\alpha )} \biggl(1+\frac{B_{1}}{1-B_{1}} \biggr)\bigl[t(1-z) \bigr]^{ \alpha -1}-\frac{(t-z)^{\alpha -1}}{\Gamma (\alpha )}- \frac{b^{p-1}t^{\alpha -1} (\eta -z)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})} \\ =&\frac{t^{\alpha -1}(1-z)^{\alpha -1}-(t-z)^{\alpha -1}}{\Gamma (\alpha )}+ \frac{b^{p-1}t^{\alpha -1}[\eta ^{\alpha -1}(1-z)^{\alpha -1}- (\eta -z)^{\alpha -1}] }{\Gamma (\alpha )(1-B_{1})} \\ =&m(t,z)+\frac{b^{p-1}t^{\alpha -1} }{1-B_{1}}m(\eta ,z) \\ >&0. \end{aligned}$$
One can apply a similar argument in order to treat the remaining three cases \(0< \eta \leq z\leq t < 1 \) or \(0 < t \leq z \leq \eta < 1 \) or \(0 \leq t\leq z <1 \), \(\eta \leq z\). Thus, \(M(t,z)> 0 \) for \(t,z \in (0,1)\).
(iii) Obviously, for a fixed z, the functions g and m, given by (2.3) and (2.4), respectively, are increasing in t for \(t\leq z\) and decreasing in t for \(t\geq z\). Therefore,
$$\begin{aligned}& \max_{0\leq t\leq 1}g(t,z)=g(z,z)= \frac{z^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )},\quad z\in (0,1); \\& \max_{0\leq t\leq 1}m(t,z)=m(z,z)= \frac{z^{\alpha -1}(1-z)^{\alpha -1}}{\Gamma (\alpha )},\quad z\in (0,1). \end{aligned}$$
Put
$$\begin{aligned}& \mu (z)=g(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})},\quad z \in (0,1); \\& \nu (z)=m(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})},\quad z \in (0,1). \end{aligned}$$
It is clear that \(\mu ,\nu \in C((0,1),(0,+\infty ))\).
Consider four cases.
If \(0\leq z\leq t\leq 1\), \(z\leq \xi \), then
$$\begin{aligned} \max_{0\leq t\leq 1}G(t,z) =&\max_{0\leq t\leq 1} \biggl(g(t,z)+ \frac{B_{2}t^{\beta -1}(1-z)^{\beta -1}-a \Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}} }{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \biggr) \\ \leq &g(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =& \mu (z). \end{aligned}$$
If \(0<\xi \leq z\leq t\leq 1\), then
$$\begin{aligned} \max_{0\leq t\leq 1}G(t,z) =&\max_{0\leq t\leq 1} \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-(\Gamma (\frac{\beta +1}{2})-B_{2})(t-z)^{\beta -1 }}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&\max_{0\leq t\leq 1} \biggl( \frac{t^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )}+ \frac{B_{2}t^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})}- \frac{(t-z)^{\beta -1}}{\Gamma (\beta )} \biggr) \\ \leq &g(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =& \mu (z). \end{aligned}$$
If \(0\leq t\leq z\leq \xi < 1\), then
$$\begin{aligned} \max_{0\leq t\leq 1}G(t,z) =&\max_{0\leq t\leq 1} \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}-a\Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}} }{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&\max_{0\leq t\leq 1} \biggl( \frac{t^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )}+ \frac{B_{2}t^{\beta -1}(1-z)^{\beta -1}-a\Gamma (\beta )t^{\beta -1}(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \biggr) \\ \leq &g(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =& \mu (z). \end{aligned}$$
If \(0\leq t\leq z\leq 1\), \(\xi \leq z\), then
$$\begin{aligned} \max_{0\leq t\leq 1}G(t,z) =&\max_{0\leq t\leq 1} \frac{\Gamma (\frac{\beta +1}{2})[t(1-z)]^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =&\max_{0\leq t\leq 1} \biggl( \frac{t^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )}+ \frac{B_{2}t^{\beta -1}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \biggr) \\ \leq &g(z,z)+ \frac{B_{2}(1-z)^{\beta -1}}{\Gamma (\beta )(\Gamma (\frac{\beta +1}{2})-B_{2})} \\ =& \mu (z). \end{aligned}$$
Thus,
$$ \max_{0\leq t\leq 1}G(t,z)\leq \mu (z), z\in (0,1). $$
Similarly, consider four cases for the function ν.
If \(0\leq z\leq t\leq 1\), \(z\leq \eta \), then
$$\begin{aligned} \max_{0\leq t\leq 1}M(t,z) =&\max_{0\leq t\leq 1} \biggl(m(t,z)+ \frac{b^{p-1}t^{\alpha -1}[\eta ^{\alpha -1}(1-z)^{\alpha -1}- (\eta -z)^{\alpha -1}]}{\Gamma (\alpha )(1-B_{1})} \biggr) \\ \leq &m(z,z)+ \frac{B_{1}(1-z)^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} \\ =& \nu (z). \end{aligned}$$
If \(0<\eta \leq z\leq t\leq 1\), then
$$\begin{aligned} \max_{0\leq t\leq 1}M(t,z) =&\max_{0\leq t\leq 1} \biggl( \frac{[t(1-z)]^{\alpha -1}-(1-B_{1}) (t-z)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})} \biggr) \\ =&\max_{0\leq t\leq 1} \biggl(h(t,z)+ \frac{B_{1}t^{\alpha -1}(1-z)^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} \biggr) \\ \leq &m(z,z)+ \frac{B_{1}(1-z)^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} = \nu (z). \end{aligned}$$
If \(0\leq t\leq z\leq \eta < 1\), then
$$\begin{aligned} \max_{0\leq t\leq 1}M(t,z) =&\max_{0\leq t\leq 1} \biggl( \frac{[t(1-z)]^{\alpha -1}-b^{p-1}z^{\alpha -1}(\eta -z)^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})} \biggr) \\ =&\max_{0\leq t\leq 1} \biggl( \frac{t^{\alpha -1}(1-z)^{\alpha -1}}{\Gamma (\alpha )}+ \frac{b^{p-1}t^{\alpha -1}[\eta ^{\alpha -1}(1-z)^{\alpha -1}- (\eta -z)^{\alpha -1}] }{\Gamma (\alpha )(1-B_{1})} \biggr) \\ \leq &m(z,z)+ \frac{B_{1}(1-z)^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} \\ =& \nu (z). \end{aligned}$$
If \(0\leq t\leq z\leq 1\), \(\eta \leq z\), then
$$\begin{aligned} \max_{0\leq t\leq 1}M(t,z) =&\max_{0\leq t\leq 1} \frac{[t(1-z)]^{\alpha -1} }{\Gamma (\alpha )(1-B_{1})} \\ =&\max_{0\leq t\leq 1} \biggl( \frac{t^{\alpha -1}(1-z)^{\alpha -1}}{\Gamma (\alpha )}+ \frac{B_{1}[t(1-z)]^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} \biggr) \\ \leq &m(z,z)+ \frac{B_{1}(1-z)^{\alpha -1}}{\Gamma (\alpha )(1-B_{1})} \\ =& \nu (z). \end{aligned}$$
Thus,
$$ \max_{0\leq t\leq 1}M(t,z)\leq \nu (z), \quad z\in (0,1). $$
The proof of Lemma 2.3 is complete. □
The next statement provides the existence and uniqueness result for the non- homogeneous problems of our interest.
Lemma 2.4
Assume that
(i) \(\phi _{p}(z)=|z|^{p-2}z\), \(p > 1\);
(ii) \(\phi _{q}=(\phi _{p})^{-1}\), \(\frac{1}{p}+\frac{1}{q}=1\);
(iii) \(1<\alpha ,\beta \leq 2\) and \(\gamma =\frac{\beta -1}{2}\);
(iv) \(0<\xi \leq \frac{1}{2}\), \(0<\eta < 1\), \(a,b\in [0,+\infty )\).
Then, for any \(y\in C[0,1]\), the problem
$$ \textstyle\begin{cases} D_{0+}^{\alpha }(\phi _{p}(D_{0+}^{\beta }x(t)))=y(t), \quad 0< t< 1, \\ x(0)=0,\qquad x(1)=aD_{0+}^{\gamma }x(\xi ),\qquad D_{0+}^{\beta }x(0)=0, \qquad D_{0+}^{\beta }x(1)=b D_{0+}^{\beta }x(\eta ), \end{cases} $$
(2.5)
admits the unique solution
$$ x(t)= \int ^{1}_{0}G(t,z)\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz. $$
(2.6)
Proof
By Lemma 2.2, one has
$$ \phi _{p}\bigl(D_{0+}^{\beta }x(t) \bigr)=I_{0+}^{\alpha }y(t)+A_{1}t^{{\alpha }-1}+A_{2}t^{{ \alpha }-2}, $$
(2.7)
where \(A_{1},A_{2}\in R\). Combining (2.7) with \(D_{0+}^{\beta }x(0)=0\) (cf. (2.5)), we have \(A_{2}=0\). Then
$$ \phi _{p}\bigl(D_{0+}^{\beta }x(t) \bigr)=I_{0+}^{\alpha }y(t)+A_{1}t^{{\alpha }-1}, $$
(2.8)
from which it follows that
$$ \phi _{p}\bigl(D_{0+}^{\beta }x(t)\bigr)= \frac{1}{\Gamma (\alpha )} \int ^{t}_{0}(t-r)^{ \alpha -1}y(r)\,dr+A_{1}t^{{\alpha }-1}. $$
(2.9)
Hence,
$$ \phi _{p}\bigl(D_{0+}^{\beta }x(1)\bigr)= \frac{1}{\Gamma (\alpha )} \int ^{1}_{0}(1-r)^{ \alpha -1}y(r)\,dr+A_{1} $$
(2.10)
and
$$ \phi _{p}\bigl(D_{0+}^{\beta }x(\eta )\bigr)= \frac{1}{\Gamma (\alpha )} \int ^{ \eta }_{0}(\eta -r)^{\alpha -1}y(r)\,dr+A_{1} \eta ^{{\alpha }-1}. $$
(2.11)
Next, combining (2.10) and (2.11) with \(D_{0+}^{\beta }x(1)=bD_{0+}^{\beta }x(\eta )\) (cf. once again (2.5)), we obtain
$$ A_{1}=- \int ^{1}_{0} \frac{(1-r)^{\alpha -1}}{\Gamma (\alpha )(1-b^{p-1}\eta ^{\alpha -1})}y(r)\,dr + \int ^{\eta }_{0} \frac{b^{p-1}(\eta -r)^{\alpha -1}}{\Gamma (\alpha )(1-b^{p-1}\eta ^{\alpha -1})}y(r)\,dr. $$
So
$$\begin{aligned} \phi _{p}\bigl(D_{0+}^{\beta }x(t)\bigr) =& \frac{1}{\Gamma (\alpha )} \int ^{t}_{0}(t-r)^{ \alpha -1}y(r)\,dr- \int ^{1}_{0} \frac{t^{\alpha -1}(1-r)^{\alpha -1}}{\Gamma (\alpha )(1-b^{p-1}\eta ^{\alpha -1})} y(r)\,dr \\ &{}+ \int ^{\eta }_{0} \frac{b^{p-1}t^{\alpha -1}(\eta -r)^{\alpha -1}}{\Gamma (\alpha )(1-b^{p-1}\eta ^{\alpha -1})}y(r)\,dr\\ =&- \int ^{1}_{0}M(t,r)y(r)\,dr. \end{aligned}$$
Then
$$ D_{0+}^{\beta }x(t)=-\phi _{q} \biggl( \int ^{1}_{0}M(t,r)y(r)\,dr \biggr). $$
(2.12)
Applying now Lemma 2.2 to (2.12), we have
$$ x(t)=-I_{0+}^{\beta }\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)+C_{1}t^{{ \beta }-1}+C_{2}t^{{\beta }-2}. $$
(2.13)
where \(C_{1},C_{2}\in R\). Since \(x(0)=0\) (see (2.5), we have \(C_{2}=0\). Therefore, (2.13) reduces to
$$ x(t)=-I_{0+}^{\beta }\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)+C_{1}t^{{ \beta }-1}. $$
(2.14)
Applying \(D_{0+}^{\gamma }\) to both sides of (2.14), and by Lemma 2.1, we have
$$\begin{aligned} D_{0+}^{\gamma }x(t) =&-D_{0+}^{\gamma }I_{0+}^{\beta } \phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)+C_{1}D_{0+}^{\gamma }t^{{\beta }-1} \\ =&-I_{0+}^{\beta -\gamma }\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)+C_{1} \frac{\Gamma (\beta )}{\Gamma (\beta -\gamma )}t^{ \beta -\gamma -1}. \\ =&- \int ^{t}_{0} \frac{(t-z)^{\frac{\beta -1}{2}}}{\Gamma (\frac{\beta +1}{2})}\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz+ C_{1} \frac{\Gamma (\beta )}{\Gamma (\frac{\beta +1}{2})}t^{ \frac{\beta -1}{2}}. \end{aligned}$$
So
$$\begin{aligned}& x(1)=- \int ^{1}_{0}\frac{(1-z)^{\beta -1}}{\Gamma (\beta )}\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz+C_{1}, \end{aligned}$$
(2.15)
$$\begin{aligned}& D_{0+}^{\gamma }x(\xi )=- \int ^{\xi }_{0} \frac{(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\frac{\beta +1}{2})} \phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz+ C_{1} \frac{\Gamma (\beta )}{\Gamma (\frac{\beta +1}{2})}\xi ^{ \frac{\beta -1}{2}}. \end{aligned}$$
(2.16)
Combining (2.15) and (2.16) with \(x(1)=a D_{0+}^{\gamma }x(\xi )\) (see again (2.5)), we have
$$\begin{aligned} C_{1} =&\frac{\Gamma (\frac{\beta +1}{2})}{\Gamma (\frac{\beta +1}{2})-B_{2}} \biggl\{ \int ^{1}_{0}\frac{(1-z)^{\beta -1}}{\Gamma (\beta )}\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz \\ &{} -a \int ^{\xi }_{0} \frac{(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\frac{\beta +1}{2})} \phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz \biggr\} . \end{aligned}$$
Thus, we obtain the unique solution of problem (2.5):
$$\begin{aligned} x(t) =&- \int ^{t}_{0}\frac{(t-z)^{\beta -1}}{\Gamma (\beta )}\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz \\ &{}+ \frac{t^{\beta -1}\Gamma (\frac{\beta +1}{2})}{\Gamma (\frac{\beta +1}{2})-B_{2}} \biggl\{ \int ^{1}_{0}\frac{(1-z)^{\beta -1}}{\Gamma (\beta )}\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz \\ &{}- a \int ^{\xi }_{0} \frac{(\xi -z)^{\frac{\beta -1}{2}}}{\Gamma (\frac{\beta +1}{2})} \phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz \biggr\} \\ =& \int ^{1}_{0} G(t,z)\phi _{q} \biggl( \int ^{1}_{0}M(z,r)y(r)\,dr \biggr)\,dz. \end{aligned}$$
The proof of Lemma 2.4 is complete. □
We complete this section with the following simple observation.
Lemma 2.5
Let \(E=C[0,1]\) be the space of continuous functions equipped with the standard sup-norm \(\|x\|=\max_{0\leq t\leq 1}|x(t)|\) and denote by \(P=\{x\in E\mid x(t)\geq 0,0\leq t\leq 1\}\) the corresponding cone. Let \(T : P\rightarrow E\) be given by
$$ Tx(t)= \int ^{1}_{0}G(t,z)\phi _{q} \biggl( \int ^{1}_{0}M(z,r)h\bigl(r,x(r)\bigr)\,dr \biggr)\,dz, $$
where \(h\in C([0,1]\times [0,+\infty ),[0,+\infty ))\) and G and M are defined by (2.1) and (2.2), respectively. Then T takes P into itself, and as such is completely continuous.
Proof
Since G, M and h are nonnegative and continuous, one has \(T(P) \subset P\) and T is continuous. To prove the complete continuity of T, one needs to use the standard argument based on the Arzela–Ascoli theorem and Lebesgue dominated convergence theorem (see, for example, [23]). □