Skip to main content

Theory and Modern Applications

New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right \((p,q)\)-derivatives and definite integrals

Abstract

The main objective of this paper is to introduce a new more elegant notion of left–right \((p,q)\)-derivative and definite integrals. To show the significance of these concepts, we discuss some of their basic properties. A new generalized \((p,q)\)-integral identity is also obtained. Utilizing this identity as an auxiliary result we then obtain our main results using the concept of n-polynomial convex functions.

1 Introduction

Integral inequalities play a significant role in both pure and applied sciences because of their wide applications in mathematics and physics, as well as many other natural and human social sciences, while convexity theory has remained an important tool in the establishment of the theory of integral inequalities. The Hermite–Hadamard inequality [13], as a member of the family of integral inequalities, is a classical inequality that has long fascinated numerous mathematical researchers, which can be stated as follows:

$$ f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \int _{a}^{b}f(x) \,\mathrm{d}x\leq \frac{f(a)+f(b)}{2} $$

if \(f: [a, b]\mapsto \mathbb{R}\) is convex.

This inequality provides us a necessary and sufficient condition for a function to be convex, it also gives us an estimate of the integral average for a continuous convex function on an interval. Recently, the improvements, generalizations, and variants for the Hermite–Hadamard inequality have been the subject of much research. The left-hand side of the Hermite–Hadamard inequality can be estimated by the Ostrowski [29] inequality, which reads as

$$ \biggl\vert f(x)-\frac{1}{b-a} \int _{a}^{b}f(x)\,\mathrm{d}x \biggr\vert \leq \biggl[\frac{1}{4}+ \biggl(\frac{x-\frac{a+b}{2}}{b-a} \biggr)^{2} \biggr] \bigl\Vert f^{\prime } \bigr\Vert _{\infty }(b-a) $$

with the best possible constant \(1/4\) if \(f: [a, b]\mapsto \mathbb{R}\) is differentiable, where \(\|f^{\prime }\|_{\infty }=\max \{|f(x)||x\in [a, b]\}\).

In recent years, several successful attempts have been made in obtaining the variants and applications of Ostrowski inequality. For example, Dragomir and Rassias [12] provided many interesting results on its applications in numerical integration.

In the past few years, a variety of novel approaches have been utilized by researchers in generalizing the classical inequalities. One of those approaches is utilizing the concepts of quantum calculus instead of ordinary calculus. It is very well known to everyone that quantum calculus is calculus without limits. In quantum calculus we often establish the q-analogues of classical mathematical objects which can be recaptured by taking \(q\to 1^{-}\). Historically the subject of quantum calculus can be traced back to Euler and Jacobi, but in recent decades it has experienced a rapid development [16]. Consequently, new generalizations of the classical concepts of quantum calculus have been introduced and investigated in the literature. Tariboon and Ntouyas [34] introduced the quantum calculus concepts on finite intervals, obtained several q-analogues of classical mathematical objects, and opened a new venue of research. For instance, they have obtained the q-analogue of Hölder’s integral inequality, q-analogue of Hermite–Hadamard’s inequality, q-trapezoid inequality, q-Ostrowski inequality, q-Cauchy–Bunyakovsky–Schwarz inequality, and q-analogue of Grüss–C̆ebys̆ev inequality, etc. This motivated other researchers and, as a result, numerous novel results pertaining to quantum analogues of classical mathematical results have been introduced in the literature. For example Noor et al. [28] and Sudsutad et al. [33] obtained some more q-analogues of trapezoid-like inequalities for first order q-differentiable convex functions, and Liu and Zhuang [25] derived some new q-analogues of trapezoid-like inequalities involving second order q-differentiable convex functions. Alp et al. [2] obtained a corrected q-analogue of Hermite–Hadamard’s inequality. Zhang et al. [38] obtained a new generalized q-integral identity and obtained several new q-analogues for first order q-differentiable convex functions. Noor et al. [27] utilized the concepts of quantum calculus and obtained some new q-analogues of the Ostrowski-type inequality. These new analogues reduce to the original results if \(q\to 1^{-}\). For some details from the application point of view of quantum differential and integral operators, see [1, 310, 14, 15, 1721, 24, 3032, 37]. Recently Kunt and Baidar [22] introduced some new concepts of quantum calculus, namely left–right quantum derivatives and definite integrals. Using these new definitions, the authors have obtained some new q-analogues of classical integral inequalities. Another significant generalization of quantum calculus is the post-quantum calculus. In quantum calculus we deal with a q-number with one base q, however, post-quantum calculus includes p- and q-numbers with two independent variables p and q. This was first considered by Chakarabarti and Jagannathan [11]. Tunc and Gov [36] introduced the concepts of \((p,q)\)-derivatives and \((p,q)\)-integrals on finite intervals as follows.

The main purpose of the article is to establish some new post-quantum estimates of the Ostrowski inequality by the use of new modified definitions of left–right \((p,q)\)-derivatives and definite integrals. But before we start to proceed towards the main results, we need to recall some basic concepts and previously known results from the quantum and post-quantum calculus.

Definition 1.1

([36])

Let \(0< q< p\leq 1\), \(\mathcal{K}\subseteq \mathbb{R}\) be an interval such that \(a\in \mathcal{K,}\) and \(f:\mathcal{K}\to \mathbb{R}\) be a continuous function. Then the left-\((p,q)\)-derivative \({}_{a}\mathcal{D}_{p,q}f(x)\) of f at \(x\in \mathcal{K}\setminus \{a\}\) is defined by

$$ _{a^{+}}\mathcal{D}_{p,q}f(x)= \frac{f(px+(1-p)a)-f(qx+(1-q)a)}{(p-q)(x-a)}. $$

Definition 1.2

([36])

Let \(0< q< p\leq 1\), \(\mathcal{K}\subseteq \mathbb{R}\) be an interval such that \(a\in \mathcal{K,}\) and \(f:\mathcal{K}\to \mathbb{R}\) be a continuous function. Then the left-\((p,q)\)-integral \(\int _{a}^{x}f(t){}_{a}\,\mathrm{d}_{p,q}t\) on \(\mathcal{K}\) is defined by

$$ \int _{a}^{x}f(t){}_{a^{+}}\, \mathrm{d}_{p,q}t=(p-q) (x-a)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} f \biggl( \frac{q^{n}}{p^{n+1}}x+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr). $$

Recently, several researchers have utilized these concepts in obtaining some new \((p,q)\)-analogues of classical inequalities. For example, Kunt et al. [23] and Luo et al. [26] obtained new refinements of the Hermite–Hadamard inequality using the concepts of post-quantum calculus.

2 New definitions

We now define some new concepts, examples, and their basic properties.

Definition 2.1

Let \(f:I\to \mathbb{R}\) be a continuous function and let \(t\in I\) and \(0< q< p\leq 1\). Then the right \((p,q)\)-derivative on I of function f at t is defined as

$$\begin{aligned} {}_{b^{-}}D_{p,q}f(t)=\frac{f(px+(1-p)b))-f(qx+(1-q)b)}{(p-q)(b-t)},\quad t\neq b. \end{aligned}$$

Example 2.2

Let \(f:[a,b]\to \mathbb{R}\), \(f(t)=(b-t)^{n}\) for all \(n\in \mathbb{N}\), then

$$\begin{aligned} {}_{b^{-}}\mathrm{D}_{p,q}f(t)&={}_{b^{-}} \mathrm{D}_{p,q}(b-t)^{n} \\ &=\frac{(b-(pt+(1-p)b))^{n}-(b-(qt+(1-q)b))^{n}}{(p-q)(b-t)} \\ &=\frac{p^{n}(b-t)^{n}-q^{n}(b-t)^{n}}{(p-q)(b-t)} \\ &=\frac{p^{n}-q^{n}}{p-q}(b-t)^{n} \\ &=[n]_{p,q}(b-t)^{n}. \end{aligned}$$

Theorem 2.3

Let \(f,g:[a,b]\to \mathbb{R}\) be arbitrary functions and \(\lambda \in \mathbb{R}\), then

  1. I.

    \({}_{b^{-}}\mathrm{D}_{p,q}[f(t)+g(t)]={}_{b^{-}}\mathrm{D}_{p,q}f(t)+ {}_{b^{-}}\mathrm{D}_{p,q}g(t)\);

  2. II.

    \({}_{b^{-}}\mathrm{D}_{p,q}\lambda f(t)=\lambda {}_{b^{-}}\mathrm{D}_{p,q}f(t)\);

  3. III.
    $$\begin{aligned} {}_{b^{-}}\mathrm{D}_{p,q}(fg) (t)&=g\bigl(pt+(1-p)b \bigr){}_{b^{-}}\mathrm{D}_{p,q}f(t)+f\bigl(qt+(1-q)b\bigr) {}_{b^{-}}\mathrm{D}_{p,q}g(t) \\ &=f\bigl(pt+(1-p)b\bigr){}_{b^{-}}\mathrm{D}_{p,q}g(t)+g \bigl(qt+(1-q)b\bigr){}_{b^{-}} \mathrm{D}_{p,q}f(t); \end{aligned}$$
  4. IV.

    \({}_{b^{-}}\mathrm{D}_{p,q} (f/g )(t)= \frac{g(pt+(1-p)b){}_{b^{-}}\mathrm{D}_{p,q}f(t)+f(qt+(1-q)b){}_{b^{-}}\mathrm{D}_{p,q}g(t)}{g(pt+(1-p)b)g(qt+(1-q)b)}\).

Proof

We leave the details of the proof of parts I and II as these are obvious.

III. By Definition 2.1, we have

$$\begin{aligned} &{}_{b^{-}}\mathrm{D}_{p,q}(fg) (t) \\ &\quad= \frac{f(pt+(1-p)b)g(pt+(1-p)b)-f(qt+(1-q)b)g(pt+(1-p)b)}{(p-q)(b-t)} \\ &\qquad{}+ \frac{f(qt+(1-q)b)g(pt+(1-p)b)-f(qt+(1-q)b)g(qt+(1-q)b)}{(p-q)(b-t)} \\ &\quad =g\bigl(pt+(1-p)b\bigr){}_{b^{-}}\mathrm{D}_{p,q}f(t)+f \bigl(qt+(1-q)b\bigr){}_{b^{-}} \mathrm{D}_{p,q}g(t). \end{aligned}$$

The second equation can be obtained in a similar way by interchanging the functions f and g.

IV. By Definition 2.1, we have

$$\begin{aligned} &{}_{b^{-}}\mathrm{D}_{p,q} (f/g ) (t) \\ &\quad= \frac{ (f/g )(pt+(1-p)b)- (f/g )(qt+(1-q)b)}{(p-q)(b-t)} \\ &\quad= \frac{f(pt+(1-p)b)g(qt+(1-q)b)-f(qt+(1-q)b)g(pt+(1-p)b)}{g(pt+(1-p)b)g(qt+(1-q)b)(p-q)(b-t)} \\ &\quad= \frac{g(pt+(1-p)b){}_{b^{-}}\mathrm{D}_{p,q}f(t)+f(qt+(1-q)b){}_{b^{-}}\mathrm{D}_{p,q}g(t)}{g(pt+(1-p)b)g(qt+(1-q)b)}. \end{aligned}$$

This completes the proof. □

We now define right-\((p,q)\)-quantum integral as right-\((p,q)\)-antiderivative of \(\mathcal{F}(t)\) by using the following shifting operator:

$$\begin{aligned} \Delta _{p,q}\mathcal{F}(t)=\mathcal{F} \biggl( \frac{q}{p}t+\biggl(1- \frac{q}{p}\biggr)b \biggr), \end{aligned}$$
(2.1)

where \(\mathcal{F}(t)\) is the \((p,q)\)-antiderivative of f.

Applying mathematical induction to (2.1), we have

$$\begin{aligned} \Delta ^{n}_{p,q}\mathcal{F}(t)= \begin{bmatrix} \mathcal{F} (\frac{q^{n}}{p^{n}}t+(1-\frac{q^{n}}{p^{n}})b ), &n\in \mathbb{N} \\ { \mathcal{F}(t), }&n=0 \end{bmatrix}. \end{aligned}$$
(2.2)

From Definition 2.1, we have

$$\begin{aligned} f(t)=\frac{\mathcal{F}(pt+(1-p)b)-\mathcal{F}(qt+(1-q)b)}{(p-q)(b-t)}. \end{aligned}$$

Making the use of \(u=pt+(1-p)b\), we have

$$\begin{aligned} f \biggl(\frac{u-(1-p)b}{p} \biggr)&= \frac{\mathcal{F}(u)-\mathcal{F} (\frac{q}{p}u+(1-\frac{q}{p})b )}{ (\frac{p-q}{p} )(b-u)} \\ &=\frac{1-\Delta _{p,q}}{ (\frac{p-q}{p} )(b-u)} \mathcal{F}(t). \end{aligned}$$

Hence

$$\begin{aligned} \mathcal{F}(t)=\frac{1}{1-\Delta _{p,q}} \biggl(1-\frac{q}{p} \biggr) (b-u)f \biggl(\frac{u-(1-p)b}{p} \biggr). \end{aligned}$$

Applying the formula of expansion of geometric series to (2.1), we obtain

$$\begin{aligned} \mathcal{F}(t)={}& \biggl(1-\frac{q}{p} \biggr)\sum _{n=0}^{ \infty }\Delta ^{n}_{p.q}(b-u)f \biggl(\frac{u-(1-p)b}{p} \biggr) \\ ={}& \biggl(1-\frac{q}{p} \biggr)\sum_{n=0}^{\infty } \biggl(b- \biggl(\frac{q^{n}}{p^{n}}u+ \biggl(1-\frac{q^{n}}{p^{n}} \biggr)b \biggr) \biggr) \\ &{} \times f \biggl(\frac{1}{p} \biggl(\frac{q^{n}}{p^{n}}u+ \biggl(1- \frac{q}{p} \biggr)b \biggr)+ \biggl(1-\frac{1}{p} \biggr)b \biggr) \\ ={}&(p-q) (b-u)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}u+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)b \biggr). \end{aligned}$$

Thus

$$\begin{aligned} \mathcal{F}(t)=(p-q) (b-t)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n+1}}t+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)b \biggr). \end{aligned}$$

We now define right \((p,q)\)-integral on a finite interval as:

Definition 2.4

Let \(f:I\to \mathbb{R}\) be a continuous function. Then for \(0< q< p\leq 1\), the right-\((p,q)\)-integral of \(f(t)\) on I is defined as

$$\begin{aligned} \int _{a}^{b}f(t){}_{b^{-}}\, \mathrm{d}_{p,q}t=(p-q) (b-t)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}a+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)b \biggr). \end{aligned}$$
(2.3)

For any \(c\in (a,b)\), we have

$$\begin{aligned} \int _{a}^{c}f(t){}_{b^{-}}\, \mathrm{d}_{p,q}t= \int _{a}^{b}f(t) {}_{b^{-}}\, \mathrm{d}_{p.q}t- \int _{c}^{b}f(t){}_{b^{-}} \, \mathrm{d}_{p.q}t. \end{aligned}$$

If we take \(b=0\) in (2.3), then

$$\begin{aligned} \int _{a}^{0}f(t){}_{0^{-}}\, \mathrm{d}_{p,q}t=(p-q) (-t)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}a \biggr), \end{aligned}$$

which is the right-\((p,q)\)-integral of \(f(t)\) on \([a,0]\).

Theorem 2.5

Let \(f,g:[a,b]\to \mathbb{R}\) be arbitrary functions and \(\lambda \in \mathbb{R}\), then we have

  1. I.

    \(\int _{a}^{b}[f(t)+g(t)]{}_{b^{-}}\,\mathrm{d}_{p,q}t=\int _{a}^{b}f(t){}_{b^{-}}\,\mathrm{d}_{p,q}t+\int _{a}^{b}g(t) {}_{b^{-}}\,\mathrm{d}_{p,q}t\);

  2. II.

    \(\int _{a}^{b}\lambda f(t)=\lambda \int _{a}^{b}f(t) {}_{b^{-}}\,\mathrm{d}_{p,q}t\);

  3. III.

    \({}_{b^{-}}\mathcal{D}_{p,q}\int _{s}^{b}f(t){}_{b^{-}} \,\mathrm{d}_{p,q}t=f(s)\);

  4. IV.
    $$ \int _{s}^{u}{}_{b^{-}}\mathcal{D}_{p,q}f(t){}_{b^{-}} \,\mathrm{d}_{p,q}t=f(s)-f(u); $$
    (2.4)
  5. V.

    \(\int _{a}^{b}f(qt+(1-q)b){}_{b^{-}}\mathcal{D}_{p,q}g(pt){}_{b^{-}} \,\mathrm{d}_{p,q}t=(fg)|_{a}^{b}-\int _{a}^{b}g(pt+(1-p)b){}_{b^{-}} \mathrm{D}_{p,q}f(t){}_{b^{-}}\,\mathrm{d}_{p,q}t\) or \(\int _{a}^{b}f(pt+(1-p)b){}_{b^{-}}\mathcal{D}_{p,q}g(qt){}_{b^{-}} \,\mathrm{d}_{p,q}t=(fg)|_{a}^{b}-\int _{a}^{b}g(qt+(1-q)b){}_{b^{-}} \mathrm{D}_{p,q}f(t){}_{b^{-}}\,\mathrm{d}_{p,q}t\).

Proof

The proofs of claims I and II are obvious.

III. Using Definitions 2.1 and 2.4, we have

$$\begin{aligned} &{}_{b^{-}}\mathcal{D}_{p,q} \int _{s}^{b}f(t){}_{b^{-}} \, \mathrm{d}_{p,q}t \\ &\quad={}_{b^{-}}\mathcal{D}_{p,q} \Biggl[(p-q) (b-s)\sum _{n=0}^{ \infty }\frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}s+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \Biggr] \\ &\quad=(p-q) \biggl[ \frac{(b-(ps+(1-p)b))\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f (\frac{q^{n}}{p^{n+1}}(ps+(1-p)b)+ (1-\frac{q^{n}}{p^{n+1}} )b )}{(p-q)(b-s)} \\ &\qquad{}- \frac{(b-(qs+(1-q)b))\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f (\frac{q^{n}}{p^{n+1}}(qs+(1-q)b)+ (1-\frac{q^{n}}{p^{n+1}} )b )}{(p-q)(b-s)} \biggr] \\ &\quad=\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n}}f \biggl( \frac{q^{n}}{p^{n}}s+ \biggl(1-\frac{q^{n}}{p^{n}} \biggr)b \biggr)- \sum _{n=0}^{\infty }\frac{q^{n+1}}{p^{n+1}}f \biggl( \frac{q^{n+1}}{p^{n+1}}s+ \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)b \biggr) \\ &\quad=f(s). \end{aligned}$$

IV. Using Definitions 2.1 and 2.4, we have

$$\begin{aligned} & \int _{s}^{b}{}_{b^{-}}\mathcal{D}_{p,q}f(t){}_{b^{-}} \,\mathrm{d}_{p,q}t \\ &\quad = \int _{s}^{u}\frac{f(pt+(1-p)b)-f(qt+(1-q)b)}{(p-q)(b-t)} \, \mathrm{d}_{p,q}t \\ &\quad=\frac{1}{p-q} \biggl[ \int _{s}^{u}\frac{f(pt+(1-p)b)}{(b-t)} \, \mathrm{d}_{p,q}t- \int _{s}^{u}\frac{f(qt+(1-q)b)}{(b-t)} \, \mathrm{d}_{p,q}t \biggr] \\ &\quad=\frac{1}{p-q} \Biggl[(p-q) (b-s)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f (\frac{q^{n}}{p^{n+1}}(ps+(1-p)b)+ (1-\frac{q^{n}}{p^{n+1}} )b )}{(b-s)} \\ &\qquad{}-(p-q) (b-s)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \frac{f (\frac{q^{n}}{p^{n+1}}(ps+(1-p)b)+ (1-\frac{q^{n}}{p^{n+1}} )b )}{(b-s)} \Biggr] \\ &\quad=\sum_{n=0}^{\infty }f \biggl( \frac{q^{n}}{p^{n}}s+ \biggl(1- \frac{q^{n}}{p^{n}} \biggr)b \biggr)-\sum _{n=0}^{\infty }f \biggl(\frac{q^{n+1}}{p^{n+1}}s+ \biggl(1- \frac{q^{n+1}}{p^{n+1}} \biggr)b \biggr) \\ &\quad=f(b)-f(s). \end{aligned}$$

V. From claim III of Theorem 2.3, we have

$$ f\bigl(qt+(1-q)b\bigr){}_{b^{-}}\mathrm{D}_{p,q}g(t)={}_{b^{-}} \mathrm{D}_{p,q}(fg) (t)-g\bigl(pt+(1-p)b\bigr) {}_{b^{-}} \mathrm{D}_{p,q}f(t) $$

By integrating over \([a,b]\) and using (2.4), we have

$$ \int _{a}^{b}f\bigl(qt+(1-q)b\bigr){}_{b^{-}} \mathrm{D}_{p,q}g(t){}_{b^{-}} \,\mathrm{d}_{p,q}t=(fg)|_{a}^{b}- \int _{a}^{b}g\bigl(pt+(1-p)b\bigr){}_{b^{-}} \mathrm{D}_{p,q}f(t){}_{b^{-}}\,\mathrm{d}_{p,q}t. $$

This completes the proof. □

We now derive \((p,q)\)-analogue of Hermite–Hadamard’s inequality.

Theorem 2.6

Let \(f:I\to \mathbb{R}\) be a convex and \((p,q)\)-integrable function with \(0< q< p\leq 1\), then

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{b-a} \biggl[ \int _{a}^{b}f(t) {}_{a^{+}}\, \mathrm{d}_{p,q}t+ \int _{a}^{b}f(t){}_{b^{-}} \, \mathrm{d}_{p,q}t \biggr]\leq \frac{f(a)+f(b)}{2}. \end{aligned}$$
(2.5)

Proof

It is obvious that

$$\begin{aligned} & \int _{0}^{1}f\bigl(tb+(1-t)a\bigr){}_{0^{+}} \,\mathrm{d}_{p,q}t \\ &\quad=(p-q)\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}b+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \\ &\quad=\frac{1}{b-a} \Biggl[(p-q) (b-a)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n+1}}b+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \Biggr] \\ &\quad=\frac{1}{b-a} \int _{a}^{b}f(t){}_{a^{+}}\, \mathrm{d}_{p,q}t. \end{aligned}$$
(2.6)

Similarly,

$$\begin{aligned} & \int _{0}^{1}f\bigl(ta+(1-t)b\bigr){}_{0^{+}} \,\mathrm{d}_{p,q}t \\ &\quad=(p-q)\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl( \frac{q^{n}}{p^{n+1}}a+ \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \\ &\quad=\frac{1}{b-a} \Biggl[(p-q) (b-a)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(\frac{q^{n}}{p^{n+1}}a+ \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \Biggr] \\ &\quad=\frac{1}{b-a} \int _{a}^{b}f(t){}_{b^{-}}\, \mathrm{d}_{p,q}t. \end{aligned}$$
(2.7)

Since f is convex on I, we have

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr)\leq \frac{1}{2}\bigl[f \bigl(tb+(1-t)a\bigr)+f\bigl(ta+(1-t)b\bigr)\bigr] \leq \frac{f(a)+f(b)}{2}, \end{aligned}$$
(2.8)

for all \(t\in I\).

Taking \((p,q)\)-integral of (2.8) and using (2.6) and (2.7), we obtain the required inequality. □

3 A key lemma

The following auxiliary result will play a significant role in the development of our next results.

Lemma 3.1

Let \(f:[a,b]\to \mathbb{R}\) be a \((p,q)\)-differentiable function on \((a,b)\) with \(a< b\). If \({}_{a}\mathrm{D}_{p,q}f\) is integrable on \([a,b]\) and \(0< q< p\leq 1\), then

$$\begin{aligned} & f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}}\, \mathrm{d}_{p,q}x- \frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}}\, \mathrm{d}_{p,q}x \\ &\quad=\frac{q(x-a)^{2}}{b-a} \int _{0}^{1}t{}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t \\ & \qquad{}+\frac{q(b-x)^{2}}{b-a} \int _{0}^{1}t{}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t. \end{aligned}$$
(3.1)

Proof

Let

$$\begin{aligned} &\mathcal{S}_{1}= \int _{0}^{1}t{}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t, \\ &\mathcal{S}_{2}= \int _{0}^{1}t{}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t, \end{aligned}$$

A direct computation gives

$$\begin{aligned} \mathcal{S}_{1}={}& \int _{0}^{1}t{}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t \\ ={}& \int _{0}^{1}\frac{f(tpx+(1-tp)a)-f(tqx+(1-tq)a)}{(p-q)(x-a)}{}_{0^{+z}} \, \mathrm{d}_{p,q}t \\ ={}&\frac{1}{x-a} \Biggl[\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \\ &{} -\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl(x\frac{q^{n+1}}{p^{n+1}}+ \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)a \biggr) \Biggr] \\ ={}&\frac{1}{x-a} \Biggl[\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \\ &{} -\frac{p}{q}\sum_{n=1}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \Biggr] \\ ={}&\frac{1}{x-a} \Biggl[ \biggl(1-\frac{p}{q} \biggr)\sum _{n=1}^{ \infty }\frac{q^{n}}{p^{n+1}}f \biggl(px \frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)a \biggr)+ \frac{f(x)}{q} \Biggr] \\ ={}&\frac{1}{x-a} \Biggl[\frac{f(x)}{q}- \biggl(\frac{p-q}{q} \biggr) \sum_{n=1}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl(px \frac{q^{n}}{p^{n+1}}+ \biggl(1-p\frac{q^{n}}{p^{n+1}} \biggr)a \biggr) \Biggr] \\ ={}&\frac{1}{x-a} \biggl[\frac{f(x)}{q}- \biggl(\frac{1}{pq} \biggr) \int _{0}^{p}f\bigl(tx+(1-t)a\bigr) {}_{a^{+}}\,\mathrm{d}_{p,q}t \biggr] \\ ={}&\frac{1}{x-a} \biggl[\frac{f(x)}{q}- \biggl(\frac{1}{pq(x-a)} \biggr) \int _{a}^{xp+(1-p)a}f(x){}_{a^{+}}\, \mathrm{d}_{p,q}x \biggr]. \end{aligned}$$

Similarly,

$$\begin{aligned} \mathcal{S}_{2}={}& \int _{0}^{1}t{}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) {}_{0^{+}}\, \mathrm{d}_{p,q}t \\ ={}& \int _{0}^{1}\frac{f(tpx+(1-tp)b)-f(tqx+(1-tq)b)}{(p-q)(b-x)}{}_{0^{+}} \, \mathrm{d}_{p,q}t \\ ={}&\frac{1}{b-x} \Biggl[\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \\ &{} -\sum_{n=0}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl(x\frac{q^{n+1}}{p^{n+1}}+ \biggl(1-\frac{q^{n+1}}{p^{n+1}} \biggr)b \biggr) \Biggr] \\ ={}&\frac{1}{b-x} \Biggl[\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \\ &{} -\frac{p}{q}\sum_{n=1}^{\infty } \frac{q^{n}}{p^{n+1}}f \biggl(px\frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \Biggr] \\ ={}&\frac{1}{b-x} \Biggl[ \biggl(1-\frac{p}{q} \biggr)\sum _{n=1}^{ \infty }\frac{q^{n}}{p^{n+1}}f \biggl(px \frac{q^{n}}{p^{n+1}}+ \biggl(1-p \frac{q^{n}}{p^{n+1}} \biggr)b \biggr)+ \frac{f(x)}{q} \Biggr] \\ ={}&\frac{1}{b-x} \Biggl[\frac{f(x)}{q}- \biggl(\frac{p-q}{q} \biggr) \sum_{n=1}^{\infty }\frac{q^{n}}{p^{n+1}}f \biggl(px \frac{q^{n}}{p^{n+1}}+ \biggl(1-p\frac{q^{n}}{p^{n+1}} \biggr)b \biggr) \Biggr] \\ ={}&\frac{1}{b-x} \biggl[\frac{f(x)}{q}- \biggl(\frac{1}{pq} \biggr) \int _{0}^{p}f\bigl(tx+(1-t)b\bigr) {}_{b^{-}}\,\mathrm{d}_{p,q}t \biggr] \\ ={}&\frac{1}{b-x} \biggl[\frac{f(x)}{q}- \biggl(\frac{1}{pq(b-x)} \biggr) \int _{xp+(1-p)b}^{b}f(x){}_{b^{-}}\, \mathrm{d}_{p,q}x \biggr]. \end{aligned}$$

Thus we have

$$\begin{aligned} &f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}}\, \mathrm{d}_{p,q}x- \frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}}\, \mathrm{d}_{p,q}x \\ &\quad=\frac{q(x-a)^{2}}{b-a}\mathcal{S}_{1}+\frac{q(b-x)^{2}}{b-a} \mathcal{S}_{2}, \end{aligned}$$

which leads to the desired identity (3.1). □

Remark 3.2

By taking \(p\to 1\), we obtain equality (3.1) of [22].

In order to prove our next results, we need the definition of n-polynomial convex functions which was introduced and studied by Toplu et al. [35].

Definition 3.3

([35])

Let \(n\in \mathbb{N}\). A nonnegative function \(f:I\subset \mathbb{R}\to \mathbb{R}\) is said to be an n-polynomial convex function if for every \(x,y\in I\) and \(t\in [0,1]\), we have

$$\begin{aligned} f\bigl(tx+(1-t)y\bigr)\leq \frac{1}{n}\sum_{s=1}^{n} \bigl[1-(1-t)^{s}\bigr]f(x)+ \frac{1}{n}\sum _{s=1}^{n}\bigl[1-t^{s}\bigr]f(y). \end{aligned}$$

Theorem 3.4

Let \(f:[a,b]\to \mathbb{R}\) be continuous and \((p,q)\)-differentiable function on \((a,b)\) with \(a< b\) and \({}_{a^{+}}\mathrm{D}_{p,q}f\) and \({}_{b^{-}}\mathrm{D}_{p,q}f\) be \((p,q)\)-integrable. If \(|{}_{a^{+}}\mathrm{D}_{p,q}f|\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|\) are n-polynomial convex functions and \(|{}_{a^{+}}\mathrm{D}_{p,q}f|,|{}_{b^{-}}\mathrm{D}_{p,q}f|\leq M\), then we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{qM(x-a)^{2}}{n(b-a)}\sum_{s=1}^{\infty } \Biggl( \frac{2}{p+q}-\frac{p-q}{p^{s+2}-q^{s+2}}-(p-q)\sum _{n=0}^{ \infty }\frac{q^{2n}}{p^{2n+2}} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)^{s} \Biggr) \\ &\qquad{}+\frac{qM(b-x)^{2}}{n(b-a)}\sum_{s=1}^{\infty } \Biggl( \frac{2(p+q-1)}{p+q}-(p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{(n+1)}} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{s}\\ &\qquad{}-(p-q) \sum _{n=0}^{\infty }\frac{q^{n(s+2)}}{p^{(n+1)(s+2)}} \Biggr). \end{aligned}$$

Proof

Using Lemma 3.1 and the fact that \(|{}_{a^{+}}\mathrm{D}_{p,q}f|\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|\) are n-polynomial convex functions, we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \int _{0}^{1}t \bigl\vert {}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) \bigr\vert {}_{0^{+}}\, \mathrm{d}_{p,q}t \\ &\qquad{} +\frac{q(b-x)^{2}}{b-a} \int _{0}^{1}t \bigl\vert {}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) \bigr\vert {}_{0^{+}}\, \mathrm{d}_{p,q}t \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \int _{0}^{1}t \Biggl[ \frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(x) \vert }{n}\sum _{s=1}^{n}\bigl[1-(1-t)^{s}\bigr] \\ &\qquad{} +\frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(a) \vert }{n}\sum_{s=1}^{n} \bigl[1-t^{s}\bigr] \Biggr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \\ &\qquad{}+\frac{q(b-x)^{2}}{b-a} \int _{0}^{1}t \Biggl[ \frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(x) \vert }{n}\sum _{s=1}^{n}\bigl[1-(1-t)^{s}\bigr] \\ &\qquad{} +\frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(b) \vert }{n}\sum_{s=1}^{n} \bigl[1-t^{s}\bigr] \Biggr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \\ &\quad=\frac{q(x-a)^{2}}{n(b-a)} \Biggl[ \bigl\vert {}_{a^{+}}\mathrm{D}_{p,q}f(x) \bigr\vert \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}} \,\mathrm{d}_{p,q}t \\ &\qquad{} + \bigl\vert {}_{a^{+}}\mathrm{D}_{p,q}f(a) \bigr\vert \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-t^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \Biggr] \\ &\qquad{}+\frac{q(b-x)^{2}}{n(b-a)} \Biggl[ \bigl\vert {}_{b^{-}}\mathrm{D}_{p,q}f(x) \bigr\vert \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}} \,\mathrm{d}_{p,q}t \\ &\qquad{} + \bigl\vert {}_{b^{-}}\mathrm{D}_{p,q}f(b) \bigr\vert \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-t^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \Biggr] \\ &\quad\leq \frac{qM(x-a)^{2}}{n(b-a)}\sum_{s=1}^{\infty } \Biggl( \frac{2}{p+q}-\frac{p-q}{p^{s+2}-q^{s+2}}-(p-q)\sum _{n=0}^{ \infty }\frac{q^{2n}}{p^{2n+2}} \biggl(1- \frac{q^{n}}{p^{n+1}} \biggr)^{s} \Biggr) \\ &\qquad{} +\frac{qM(b-x)^{2}}{n(b-a)}\sum_{s=1}^{\infty } \Biggl( \frac{2(p+q-1)}{p+q} \\ &\qquad{} -(p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{(n+1)}} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{s}-(p-q) \sum _{n=0}^{\infty }\frac{q^{n(s+2)}}{p^{(n+1)(s+2)}} \Biggr). \end{aligned}$$

This completes the proof. □

Theorem 3.5

Let \(f:[a,b]\to \mathbb{R}\) be continuous and \((p,q)\)-differentiable function on \((a,b)\) with \(a< b\) and \({}_{a^{+}}\mathrm{D}_{p,q}f\) and \({}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}}\) be \((p,q)\)-integrable. If \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}}\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}}\) are n-polynomial convex functions and \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}},|{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}} \leq M\), then for \(e_{1},e_{2}>1,{e_{1}^{-1}}+{e_{2}^{-1}}=1\), we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{qM[(b-x)^{2}+(b-x)^{2}}{(b-a)} \\ &\qquad{} \times \Biggl((p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{e_{1}} \Biggr)^{\frac{1}{e_{1}}} \biggl(\frac{2}{n} \biggr)^{\frac{1}{e_{2}}} \sum _{s=1}^{n} \Biggl((p-q)\sum _{n=0}^{\infty } \frac{q^{n}{s+1}}{p^{(s+1)(n+1)}} \Biggr). \end{aligned}$$

Proof

Using Lemma 3.1, Hölder’s integral inequality, and the fact that \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}}\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}}\) are n-polynomial convex functions, we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a^{+}} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{b^{-}} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \biggl( \int _{0}^{1}t^{e_{1}}{}_{0^{+}} \, \mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{1}}} \biggl( \int _{0}^{1} \bigl\vert {}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) \bigr\vert ^{e_{2}}{}_{0^{+}} \,\mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{1}}} \\ &\qquad{}+\frac{q(b-x)^{2}}{b-a} \biggl( \int _{0}^{1}t^{e_{1}}{}_{0}\, \mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{1}}} \biggl( \int _{0}^{1} \bigl\vert {}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) \bigr\vert ^{e_{2}} {}_{0^{+}}\,\mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{2}}} \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \biggl( \frac{p-q}{p^{e_{1}+1}-q^{e_{1}+1}} \biggr)^{\frac{1}{e_{1}}} \\ &\qquad{}\times \Biggl(\frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(x) \vert ^{e_{2}}}{n} \sum_{s=1}^{n} \int _{0}^{1}\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \\ &\qquad{} +\frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(a) \vert ^{e_{2}}}{n} \sum_{s=1}^{n} \int _{0}^{1}\bigl[1-t^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \Biggr)^{\frac{1}{e_{2}}} \\ &\qquad{}+\frac{q(b-x)^{2}}{b-a} \Biggl((p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{e_{1}} \Biggr)^{\frac{1}{e_{1}}} \\ &\qquad{}\times \Biggl(\frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(x) \vert ^{e_{2}}}{n} \sum_{s=1}^{n} \int _{0}^{1}\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}\\ &\qquad{}+ \frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(b) \vert ^{e_{2}}}{n}\sum _{s=1}^{n}\bigl[1-t^{s}\bigr] {}_{0^{+}}\,\mathrm{d}_{p,q} \Biggr)^{\frac{1}{e_{2}}} \\ &\quad\leq \frac{qM[(b-x)^{2}+(b-x)^{2}}{(b-a)} \\ &\qquad{} \times \Biggl((p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{n+1}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{e_{1}} \Biggr)^{\frac{1}{e_{1}}} \biggl(\frac{2}{n} \biggr)^{\frac{1}{e_{2}}} \sum _{s=1}^{n} \Biggl((p-q)\sum _{n=0}^{\infty } \frac{q^{n}{s+1}}{p^{(s+1)(n+1)}} \Biggr). \end{aligned}$$

This completes the proof. □

Theorem 3.6

Let \(f:[a,b]\to \mathbb{R}\) be continuous and \((p,q)\)-differentiable function on \((a,b)\) with \(a< b\) and \({}_{a^{+}}\mathrm{D}_{p,q}f\) and \({}_{b^{-}}\mathrm{D}_{p,q}f\) be \((p,q)\)-integrable. If \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}}\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}}\) are n-polynomial convex functions and \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}}, |{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}} \leq M\), then for \(e_{2}> 1\), we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{a} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{qM(x-a)^{2}}{n(b-a)} \biggl(\frac{1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ & \qquad{}\times \Biggl[\sum_{s=1}^{\infty } \Biggl( \frac{2}{p+q}- \frac{p-q}{p^{s+2}-q^{s+2}}-(p-q)\sum_{n=0}^{\infty } \frac{q^{2n}}{p^{2n+2}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{s} \Biggr) \Biggr]^{\frac{1}{e_{2}}} \\ &\qquad{} +\frac{qM(b-x)^{2}}{n(b-a)} \biggl(\frac{p+q-1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ &\qquad{} \times \Biggl[\sum_{s=1}^{\infty } \Biggl( \frac{2(p+q-1)}{p+q}-(p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{(n+1)}} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{s}-(p-q) \sum _{n=0}^{\infty }\frac{q^{n(s+2)}}{p^{(n+1)(s+2)}} \Biggr) \Biggr]^{\frac{1}{e_{2}}}. \end{aligned}$$

Proof

Using Lemma 3.1, power-mean integral inequality, and the fact that \(|{}_{a^{+}}\mathrm{D}_{p,q}f|^{e_{2}}\) and \(|{}_{b^{-}}\mathrm{D}_{p,q}f|^{e_{2}}\) are n-polynomial convex functions, we have

$$\begin{aligned} & \biggl\vert f(x)-\frac{1}{p(b-a)} \int _{a}^{px+(1-p)a}f(x){}_{a} \, \mathrm{d}_{p,q}x-\frac{1}{p(b-a)} \int _{px+(1-p)b}^{b}f(x){}_{a} \, \mathrm{d}_{p,q}x \biggr\vert \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \biggl( \int _{0}^{1}t{}_{0^{+}}\, \mathrm{d}_{p,q}t \biggr)^{1-\frac{1}{e_{2}}} \biggl( \int _{0}^{1}t \bigl\vert {}_{a^{+}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)a\bigr) \bigr\vert ^{e_{2}}{}_{0^{+}} \,\mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{2}}} \\ &\qquad{} +\frac{q(b-x)^{2}}{b-a} \biggl( \int _{0}^{1}t{}_{0^{+}} \, \mathrm{d}_{p,q}t \biggr)^{1-\frac{1}{e_{2}}} \biggl( \int _{0}^{1}t \bigl\vert {}_{b^{-}} \mathrm{D}_{p,q}f\bigl(tx+(1-t)b\bigr) \bigr\vert ^{e_{2}}{}_{0^{+}} \,\mathrm{d}_{p,q}t \biggr)^{\frac{1}{e_{2}}} \\ &\quad\leq \frac{q(x-a)^{2}}{b-a} \biggl(\frac{1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ &\qquad{} \times \Biggl( \frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(x) \vert ^{e_{2}}}{n}\sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \\ &\qquad{} +\frac{ \vert {}_{a^{+}}\mathrm{D}_{p,q}f(a) \vert ^{e_{2}}}{n} \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-t^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \Biggr)^{\frac{1}{e_{2}}} \\ &\qquad{} +\frac{q(x-a)^{2}}{b-a} \biggl(\frac{p+q-1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ &\qquad{} \times \Biggl( \frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(x) \vert ^{e_{2}}}{n}\sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-(1-t)^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \\ & \qquad{}+\frac{ \vert {}_{b^{-}}\mathrm{D}_{p,q}f(a) \vert ^{e_{2}}}{n} \sum_{s=1}^{n} \int _{0}^{1}t\bigl[1-t^{s} \bigr]{}_{0^{+}}\,\mathrm{d}_{p,q}t \Biggr)^{\frac{1}{e_{2}}} \\ &\quad\leq \frac{qM(x-a)^{2}}{n(b-a)} \biggl(\frac{1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ & \qquad{}\times \Biggl[\sum_{s=1}^{\infty } \Biggl( \frac{2}{p+q}-\frac{p-q}{p^{s+2}-q^{s+2}}-(p-q)\sum_{n=0}^{ \infty } \frac{q^{2n}}{p^{2n+2}} \biggl(1-\frac{q^{n}}{p^{n+1}} \biggr)^{s} \Biggr) \Biggr]^{\frac{1}{e_{2}}} \\ &\qquad{} +\frac{qM(b-x)^{2}}{n(b-a)} \biggl(\frac{p+q-1}{p+q} \biggr)^{1- \frac{1}{e_{2}}} \\ &\qquad{} \times \Biggl[\sum_{s=1}^{\infty } \Biggl( \frac{2(p+q-1)}{p+q}-(p-q)\sum_{n=0}^{\infty } \frac{q^{n}}{p^{(n+1)}} \biggl(\frac{q^{n}}{p^{n+1}} \biggr)^{s}-(p-q) \sum _{n=0}^{\infty }\frac{q^{n(s+2)}}{p^{(n+1)(s+2)}} \Biggr) \Biggr]^{\frac{1}{e_{2}}}. \end{aligned}$$

This completes the proof. □

4 Conclusion

We have introduced new concepts of left–right \((p,q)\)-derivatives and definite integrals, respectively. We have discussed some basic properties of these newly introduced concepts. Using them we have derived a new \((p,q)\)-integral identity. With the help of this identity, we have derived some new \((p,q)\)-analogues of Ostrowski-type inequalities, essentially utilizing the concept of n-polynomial convex functions. We hope that the ideas and techniques of this paper will inspire interested readers.

Availability of data and materials

Not applicable.

References

  1. Ahmad, B., Alsaedi, A., Nazemi, S.Z., Rezapour, S.: Some existence theorems for fractional integro-differential equations and inclusions with initial and non-separated boundary conditions. Bound. Value Probl. 2014, Article ID 249 (2014)

    Article  MathSciNet  Google Scholar 

  2. Alp, N., Sarıkaya, M.Z., Kunt, M., İşcan, İ.: q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ., Sci. 30(2), 193–203 (2018)

    Article  Google Scholar 

  3. Awan, M.U., Akhtar, N., Iftikhar, S., Noor, M.A., Chu, Y.-M.: New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, Article ID 125 (2020)

    Article  MathSciNet  Google Scholar 

  4. Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities involving \(\psi _{k}\)-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, Article ID 3051920 (2020)

    Article  MathSciNet  Google Scholar 

  5. Aydogan, M.S., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, Article ID 90 (2018)

    Article  MathSciNet  Google Scholar 

  6. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, Article ID 64 (2020)

    Article  MathSciNet  Google Scholar 

  7. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)

    Article  MathSciNet  Google Scholar 

  8. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, Article ID 145 (2017)

    Article  MathSciNet  Google Scholar 

  9. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations. Philos. Trans. R. Soc. A. https://doi.org/10.1098/rsta.2012.0144

  10. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, Article ID 79 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chakrabarti, R., Jagannathan, R.: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A 24(13), L711 (1991)

    Article  MathSciNet  Google Scholar 

  12. Dragomir, S.S., Rassias, T.M.: Ostrowski Type Inequalities and Applications in Numerical Integration. Kluwer Academic, Dordrecht (2002)

    Book  Google Scholar 

  13. Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)

    MATH  Google Scholar 

  14. Hedayati, V., Samei, M.E.: Positive solutions of fractional differential equation with two pieces in chain interval and simultaneous Dirichlet boundary conditions. Bound. Value Probl. 2019, Article ID 141 (2019)

    Article  MathSciNet  Google Scholar 

  15. Iqbal, A., Khan, M.A., Ullah, S., Chu, Y.-M.: Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications. J. Funct. Spaces 2020, Article ID 9845407 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)

    Book  Google Scholar 

  17. Kalsoom, H., Idrees, M., Baleanu, D., Chu, Y.-M.: New estimates of \(q_{1}q_{2}\)-Ostrowski-type inequalities within a class of n-polynomial prevexity of function. J. Funct. Spaces 2020, Article ID 3720798 (2020)

    MATH  Google Scholar 

  18. Kalsoom, H., Idrees, M., Kashuri, A., Awan, M.U., Chu, Y.-M.: Some new \((p_{1}p_{2}, q_{1}q_{2})\)-estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Math. 5(6), 7122–7144 (2020)

    Article  MathSciNet  Google Scholar 

  19. Khan, M.A., Mohammad, N., Nwaeze, E.R., Chu, Y.-M.: Quantum Hermite–Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, Article ID 99 (2020). https://doi.org/10.1186/s13662-020-02559-3

    Article  MathSciNet  Google Scholar 

  20. Khurshid, Y., Khan, M.A., Chu, Y.-M.: Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Math. 5(5), 5012–5030 (2020)

    Article  MathSciNet  Google Scholar 

  21. Khurshid, Y., Khan, M.A., Chu, Y.-M.: Conformable integral version of Hermite–Hadamard–Fejer inequalities via η-convex functions. AIMS Math. 5(5), 5106–5120 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kunt, M., Baidar, A.W.: Left–Right quantum derivatives and definite integrals. https://www.researchgate.net/profile/Mehmet_Kunt/publications

  23. Kunt, M., İşcan, İ., Alp, N., Sarıkaya, M.Z.: \((p,q)\)-Hermite–Hadamard inequalities and \((p,q)\)-estimates for midpoint type inequalities via convex and quasi-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 969–992 (2018)

    Article  MathSciNet  Google Scholar 

  24. Latif, M.A., Rashid, S., Dragomir, S.S., Chu, Y.-M.: Hermite–Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019, 317 (2019)

    Article  Google Scholar 

  25. Liu, W.-J., Zhuang, H.-F.: Some quantum estimates of Hermite–Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 7(2), 501–522 (2017)

    MathSciNet  Google Scholar 

  26. Luo, C.-Y., Du, T.-S., Awan, M.U., Zhang, Y.: Estimation-type results with respect to the parameterized \((p,q)\)-integral inequalities. AIMS Math. 5(1), 568–586 (2019)

    Article  MathSciNet  Google Scholar 

  27. Noor, M.A., Awan, M.U., Noor, K.I.: Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 10(4), 1013–1018 (2016)

    Article  MathSciNet  Google Scholar 

  28. Noor, M.A., Noor, K.I., Awan, M.U.: Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comput. 251, 675–679 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937)

    Article  MathSciNet  Google Scholar 

  30. Rashid, S., Iscan, I., Baleanu, D., Chu, Y.-M.: Generation of new fractional inequalities via n polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, Article ID 264 (2020)

    Article  MathSciNet  Google Scholar 

  31. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. 2020, Article ID 38 (2020)

    Article  MathSciNet  Google Scholar 

  32. Shen, J.-M., Rashid, S., Noor, M.A., Ashraf, R., Chu, Y.-M.: Certain novel estimates within fractional calculus theory on time scales. AIMS Math. 5(6), 6073–6086 (2020)

    Article  MathSciNet  Google Scholar 

  33. Sudsutad, W., Ntouyas, S.K., Tariboon, J.: Quantum integral inequalities for convex functions. J. Math. Inequal. 9(3), 781–793 (2015)

    Article  MathSciNet  Google Scholar 

  34. Tariboon, J., Ntouyas, S.K.: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, Article ID 121 (2014)

    Article  MathSciNet  Google Scholar 

  35. Toplu, T., Kadakal, M., İşcan, İ.: On n-polynomial convexity and some related inequalities. AIMS Math. 5(2), 1304–1318 (2020)

    Article  MathSciNet  Google Scholar 

  36. Tunç, M., Göv, E.: Some integral inequalities via \((p,q)\)-calculus on finite intervals. RGMIA Res. Rep. Collect. 19, Article ID 95 (2016)

    Google Scholar 

  37. Xu, L., Chu, Y.-M., Rashid, S., Deeb, A.A.E., Nisar, K.S.: On new unified bounds for a family of functions via fractional q-calculus theory. J. Funct. Spaces 2020, Article ID 4984612 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Zhang, Y., Du, T.-S., Wang, H., Shen, Y.-J.: Different types of quantum integral inequalities via \((\alpha ,m)\)-convexity. J. Inequal. Appl. 2018, Article ID 264 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the editor and anonymous referee for their valuable comments and suggestions. These suggestions helped us a lot in improving the standard of the paper. The second author is thankful to Higher Education Commission, Pakistan.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Uzair Awan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Awan, M.U., Talib, S. et al. New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right \((p,q)\)-derivatives and definite integrals. Adv Differ Equ 2020, 634 (2020). https://doi.org/10.1186/s13662-020-03094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-03094-x

MSC

Keywords