In this section, we estimate the strong convergence rate of the partially truncated EM method for (2.1). Now, to achieve this goal, we have to impose the following assumptions on the coefficients.
Assumption 3.1
There exist constants \(K_{3} >0\) and \(\beta \geq 0\) such that
$$ \bigl\vert \tilde{F}(t,x,y,i)-\tilde{F}(t,\bar{x}, \bar{y},i) \bigr\vert \vee \bigl\vert \tilde{G}(t,x,y,i)-\tilde{G}(t,\bar{x}, \bar{y},i) \bigr\vert \leq K_{3}\bigl( \vert x- \bar{x} \vert + \vert y-\bar{y} \vert \bigr) $$
(3.1)
and
$$ \begin{aligned} & \bigl\vert F(t,x,y,i)-F(t,\bar{x},\bar{y},i) \bigr\vert \vee \bigl\vert G(t,x,y,i)-G(t, \bar{x},\bar{y},i) \bigr\vert \\ &\quad \leq K_{3}\bigl(1+ \vert x \vert ^{\beta }+ \vert y \vert ^{\beta }+ \vert \bar{x} \vert ^{\beta }+ \vert \bar{y} \vert ^{\beta }\bigr) \bigl( \vert x- \bar{x} \vert + \vert y-\bar{y} \vert \bigr) \end{aligned} $$
(3.2)
for all \(t\in [0,T]\), \(x,y,\bar{x},\bar{y} \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\).
By Assumption 3.1 we get that there exists a constant \(\bar{K}_{3}>0\) such that
$$ \bigl\vert \tilde{F}(t,x,y,i) \bigr\vert \vee \bigl\vert \tilde{G}(t,x,y,i) \bigr\vert \leq \bar{K}_{3}\bigl(1+ \vert x \vert + \vert y \vert \bigr) $$
(3.3)
and
$$ \bigl\vert F(t,x,y,i) \bigr\vert \vee \bigl\vert G(t,x,y,i) \bigr\vert \leq \bar{K}_{3}\bigl(1+ \vert x \vert ^{ \beta +1} + \vert y \vert ^{\beta +1} \bigr) $$
(3.4)
for all \(t\in [0,T]\), \(x,y \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\), where \(\bar{K}_{3}=4K_{3} + \sup_{t\in [0,T],i\in \mathbb{S}} [\tilde{F}(t,0,0,i)+ \tilde{G}(t,0,0,i)+F(t,0,0,i)+G(t,0,0,i)]\). We also derive from Assumption 3.1 that
$$ \begin{aligned} & \bigl\vert f(t,x,y,i)-f(t,\bar{x},\bar{y},i) \bigr\vert \vee \bigl\vert g(t,x,y,i)-g(t, \bar{x},\bar{y},i) \bigr\vert \\ &\quad \leq K_{3}\bigl(1+ \vert x \vert ^{\beta }+ \vert y \vert ^{\beta }+ \vert \bar{x} \vert ^{\beta }+ \vert \bar{y} \vert ^{\beta }\bigr) \bigl( \vert x- \bar{x} \vert + \vert y-\bar{y} \vert \bigr) \end{aligned} $$
(3.5)
for all \(t\in [0,T]\), \(x,y,\bar{x},\bar{y} \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\).
Before stating the next assumption, we introduce functions \(\bar{V}_{i}\), \(i=1,2,3\), such that for any \(x,y \in \mathbb{R} ^{n}\),
$$ 0\leq \bar{V}_{i}(x,y)\leq K_{\bar{V}i}\bigl(1+ \vert x \vert ^{l_{i}}+ \vert y \vert ^{l_{i}}\bigr),\quad i=1,2,3, $$
for some \(K_{\bar{V}i}>0\) and \(l_{i}\geq 1\). Denote \(l_{v}=\max \{l_{1},l_{2},l_{3}\}\).
Assumption 3.2
There exist constants \(K_{4} >0\) and \(\bar{q} > 2\) such that
$$ \begin{aligned} &\bigl(x-D(y,i)-\bar{x}+D(\bar{y},i) \bigr)^{T} \bigl(F(t,x,y,i)-F(t, \bar{x},\bar{y},i)\bigr) \\ &\quad {}+\frac{\bar{q} -1}{2} \bigl\vert G(t,x,y,i)-G(t,\bar{x},\bar{y},i) \bigr\vert ^{2}\leq K_{4} \vert x- \bar{x} \vert ^{2}+ \bigl\vert \bar{V}_{1}(y,\bar{y}) \bigr\vert \vert y-\bar{y} \vert ^{2} \end{aligned} $$
(3.6)
for all \(t\in [0,T]\), \(x,y,\bar{x},\bar{y} \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\).
By Assumption 3.2 we obtain that for any \(q \in (2,\bar{q})\),
$$ \begin{aligned} &\bigl(x-D(y,i)-\bar{x}+D(\bar{y},i) \bigr)^{T} \bigl(f(t,x,y,i)-f(t, \bar{x},\bar{y},i)\bigr) \\ &\qquad {}+\frac{q -1}{2} \bigl\vert g(t,x,y,i)-g(t,\bar{x},\bar{y},i) \bigr\vert ^{2} \\ &\quad \leq (\bar{K}_{4}+K_{4}) \vert x-\bar{x} \vert ^{2}+\bigl(\bar{K}_{4}+ \bigl\vert \bar{V}_{1}(y, \bar{y}) \bigr\vert \bigr) \vert y-\bar{y} \vert ^{2}, \end{aligned} $$
(3.7)
where \(\bar{K}_{4}=2K_{3} +\frac{K_{3}^{2} (q -1)(\bar{q} -1)}{\bar{q} -q}\). The proof is trivial, so we omit it.
Assumption 3.3
There exist constants \(K_{5} >0\) and \(\bar{p} > \bar{q}\) such that
$$ \begin{aligned} &\bigl(x-D(y,i)\bigr)^{T} F(t,x,y,i) + \frac{\bar{p} -1}{2} \bigl\vert G(t,x,y,i) \bigr\vert ^{2} \\ &\quad \leq K_{5}\bigl(1+ \vert x \vert ^{2}\bigr) + \bigl\vert \bar{V}_{2}(y,0) \bigr\vert \vert y \vert ^{2} \end{aligned} $$
(3.8)
for all \(t\in [0,T]\), \(x,y \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\).
By Assumption 3.3 we derive that for any \(p \in [2,\bar{p})\),
$$ \begin{aligned} &\bigl(x-D(y,i)\bigr)^{T} f(t,x,y,i) + \frac{p -1}{2} \bigl\vert g(t,x,y,i) \bigr\vert ^{2} \\ &\quad \leq (\bar{K}_{5}+K_{5}) \bigl(1+ \vert x \vert ^{2}\bigr) +\bigl(\bar{K}_{5}+ \bigl\vert \bar{V}_{2}(y,0) \bigr\vert \bigr) \vert y \vert ^{2}, \end{aligned} $$
(3.9)
where \(\bar{K}_{5}=3\bar{K}_{3} + \frac{3\bar{K}_{3}^{2} (p -1)(\bar{p} -1)}{2(\bar{p} -p)}\).
Assumption 3.4
There exist constants \(K_{6} >0\), \(K_{7}>0\), \(\theta \in (0,1]\), and \(\sigma \in (0,1]\) such that
$$ \begin{aligned} & \bigl\vert f(t_{1},x,y,i)-f(t_{2},x,y,i) \bigr\vert \leq K_{6} \bigl(1+ \vert x \vert ^{ \beta +1}+ \vert y \vert ^{\beta +1}\bigr) \vert t_{1}-t_{2} \vert ^{\theta }, \\ & \bigl\vert g(t_{1},x,y,i)-g(t_{2},x,y,i) \bigr\vert \leq K_{7} \bigl(1+ \vert x \vert ^{\beta +1}+ \vert y \vert ^{ \beta +1}\bigr) \vert t_{1}-t_{2} \vert ^{\sigma }\end{aligned} $$
(3.10)
for all \(t_{1}, t_{2}\in [0,T]\), \(x,y \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\), where β is as in Assumption 3.1.
The following lemma gives that the p-moment of the true solution is bounded. This lemma can be proved similarly to the proof of Theorem 2.4 presented in [12] by means of the technique used in Theorem 2.1 of [35].
Lemma 3.5
Let Assumptions 3.1and 3.3hold. Then neutral stochastic differential delay equations with Markovian switching (2.1) with initial data (2.2) has a unique solution \(x(t)\) on \(t\geq -\tau \). In addition, this solution has the property that
$$ \sup_{-\tau \leq t\leq T} \mathbb{E} \bigl\vert x(t) \bigr\vert ^{p} < \infty ,\quad \forall T>0. $$
(3.11)
To get the strong convergence rate, we impose another assumption.
Assumption 3.6
There exist constants \(K_{8} >0\) and \(\bar{p} > \bar{q} \) such that
$$ \begin{aligned} &\bigl(x-D(y,i)\bigr)^{T} F_{\varDelta }(t,x,y,i) +\frac{\bar{p} -1}{2} \bigl\vert G_{\varDelta }(t,x,y,i) \bigr\vert ^{2} \\ &\quad \leq K_{8}\bigl(1+ \vert x \vert ^{2}\bigr) + \bigl\vert \bar{V}_{3}(y,0) \bigr\vert \vert y \vert ^{2} \end{aligned} $$
(3.12)
for all \(t\in [0,T]\), \(x,y \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\).
By Assumption 3.6 we can show that for any \(p \in [2,\bar{p})\),
$$ \begin{aligned} &\bigl(x-D(y,i)\bigr)^{T} f_{\varDelta }(t,x,y,i) +\frac{p -1}{2} \bigl\vert g_{\varDelta }(t,x,y,i) \bigr\vert ^{2} \\ &\quad \leq (\bar{K}_{8}+K_{8}) \bigl(1+ \vert x \vert ^{2}\bigr) +\bigl(\bar{K}_{8}+ \bigl\vert \bar{V}_{3}(y,0) \bigr\vert \bigr) \vert y \vert ^{2}, \end{aligned} $$
(3.13)
where \(\bar{K}_{8}=3\bar{K}_{3} + \frac{3\bar{K}_{3}^{2} (p -1)(\bar{p} -1)}{2(\bar{p} -p)}\).
Remark 3.7
When \(D(\cdot ,\cdot )=0\), we can derive that for any functions satisfying Assumption 3.3,
$$ x^{T} F_{\varDelta }(t,x,y,i) + \frac{\bar{p} -1}{2} \bigl\vert G_{\varDelta }(t,x,y,i) \bigr\vert ^{2} \leq \tilde{K}_{8}\bigl(1+ \vert x \vert ^{2}\bigr) + \bigl\vert \bar{V}_{2}(y,0) \bigr\vert ^{2} \vert y \vert ^{2} $$
(3.14)
for all \(t\in [0,T]\), \(x,y \in \mathbb{R} ^{n} \), and \(i\in \mathbb{S}\), where \(\tilde{K}_{8}=2K_{5}([1/\varphi ^{-1}(h(1))]\vee 1)\). In other words, Assumption 3.6 can be eliminated if there is no neutral term.
Remark 3.8
In fact, there are plenty of functions such that \(D(y,i)\), \(F(t,x,y,i)\), and \(G(t,x,y,i)\) satisfy Assumption 3.3 and the corresponding \(F_{\varDelta }(t,x,y,i)\) and \(G_{\varDelta }(t,x,y,i)\) satisfy Assumption 3.6. For example, when \(i=1\), define \(D(y,1)=-\frac{1}{6} y\), \(f(t,x,y,1)=-2y^{3}+(t(1-t))^{\frac{1}{3}}y -10x +2y\), \(g(t,x,y,1)=(t(1-t))^{\frac{1}{3}}|y|^{\frac{3}{2}}\) for \(t\in [0,1]\) and \(x,y \in \mathbb{R} ^{1} \). Thus \(F(t,x,y,1)=-2y^{3} \) and \(G(t,x,y,1)=(t(1-t))^{\frac{1}{3}}|y|^{\frac{3}{2}}\). We can easily prove that Assumptions 3.3 and 3.6 are satisfied. A detailed proof is presented in Sect. 5.
Lemma 3.9
Let Assumptions 2.3, 3.1, and 3.6hold. Then for any \(p \in [2,\bar{p})\), we have
$$ \sup_{0< \varDelta \leq 1} \sup_{0\leq t \leq T}\mathbb{E} \bigl\vert x_{\varDelta }(t) \bigr\vert ^{p} \leq C,\quad \forall T>0. $$
(3.15)
Proof
For any \(\varDelta \in ( 0,1 ]\) and \(t \in [0,T]\), by Itô’s formula we derive that
$$ \begin{aligned} &\mathbb{E} \bigl\vert x_{\varDelta }(t)-D\bigl( \bar{x}_{\varDelta }(t-\tau ), \bar{r}(t)\bigr) \bigr\vert ^{p}- \bigl\vert \xi (0)-D\bigl(\xi (-\tau ),r_{0}^{\varDelta }\bigr) \bigr\vert ^{p} \\ &\quad \leq \mathbb{E} \int _{0}^{t} p \bigl\vert x_{\varDelta }(s)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2} \biggl[\bigl(x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)^{T} \\ &\qquad {} \cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \\ &\qquad {}+\frac{p-1}{2} \bigl\vert g_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\ &\quad \leq \mathbb{E} \int _{0}^{t} p \bigl\vert x_{\varDelta }(s)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2}\bigl(x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr)^{T} \\ &\qquad {}\cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)\,ds \\ &\qquad {} + \mathbb{E} \int _{0}^{t} p \bigl\vert x_{\varDelta }(s)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2} \biggl[\bigl(\bar{x}_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)^{T} \\ &\qquad {}\cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \\ &\qquad {}+\frac{p-1}{2} \bigl\vert g_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\ &\quad =: A_{1}+A_{2}. \end{aligned} $$
(3.16)
Let us first estimate \(A_{1}\):
$$ \begin{aligned} A_{1} \leq{}& p \mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2}\bigl(x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr)^{T} \\ &{}\cdot \tilde{F }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr)\,ds \\ &{} +p \mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2}\bigl(x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr)^{T} \\ &{}\cdot F_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)\,ds \\ =:{}&A_{11}+A_{12}. \end{aligned} $$
(3.17)
By Assumptions 2.3 and 3.1 and Young’s inequality we derive that
$$ \begin{aligned} A_{11}\leq{}& (p-2)\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p} \,ds \\ &{} +\frac{p}{2}\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert \tilde{F } \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}}\,ds \\ \leq{}& C \int _{0}^{t}\bigl(1+\mathbb{E} \bigl\vert x_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p}\bigr)\,ds. \end{aligned} $$
(3.18)
Moreover, for any \(t\in [0,T]\), there always is an integer \(k\geq 0\) such that \(t\in [t_{k},t_{k+1})\). By Hölder’s inequality and BDG’s inequality, we have
$$\begin{aligned} &\mathbb{E} \bigl\vert x_{\varDelta }(t)- \bar{x}_{\varDelta }(t) \bigr\vert ^{ \frac{p}{2}} \\ &\quad =\mathbb{E} \bigl\vert x_{\varDelta }(t)-x_{\varDelta }(t_{k}) \bigr\vert ^{\frac{p}{2}} \\ &\quad \leq C\mathbb{E} \biggl\vert \int _{t_{k}}^{t} f_{\varDelta }\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)\,ds \biggr\vert ^{ \frac{p}{2}} \\ &\qquad {} +C\mathbb{E} \biggl\vert \int _{t_{k}}^{t} g_{\varDelta }\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \,dB(s) \biggr\vert ^{ \frac{p}{2}} \\ &\quad \leq C \varDelta ^{\frac{p}{2}-1}\mathbb{E} \int _{t_{k}}^{t} \bigl\vert \tilde{F}\bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{ \frac{p}{2}}\,ds \\ &\qquad {} +C \varDelta ^{\frac{p}{2}-1}\mathbb{E} \int _{t_{k}}^{t} \bigl\vert F_{\varDelta } \bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{ \frac{p}{2}}\,ds \\ &\qquad {} +C \varDelta ^{\frac{p}{4}-1}\mathbb{E} \int _{t_{k}}^{t} \bigl\vert \tilde{G}\bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{ \frac{p}{2}}\,ds \\ &\qquad {} +C \varDelta ^{\frac{p}{4}-1}\mathbb{E} \int _{t_{k}}^{t} \bigl\vert G_{\varDelta } \bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{ \frac{p}{2}}\,ds \\ &\quad \leq C \varDelta ^{\frac{p}{4}}h^{\frac{p}{2}}(\varDelta )+C \varDelta ^{ \frac{p}{4}}\Bigl(1+\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}}+\sup _{0\leq s \leq t}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{ \frac{p}{2}}\Bigr). \end{aligned}$$
(3.19)
Thus, by (2.8), (2.10), and (3.19) and Young’s inequality we get
$$ \begin{aligned} A_{12}\leq{}& (p-2)\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p} \,ds \\ &{} +\frac{p}{2}\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert F_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}}\,ds \\ \leq {}&(p-2)\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p} \,ds \\ &{} +\frac{p}{2}h^{\frac{p}{2}}(\varDelta ) \int _{0}^{t}\mathbb{E} \bigl\vert x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr\vert ^{\frac{p}{2}} \,ds \\ \leq{}& (p-2)\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p} \,ds \\ &{} +C h^{\frac{p}{2}}(\varDelta ) \varDelta ^{\frac{p}{4}} \int _{0}^{t} \Bigl(1+h^{ \frac{p}{2}}(\varDelta )+\sup_{0\leq l \leq s}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(l) \bigr\vert ^{\frac{p}{2}}+\sup_{0\leq l \leq s}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(l-\tau ) \bigr\vert ^{\frac{p}{2}}\Bigr)\,ds \\ \leq{}& C \int _{0}^{t}\Bigl(1+\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p}+ \sup _{0\leq l \leq s}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(l) \bigr\vert ^{p}+\sup_{0 \leq l \leq s}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(l-\tau ) \bigr\vert ^{p}\Bigr)\,ds. \end{aligned} $$
(3.20)
Now, we are handling \(A_{2}\). By Assumptions 2.3 and 3.6 and Hölder’s inequality we get
$$\begin{aligned} A_{2}\leq{}& \mathbb{E} \int _{0}^{t} p \bigl\vert x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2}\bigl[(\bar{K}_{8}+K_{8}) \bigl(1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{2} \bigr) \\ &{} +\bigl(\bar{K}_{8}+ \bigl\vert \bar{V}_{3}\bigl( \bar{x}_{\varDelta }(s-\tau ),0\bigr) \bigr\vert \bigr) \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{2}\bigr] \,ds \\ \leq{}& C \mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)-D \bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{p}\,ds+C \mathbb{E} \int _{0}^{t} \bigl(1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{p} \\ &{} + \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p} \bigr)\,ds +C \mathbb{E} \int _{0}^{t} \bigl\vert \bar{V}_{3}\bigl(\bar{x}_{\varDelta }(s-\tau ),0\bigr) \bigr\vert ^{\frac{p}{2}} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p} \,ds \\ \leq{}& C \int _{0}^{t}\bigl(1+\mathbb{E} \bigl\vert x_{\varDelta }(s) \bigr\vert ^{p}+ \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p}\bigr)\,ds \\ &{} +C \int _{0}^{t} \bigl(\mathbb{E} \bigl\vert \bar{V}_{3}\bigl(\bar{x}_{\varDelta }(s-\tau ),0\bigr) \bigr\vert ^{p}+ \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{2p} \bigr)\,ds \\ \leq{}& C \int _{0}^{t}\bigl(1+\mathbb{E} \bigl\vert x_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p}\bigr)\,ds \\ &{} +C \int _{0}^{t} \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{l_{v*}p} \,ds, \end{aligned}$$
(3.21)
where \(l_{v*}=l_{v}\vee 2\). Inserting (3.17), (3.18), (3.20), and (3.21) into (3.16) yields that
$$ \begin{aligned} &\mathbb{E} \bigl\vert x_{\varDelta }(t)-D\bigl( \bar{x}_{\varDelta }(t-\tau ), \bar{r}(t)\bigr) \bigr\vert ^{p} \\ &\quad \leq C \biggl(1+ \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p} \,ds+ \int _{0}^{t} \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l-\tau ) \bigr\vert ^{l_{v*}p} \,ds \biggr). \end{aligned} $$
Therefore
$$ \begin{aligned} &\sup_{0\leq l \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(l)-D\bigl(\bar{x}_{\varDelta }(l-\tau ),\bar{r}(l) \bigr) \bigr\vert ^{p} \\ &\quad \leq C \biggl( 1+ \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p}\,ds+ \int _{0}^{t} \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l-\tau ) \bigr\vert ^{l_{v*}p} \,ds \biggr). \end{aligned} $$
(3.22)
Moreover, for any \(c_{0} >0\),
$$ \begin{aligned} \sup_{0\leq l \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p} &= \sup _{0\leq l \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(l)-D\bigl( \bar{x}_{\varDelta }(l- \tau ),\bar{r}(l)\bigr)+D\bigl(\bar{x}_{\varDelta }(l- \tau ),\bar{r}(l)\bigr) \bigr\vert ^{p} \\ &\leq (1+c_{0})^{p-1} \sup_{0\leq l \leq t} \mathbb{E} \bigl\vert x_{\varDelta }(l)-D\bigl( \bar{x}_{\varDelta }(l- \tau ),\bar{r}(l)\bigr) \bigr\vert ^{p} \\ &\quad {} +\biggl(\frac{1+c_{0}}{c_{0}}\biggr)^{p-1}K_{2}^{p} \Bigl( \Vert \xi \Vert ^{p} +\sup_{0 \leq l \leq t} \mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p}\Bigr). \end{aligned} $$
(3.23)
Then we can take \(c_{0}\) large enough such that \((\frac{1+c_{0}}{c_{0}})^{p-1}K_{2}^{p} <1\) for any \(K_{2} \in (0,1)\). Thus
$$ \sup_{0\leq l \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p} \leq c_{1} \sup_{0\leq l \leq t} \mathbb{E} \bigl\vert x_{\varDelta }(l)-D\bigl(\bar{x}_{\varDelta }(l-\tau ),\bar{r}(l)\bigr) \bigr\vert ^{p}+c_{2} \Vert \xi \Vert ^{p}, $$
(3.24)
where
$$ c_{1} = \frac{c_{0}^{p-1}(1+c_{0})^{p-1}}{c_{0}^{p-1}-(1+c_{0})^{p-1}K_{2}^{p} } \quad \text{and}\quad c_{2} = \frac{(1+c_{0})^{p-1}K_{2}^{p} }{c_{0}^{p-1}-(1+c_{0})^{p-1}K_{2}^{p}}. $$
(3.25)
An application of Gronwall’s inequality yields that
$$ \sup_{0\leq l \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p}\leq C \biggl( 1+ \int _{0}^{t} \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x_{\varDelta }(l- \tau ) \bigr\vert ^{l_{v*}p} \,ds \biggr). $$
(3.26)
The following technique is similar to that in Theorem 2.1 of [35]. Define
$$ p_{i} =\bigl(\lfloor T/ \tau \rfloor +2 -i\bigr)pl_{v*}^{\lfloor T/ \tau \rfloor +1 -i},\quad i=1,2,\ldots ,\lfloor T/ \tau \rfloor +1. $$
We can observe that
$$ p_{i+1}l_{v*} < p_{i}\quad \text{and}\quad p_{\lfloor T/ \tau \rfloor +1}=p,\quad i=1,2,\ldots , \lfloor T/ \tau \rfloor . $$
By (3.26) and \(\xi \in \mathscr{L}_{\mathcal{F}_{0}}^{p}([-\tau ,0];\mathbb{R}^{n})\) we derive that
$$ \sup_{0\leq l \leq \tau }\mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p_{1}} \leq C. $$
Then Hölder’s inequality leads to
$$ \sup_{0\leq l \leq 2\tau }\mathbb{E} \bigl\vert x_{\varDelta }(l) \bigr\vert ^{p_{2}} \leq C \biggl( 1+ \int _{0}^{2\tau } \sup_{0\leq l \leq s} \bigl(\mathbb{E} \bigl\vert x_{\varDelta }(l-\tau ) \bigr\vert ^{p_{1}}\bigr)^{\frac{l_{v*}p_{2}}{p_{1}}} \,ds \biggr) \leq C. $$
The desired result follows by repeating this procedure. We complete the proof. □
Lemma 3.10
Let Assumptions 2.3, 3.1, and 3.6hold. Then for any \(\varDelta \in (0,1] \) and \(t\in [0,T]\), we have
$$ \mathbb{E} \bigl\vert x_{\varDelta }(t)- \bar{x}_{\varDelta }(t) \bigr\vert ^{p}\leq C \varDelta ^{\frac{p}{2}}h^{p}(\varDelta ). $$
(3.27)
Therefore
$$ \lim_{\varDelta \rightarrow 0} \mathbb{E} \bigl\vert x_{\varDelta }(t)- \bar{x}_{\varDelta }(t) \bigr\vert ^{p} =0. $$
(3.28)
Proof
Fix any \(\varDelta \in (0,1] \). For any \(t\in [0,T]\), there is an integer \(k\geq 0\) such that \(t\in [t_{k},t_{k+1})\). In the same way as in the proof of (3.19), we have
$$ \mathbb{E} \bigl\vert x_{\varDelta }(t)- \bar{x}_{\varDelta }(t) \bigr\vert ^{p}\leq C \varDelta ^{\frac{p}{2}}\bigl(1+h^{p}(\varDelta )+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(t) \bigr\vert ^{p}+ \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(t-\tau ) \bigr\vert ^{p}\bigr). $$
Then Lemma 3.9 gives that
$$ \mathbb{E} \bigl\vert x_{\varDelta }(t)- \bar{x}_{\varDelta }(t) \bigr\vert ^{p}\leq C \varDelta ^{\frac{p}{2}}h^{p}(\varDelta ). $$
We complete the proof. □
Lemma 3.11
Let Assumptions 2.3, 3.1, and 3.6hold. For any real number \(L> \|\xi \|\), define the stopping time
$$ \tau _{\varDelta ,L}= \inf \bigl\{ t\geq 0: \bigl\vert x_{\varDelta }(t) \bigr\vert \geq L \bigr\} . $$
(3.29)
Then we have
$$ \mathbb{P}(\tau _{\varDelta ,L} \leq T)\leq \frac{C}{L^{p}}. $$
(3.30)
Proof
By Itô’s formula and Assumption 3.6 we get
$$ \begin{aligned} &\mathbb{E} \bigl\vert x_{\varDelta }(t\wedge \tau _{\varDelta ,L})-D\bigl( \bar{x}_{\varDelta }(t\wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(t\wedge \tau _{\varDelta ,L})\bigr) \bigr\vert ^{p}- \bigl\vert \xi (0)-D\bigl(\xi (-\tau ),r_{0}^{\varDelta }\bigr) \bigr\vert ^{p} \\ &\quad \leq \mathbb{E} \int _{0}^{t\wedge \tau _{\varDelta ,L}} p \bigl\vert x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s -\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2} \biggl[ \bigl(x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s -\tau ),\bar{r}(s)\bigr)\bigr)^{T} \\ &\qquad {}\cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)+ \frac{p-1}{2} \bigl\vert g_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\ &\quad \leq \mathbb{E} \int _{0}^{t\wedge \tau _{\varDelta ,L}} p \bigl\vert x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s -\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2} \biggl[ \bigl(\bar{x}_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s -\tau ),\bar{r}(s)\bigr)\bigr)^{T} \\ &\qquad {}\cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)+ \frac{p-1}{2} \bigl\vert g_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\ &\qquad {} +\mathbb{E} \int _{0}^{t\wedge \tau _{\varDelta ,L}}p \bigl\vert x_{\varDelta }(s)-D\bigl( \bar{x}_{\varDelta }(s -\tau ),\bar{r}(s)\bigr) \bigr\vert ^{p-2} \bigl(x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr)^{T} \\ &\qquad {}\cdot f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)\,ds \\ &\quad \leq C \int _{0}^{t}\mathbb{E} \bigl\vert x_{\varDelta }(s\wedge \tau _{\varDelta ,L})-D\bigl( \bar{x}_{\varDelta }(s \wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(s\wedge \tau _{\varDelta ,L}) \bigr) \bigr\vert ^{p} \,ds \\ &\qquad {} +C \int _{0}^{t}\bigl(1+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{p}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p}\bigr)\,ds \\ &\qquad {} +C \mathbb{E} \int _{0}^{t\wedge \tau _{\varDelta ,L}} \bigl\vert \bar{V}_{3}\bigl( \bar{x}_{\varDelta }(s-\tau ),0\bigr) \bigr\vert ^{\frac{p}{2}} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p} \,ds \\ &\qquad {} +C\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}} \,ds. \end{aligned} $$
Note that
$$ \begin{aligned} &\mathbb{E} \int _{0}^{t\wedge \tau _{\varDelta ,L}} \bigl\vert \bar{V}_{3}\bigl(\bar{x}_{\varDelta }(s-\tau ),0\bigr) \bigr\vert ^{\frac{p}{2}} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{p} \,ds \\ &\quad \leq \frac{1}{2} \int _{0}^{t}\mathbb{E} \bigl\vert \bar{V}_{3}\bigl(\bar{x}_{\varDelta }(s \wedge \tau _{\varDelta ,L}-\tau ),0\bigr) \bigr\vert ^{p}\,ds+ \frac{1}{2} \int _{0}^{t} \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{2p}\,ds \\ &\quad \leq C \int _{0}^{t}\bigl(1+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{l_{v}p}+ \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{2p}\bigr)\,ds \end{aligned} $$
and
$$\begin{aligned} &\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}}\,ds \\ &\quad \leq C\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert \tilde{F} \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}}\,ds \\ &\qquad {} + C\mathbb{E} \int _{0}^{t} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{ \frac{p}{2}} \bigl\vert F_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{\frac{p}{2}}\,ds \\ &\quad \leq C\mathbb{E} \int _{0}^{t} \bigl( \bigl\vert x_{\varDelta }(s) \bigr\vert ^{\frac{p}{2}}+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{\frac{p}{2}}\bigr) \bigl(1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{\frac{p}{2}}+ \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{\frac{p}{2}}\bigr)\,ds \\ &\qquad {} + C h^{\frac{p}{2}}(\varDelta ) \int _{0}^{t} \mathbb{E} \bigl\vert x_{\varDelta }(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{\frac{p}{2}} \,ds \\ &\quad \leq C\bigl(1+\varDelta ^{{\frac{p}{4}}}h^{p}(\varDelta )\bigr)\leq C, \end{aligned}$$
where (2.8), (2.10), (3.3), Young’s inequality, and Lemma 3.9 were used. Then we obtain that
$$ \begin{aligned} &\mathbb{E} \bigl\vert x_{\varDelta }(t\wedge \tau _{\varDelta ,L})-D\bigl( \bar{x}_{\varDelta }(t\wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(t\wedge \tau _{\varDelta ,L})\bigr) \bigr\vert ^{p} \\ &\quad \leq C \biggl(1+ \int _{0}^{t}\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{l_{v}*p}\,ds \\ &\qquad {} + \int _{0}^{t}\mathbb{E} \bigl\vert x_{\varDelta }(s\wedge \tau _{\varDelta ,L})-D\bigl( \bar{x}_{\varDelta }(s \wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(s\wedge \tau _{\varDelta ,L}) \bigr) \bigr\vert ^{p} \,ds \biggr), \end{aligned} $$
where \(l_{v}*=l_{v}\vee 2\). Using the same technique as in Lemma 3.9 gives that
$$ \mathbb{E} \bigl\vert x_{\varDelta }(T\wedge \tau _{\varDelta ,L})-D\bigl( \bar{x}_{\varDelta }(T\wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(T\wedge \tau _{\varDelta ,L})\bigr) \bigr\vert ^{p}\leq C . $$
(3.31)
We can get from (2.6) that
$$ \begin{aligned} &\mathbb{I}_{\{\tau _{\varDelta ,L} \leq T\}} \bigl\vert x_{\varDelta }( \tau _{\varDelta ,L})-D\bigl(\bar{x}_{\varDelta }(\tau _{\varDelta ,L} -\tau ), \bar{r}(\tau _{\varDelta ,L})\bigr) \bigr\vert \\ &\quad \geq \mathbb{I}_{\{\tau _{\varDelta ,L} \leq T\}}\bigl( \bigl\vert x_{\varDelta }(\tau _{ \varDelta ,L}) \bigr\vert - \bigl\vert D\bigl(\bar{x}_{\varDelta }( \tau _{\varDelta ,L} -\tau ),\bar{r}( \tau _{\varDelta ,L})\bigr) \bigr\vert \bigr) \\ &\quad \geq L-K_{2}L. \end{aligned} $$
(3.32)
Hence we derive from (3.31) and (3.32) that
$$ \begin{aligned} \mathbb{P}(\tau _{\varDelta ,L} \leq T) &\leq \frac{\mathbb{E} ( \mathbb{I}_{\{\tau _{\varDelta ,L} \leq T\}} \vert x_{\varDelta }(\tau _{\varDelta ,L})-D(\bar{x}_{\varDelta }(\tau _{\varDelta ,L} -\tau ),\bar{r}(\tau _{\varDelta ,L})) \vert ^{p} )}{(1-K_{2})^{p}L^{p}} \\ &\leq \frac{\mathbb{E} \vert x_{\varDelta }(T\wedge \tau _{\varDelta ,L})-D(\bar{x}_{\varDelta }(T\wedge \tau _{\varDelta ,L} -\tau ),\bar{r}(T\wedge \tau _{\varDelta ,L})) \vert ^{p}}{(1-K_{2})^{p}L^{p}} \\ &\leq \frac{C}{(1-K_{2})^{p}L^{p}}. \end{aligned} $$
(3.33)
Then the desired result follows. We complete the proof. □
The following lemma can be proved in a similar way as Lemma 3.11 was, so we omit the proof.
Lemma 3.12
Let Assumptions 2.3, 3.1, and 3.3hold. For any real number \(L> \|\xi \|\), define the stopping time
$$ \tau _{L}= \inf \bigl\{ t\geq 0: \bigl\vert x(t) \bigr\vert \geq L \bigr\} . $$
(3.34)
Then we have
$$ \mathbb{P}(\tau _{L} \leq T)\leq \frac{C}{L^{p}}. $$
(3.35)
Lemma 3.13
Let Assumptions 2.2, 2.3, 3.1–3.4, and 3.6hold. Assume that \(q\in [2,\bar{q})\) and \(p> (\beta +l_{v}+2)q\). Let \(L> \|\xi \|\) be a real number, and let \(\varDelta \in (0,1]\) be sufficiently small such that \(\varphi ^{-1} (h(\varDelta )) \geq L\). Then we have
$$ \mathbb{E} \bigl\vert x(T\wedge \rho _{\varDelta ,L})-x_{\varDelta }(T \wedge \rho _{\varDelta ,L}) \bigr\vert ^{q} \leq C \bigl( \varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr), $$
(3.36)
where \(\rho _{\varDelta ,L}:=\tau _{L}\wedge \tau _{\varDelta ,L}\) with \(\tau _{L}\), \(\tau _{\varDelta ,L}\) defined as before.
Proof
For simplicity, we write \(\rho _{\varDelta ,L}=\rho \). Denote \(e_{\varDelta }(t)=x(t)-D(x(t-\tau ),r(t))-x_{\varDelta }(t)+D(\bar{x}_{\varDelta }(t- \tau ),\bar{r}(t))\). For \(0\leq s \leq t \wedge \rho \), we can observe that
$$ \bigl\vert x(s) \bigr\vert \vee \bigl\vert x(s- \tau ) \bigr\vert \vee \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert \vee \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert \leq L \leq \varphi ^{-1} \bigl(h(\varDelta )\bigr). $$
Recalling the definition of \(F_{\varDelta }\) and \(G_{\varDelta }\), we have
$$ \begin{aligned} &F_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)=F\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr), \\ &G_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr)=G\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \end{aligned} $$
for \(0\leq s \leq t \wedge \rho \). Hence we derive that
$$ \begin{aligned} &f_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \\ &\quad =\tilde{F}\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr)+F_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \\ &\quad =\tilde{F}\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ), \bar{r}(s)\bigr)+F\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \\ &\quad =f\bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr). \end{aligned} $$
Similarly,
$$ g_{\varDelta }\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)=g\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr). $$
By Itô’s formula we get
$$\begin{aligned}& \mathbb{E} \bigl\vert e_{\varDelta }(t \wedge \rho ) \bigr\vert ^{q} \\& \quad \leq \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \biggl[e_{\varDelta }^{T} (s) \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f_{\varDelta }\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)\bigr) \\& \qquad {} + \frac{q-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g_{\varDelta }\bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\& \quad \leq \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \biggl[e_{\varDelta }^{T} (s) \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)\bigr) \\& \qquad {} + \frac{q-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\& \quad \leq \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \biggl[\bigl(x(s)-D\bigl(x(s- \tau ),r(s)\bigr)-\bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)\bigr) \\& \qquad {} + \frac{q-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \bigl( \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D \bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)\bigr) \,ds \\& \quad \leq \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \biggl[\bigl(x(s)-D\bigl(x(s- \tau ),r(s)\bigr)-\bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr) \\& \qquad {} + \frac{q-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2}\bigl(x(s)- \bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D \bigl(x(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \bigl( \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D \bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \bigl( \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D \bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)\,ds. \end{aligned}$$
Note that
$$ \begin{aligned} &\frac{q-1}{2} \bigl\vert g \bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g\bigl(\mu (s), \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \\ &\quad \leq \frac{\bar{q}-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g \bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{2} \\ &\qquad {} +\frac{(q-1)(\bar{q}-1)}{2(\bar{q}-q)} \bigl\vert g\bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)- g\bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2}. \end{aligned} $$
Hence
$$\begin{aligned}& \mathbb{E} \bigl\vert e_{\varDelta }(t \wedge \rho ) \bigr\vert ^{q} \\& \quad \leq \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \biggl[\bigl(x(s)-D\bigl(x(s- \tau ),r(s)\bigr)-\bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr) \\& \qquad {} + \frac{q-1}{2} \bigl\vert g\bigl(s,x(s),x(s-\tau ),r(s)\bigr)- g \bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{2} \biggr]\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2}\bigl(x(s)- \bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D \bigl(x(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \bigl( \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D \bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \\& \qquad {}-D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,x(s),x(s-\tau ),r(s)\bigr)-f \bigl(s,\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \bigl( \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D \bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)\bigr)^{T} \\& \qquad {}\cdot \bigl(f\bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)\bigr)\,ds \\& \qquad {} + \mathbb{E} \int _{0}^{t \wedge \rho } \frac{(q-1)(\bar{q}-1)}{2(\bar{q}-q)}q \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q-2} \\& \qquad {}\cdot \bigl\vert g\bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)- g\bigl(\mu (s), \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{2} \,ds \\& \quad =:B_{1}+B_{2}+B_{3}+B_{4}+B_{5}. \end{aligned}$$
(3.37)
By Hölder’s inequality, Assumptions 2.2 and 3.2, and Lemmas 3.9 and 3.10 we get
$$\begin{aligned} B_{1} \leq& C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert x(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ &{} +C\mathbb{E} \int _{0}^{t \wedge \rho }\bigl(\bar{K}_{4}+ \bigl\vert \bar{V}_{1}\bigl(x(s- \tau ),\bar{x}_{\varDelta }(s- \tau )\bigr) \bigr\vert \bigr)^{\frac{q}{2}} \bigl\vert x(s-\tau )- \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q}\,ds \\ \leq& C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds \\ &{} + \int _{0}^{T}\mathbb{E} \bigl\vert x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr\vert ^{q} \,ds+ \int _{-\tau }^{0} \bigl\vert \xi (s)-\xi \bigl( \lfloor s/ \varDelta \rfloor \varDelta \bigr) \bigr\vert ^{q}\,ds \\ &{} + \int _{0}^{T} \bigl( \mathbb{E} \bigl\vert \bar{V}_{1}\bigl(x(s-\tau ),\bar{x}_{\varDelta }(s-\tau )\bigr) \bigr\vert ^{q} \bigr)^{\frac{1}{2}} \bigl( \mathbb{E} \bigl\vert x_{\varDelta }(s-\tau )-\bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{2q} \bigr)^{\frac{1}{2}}\,ds \\ &{} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert \bar{V}_{1}\bigl(x(s-\tau ), \bar{x}_{\varDelta }(s-\tau )\bigr) \bigr\vert ^{\frac{q}{2}} \bigl\vert x(s-\tau )-x_{\varDelta }(s-\tau ) \bigr\vert ^{q}\,ds \biggr) \\ \leq& C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds+ \varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha } \\ &{} + \int _{0}^{t} \bigl( \mathbb{E} \bigl\vert \bar{V}_{1}\bigl(x(s\wedge \rho -\tau ), \bar{x}_{\varDelta }(s \wedge \rho -\tau )\bigr) \bigr\vert ^{q}\bigr)^{\frac{1}{2}} \\ &{}\times\bigl( \mathbb{E} \bigl\vert x(s\wedge \rho -\tau )-x_{\varDelta }(s\wedge \rho -\tau ) \bigr\vert ^{2q} \bigr)^{\frac{1}{2}}\,ds \biggr) \\ \leq& C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds+ \varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha } \\ &{} + \int _{0}^{t} \bigl( \mathbb{E} \bigl\vert x(s\wedge \rho -\tau )-x_{\varDelta }(s \wedge \rho -\tau ) \bigr\vert ^{2q} \bigr)^{\frac{1}{2}}\,ds \biggr). \end{aligned}$$
(3.38)
As for \(B_{2}\), we derive from Assumptions 2.3 and 3.4 that
$$\begin{aligned} B_{2} \leq& C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert x(s)- \bar{x}_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D \bigl(x(s-\tau ),r(s)\bigr) \bigr\vert ^{q} \,ds \\ &{} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f\bigl(s, \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s) \bigr) \bigr\vert ^{q}\,ds \\ &{} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ \leq& C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl( \bigl\vert x(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{q}+ \bigl\vert D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl(x(s-\tau ),r(s)\bigr) \bigr\vert ^{q} \bigr)\,ds \\ &{} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl( \bigl\vert f\bigl(s, \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{q} \\ &{} + \bigl\vert f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl( \mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \bigr)\,ds \\ &{} + C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ \leq& C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+C \mathbb{E} \int _{0}^{t \wedge \rho } \bigl( \bigl\vert x(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{q}+ \bigl\vert x(s- \tau )-\bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q} \bigr)\,ds \\ &{} + C \mathbb{E} \int _{0}^{t \wedge \rho } \bigl( 1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{q\beta +q}+ \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q\beta +q} \bigr) \varDelta ^{q\theta }\,ds \\ &{} +C \mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} )\,ds. \end{aligned}$$
(3.39)
From (3.38) we get
$$ \begin{aligned} &\mathbb{E} \int _{0}^{t \wedge \rho } \bigl( \bigl\vert x(s)- \bar{x}_{\varDelta }(s) \bigr\vert ^{q}+ \bigl\vert x(s-\tau )-\bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q} \bigr)\,ds \\ &\quad \leq C \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds+C\bigl( \varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q \alpha } \bigr), \end{aligned} $$
(3.40)
and we have
$$ \mathbb{E} \int _{0}^{t \wedge \rho } \bigl( 1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{q\beta +q}+ \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q\beta +q} \bigr) \varDelta ^{q\theta }\,ds\leq C \varDelta ^{q\theta }. $$
(3.41)
Moreover, let j be the integer part of \(T/\varDelta \). Then
$$ \begin{aligned} &\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad =\sum_{k=0}^{j} \mathbb{E} \int _{t_{k}}^{t_{k+1}} \bigl\vert f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \\ &\qquad {} -f \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(t_{k})\bigr) \bigr\vert ^{q} \mathbb{I}_{[0,{t \wedge \rho }]}(s)\,ds \\ &\quad \leq 2^{q-1}\sum_{k=0}^{j} \mathbb{E} \int _{t_{k}}^{t_{k+1}} \bigl( \bigl\vert f \bigl(\mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{q} \\ &\qquad {} + \bigl\vert f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(t_{k})\bigr) \bigr\vert ^{q} \bigr)\mathbb{I}_{[0,{t \wedge \rho }]}(s)\mathbb{I}_{\{r(s)\neq r(t_{k}) \}} \,ds \\ &\quad \leq C \sum_{k=0}^{j} \int _{t_{k}}^{t_{k+1}} \mathbb{E} \bigl( \mathbb{E} \bigl[\bigl(1+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{q}+ \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q}+h^{q}( \varDelta )\bigr)\mathbb{I}_{\{r(s)\neq r(t_{k})\}}|r(t_{k}) \bigr] \bigr)\,ds, \end{aligned} $$
(3.42)
where in the last step, we used the fact that \(\bar{x}_{\varDelta }(s)\) and \(\bar{x}_{\varDelta }(s-\tau )\) are conditionally independent of \(\mathbb{I}_{\{r(s)\neq r(t_{k})\}}\) with respect to the σ-algebra generated by \(r(t_{k})\). Applying the Markov property yields that
$$ \begin{aligned} &\mathbb{E} \bigl( \mathbb{I}_{\{r(s)\neq r(t_{k})\}} |r(t_{k}) \bigr) \\ &\quad = \sum_{i \in \mathbb{S}} \mathbb{I}_{\{r(t_{k})=i \}} \mathbb{P}\bigl(r(s) \neq i | r(t_{k})= i\bigr) \\ &\quad = \sum_{i \in \mathbb{S}} \mathbb{I}_{\{r(t_{k})=i \}} \sum _{j \neq i} \bigl(\gamma _{ij}(s-t_{k})+o(s-t_{k}) \bigr) \\ &\quad \leq \max_{0\leq i \leq N} \bigl(-\gamma _{ii}\varDelta +o( \varDelta )\bigr) \sum_{i \in \mathbb{S}} \mathbb{I}_{\{r(t_{k})=i \}} \\ &\quad \leq C \varDelta +o(\varDelta ). \end{aligned} $$
(3.43)
By Lemma 3.9 we have
$$ \begin{aligned} &\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f \bigl(\mu (s), \bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl(\mu (s),\bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad \leq \bigl( C \varDelta +o(\varDelta )\bigr) \sum_{k=0}^{j} \int _{t_{k}}^{t_{k+1}}\bigl(1+ \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{q}+\mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q}+h^{q}( \varDelta )\bigr) \,ds \\ &\quad \leq h^{q}(\varDelta ) \bigl( C \varDelta +o(\varDelta )\bigr). \end{aligned} $$
(3.44)
Inserting (3.40), (3.41), and (3.44) into (3.39) gives that
$$ \begin{aligned} B_{2} \leq {}&C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s \wedge \rho ) \bigr\vert ^{q}\,ds \\ &{}+\varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha }+\varDelta ^{q \theta }+o(\varDelta ) \biggr). \end{aligned} $$
(3.45)
In addition, we obtain from Assumptions 2.2 and 3.1 and Lemmas 3.5, 3.9, and 3.10 that
$$ \begin{aligned} B_{3} &\leq C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ &\quad {} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert \bar{x}_{\varDelta }(s)-x_{\varDelta }(s)+D\bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad {} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f\bigl(s,x(s),x(s- \tau ),r(s)\bigr)-f \bigl(s,\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr) \bigr\vert ^{q}\,ds \\ &\leq C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+C \int _{0}^{T} \mathbb{E} \bigl\vert D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl(\bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad {} +C\mathbb{E} \int _{0}^{t \wedge \rho } \bigl(1+ \bigl\vert x(s) \bigr\vert ^{q\beta }+ \bigl\vert x(s- \tau ) \bigr\vert ^{q\beta }+ \bigl\vert \bar{x}_{\varDelta }(s) \bigr\vert ^{q\beta }+ \bigl\vert \bar{x}_{\varDelta }(s- \tau ) \bigr\vert ^{q\beta }\bigr) \\ &\quad {}\cdot \bigl( \bigl\vert x(s)-\bar{x}_{\varDelta }(s) \bigr\vert ^{q}+ \bigl\vert x(s-\tau )-\bar{x}_{\varDelta }(s- \tau ) \bigr\vert ^{q}\bigr)\,ds+C \int _{0}^{T} \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s)-x_{\varDelta }(s) \bigr\vert ^{q} \,ds \\ &\leq C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{T} \mathbb{E} \bigl\vert D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \,ds \\ &\quad {} + \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds+ \varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha } \biggr). \end{aligned} $$
(3.46)
Furthermore, let j be the integer part of \(T/\varDelta \). Then by Assumption 2.3 and Lemma 3.9 we have
$$ \begin{aligned} &\sup_{0\leq s \leq T}\mathbb{E} \bigl\vert D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \\ &\quad \leq \max_{0 \leq k \leq j} \Bigl( \sup_{t_{k} \leq s \leq t_{k+1}} \mathbb{E} \bigl\vert D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \Bigr) \\ &\quad \leq 2\max_{0 \leq k \leq j} \Bigl( \sup_{t_{k} \leq s \leq t_{k+1}} \mathbb{E} \bigl[ \bigl\vert D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s) \bigr)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \mathbb{I}_{\{r(s)\neq r(t_{k})\}}\bigr] \Bigr) \\ &\quad \leq C\max_{0 \leq k \leq j} \Bigl( \sup_{t_{k} \leq s \leq t_{k+1}} \mathbb{E} \bigl[\bigl( \bigl\vert D\bigl(\bar{x}_{\varDelta }(s-\tau ),r(s) \bigr) \bigr\vert ^{q} \\ &\qquad {} + \bigl\vert D\bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \bigr)\mathbb{I}_{\{r(s) \neq r(t_{k})\}}\bigr] \Bigr) \\ &\quad \leq C\max_{0 \leq k \leq j} \Bigl( 1+\sup_{t_{k} \leq s \leq t_{k+1}} \mathbb{E} \bigl\vert \bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q}\Bigr)\mathbb{E}(\mathbb{I}_{\{r(s) \neq r(t_{k})\}}) \\ &\quad \leq C\mathbb{E}(\mathbb{I}_{\{r(s)\neq r(t_{k})\}}). \end{aligned} $$
By (3.43) we get
$$ \mathbb{E}(\mathbb{I}_{\{r(s)\neq r(t_{k})\}})= \mathbb{E} \bigl[\mathbb{E}\bigl(\mathbb{I}_{\{r(s)\neq r(t_{k})\}}| r(t_{k})\bigr) \bigr] \leq C\varDelta +o(\varDelta ). $$
Hence, for any \(s\in [0,T ]\), we derive that
$$ \begin{aligned} &\mathbb{E} \bigl\vert D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr)-D\bigl(\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \\ &\quad \leq \sup_{0\leq s \leq T}\mathbb{E} \bigl\vert D\bigl( \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s-\tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \\ &\quad \leq C\varDelta +o(\varDelta ). \end{aligned} $$
(3.47)
Inserting (3.47) into (3.46) gives that
$$ \begin{aligned} B_{3}\leq{} &C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s \wedge \rho ) \bigr\vert ^{q}\,ds \\ &{}+\varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha }+o(\varDelta ) \biggr). \end{aligned} $$
(3.48)
Similarly to \(B_{2}\) and \(B_{3}\), we easily derive that
$$ \begin{aligned} B_{4} &\leq C \biggl( \mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert \bar{x}_{\varDelta }(s)-x_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ &\quad {} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert D\bigl( \bar{x}_{\varDelta }(s-\tau ), \bar{r}(s)\bigr)-D\bigl(\bar{x}_{\varDelta }(s- \tau ),r(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad {} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f\bigl(s, \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad {} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert f\bigl(\mu (s), \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-f \bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s) \bigr) \bigr\vert ^{q}\,ds \biggr) \\ &\leq C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \varDelta ^{\frac{q}{2}} h^{q}( \varDelta ) +\varDelta ^{q\theta }+o(\varDelta ) \biggr) \end{aligned} $$
(3.49)
and
$$ \begin{aligned} B_{5} &\leq C \biggl( \mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds \\ &\quad {} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert g\bigl(s, \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)- g\bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr) \bigr\vert ^{q}\,ds \\ &\quad {} +\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert g\bigl(\mu (s), \bar{x}_{\varDelta }(s), \bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)- g\bigl( \mu (s),\bar{x}_{\varDelta }(s),\bar{x}_{\varDelta }(s-\tau ),\bar{r}(s) \bigr) \bigr\vert ^{q}\,ds \biggr) \\ &\leq C \biggl(\mathbb{E} \int _{0}^{t \wedge \rho } \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}\,ds+ \varDelta ^{\frac{q}{2}} h^{q}( \varDelta ) +\varDelta ^{q\sigma }+o(\varDelta ) \biggr). \end{aligned} $$
(3.50)
Substituting (3.38), (3.45), (3.48), (3.49), and (3.50) into (3.37) yields that
$$ \begin{aligned} &\mathbb{E} \bigl\vert e_{\varDelta }(t\wedge \rho ) \bigr\vert ^{q} \\ &\quad \leq C \biggl( \int _{0}^{t}\mathbb{E} \bigl\vert e_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q}\,ds+ \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho )-x_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q}\,ds \\ &\qquad {} +\bigl(\varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )}\bigr)+ \int _{0}^{t} \bigl( \mathbb{E} \bigl\vert x(s \wedge \rho -\tau )-x_{\varDelta }(s\wedge \rho -\tau ) \bigr\vert ^{2q} \bigr)^{ \frac{1}{2}}\,ds \biggr). \end{aligned} $$
Using Gronwall’s inequality gives that
$$ \begin{aligned} &\mathbb{E} \bigl\vert e_{\varDelta }(t\wedge \rho ) \bigr\vert ^{q} \\ &\quad \leq C \biggl( \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho )-x_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q}\,ds+\bigl(\varDelta ^{\frac{q}{2}} h^{q}( \varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )}\bigr) \\ &\qquad {} + \int _{0}^{t} \Bigl( \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho -\tau )-x_{\varDelta }(l\wedge \rho - \tau ) \bigr\vert ^{2q} \Bigr)^{\frac{1}{2}}\,ds \biggr). \end{aligned} $$
(3.51)
Therefore
$$ \begin{aligned} &\sup_{0\leq l \leq t}\mathbb{E} \bigl\vert e_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q} \\ &\quad \leq C \biggl( \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho )-x_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q}\,ds+\bigl(\varDelta ^{\frac{q}{2}} h^{q}( \varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )}\bigr) \\ &\qquad {} + \int _{0}^{t} \Bigl( \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho -\tau )-x_{\varDelta }(l\wedge \rho - \tau ) \bigr\vert ^{2q} \Bigr)^{\frac{1}{2}}\,ds \biggr). \end{aligned} $$
(3.52)
Let \(y(t)=x(t)-D(x(t-\tau ),r(t))\) and \(y_{\varDelta }(t)=x_{\varDelta }(t)-D(\bar{x}_{\varDelta }(t-\tau ),\bar{r}(t))\). Thus \(e_{\varDelta }(t)=y(t)-y_{\varDelta }(t)\). Then for any \(c_{3}, c_{4}, c_{5} > 0\), we have
$$\begin{aligned}& \bigl\vert x(t)-x_{\varDelta }(t) \bigr\vert ^{q} \\& \quad \leq (1+c_{3})^{q-1} \bigl\vert y(t)-y_{\varDelta }(t) \bigr\vert ^{q} + \biggl( \frac{1+c_{3}}{c_{3}} \biggr)^{q-1} \bigl\vert D\bigl(x(t-\tau ),r(t)\bigr)-D\bigl( \bar{x}_{\varDelta }(t-\tau ),\bar{r}(t)\bigr) \bigr\vert ^{q} \\& \quad \leq (1+c_{3})^{q-1} \bigl\vert e_{\varDelta }(t) \bigr\vert ^{q} + \biggl( \frac{(1+c_{3})(1+c_{4})}{c_{3}} \biggr)^{q-1} \bigl\vert D\bigl(x(t-\tau ),r(t)\bigr)-D\bigl( \bar{x}_{\varDelta }(t-\tau ),r(t)\bigr) \bigr\vert ^{q} \\& \qquad {} + \biggl(\frac{(1+c_{3})(1+c_{4})}{c_{3} c_{4}} \biggr)^{q-1} \bigl\vert D\bigl( \bar{x}_{\varDelta }(t-\tau ),r(t)\bigr)-D\bigl(\bar{x}_{\varDelta }(t-\tau ),\bar{r}(t)\bigr) \bigr\vert ^{q} \\& \quad \leq (1+c_{3})^{q-1} \bigl\vert e_{\varDelta }(t) \bigr\vert ^{q} + \biggl( \frac{(1+c_{3})(1+c_{4})}{c_{3}} \biggr)^{q-1}K_{2}^{q} \bigl\vert x(t-\tau )- \bar{x}_{\varDelta }(t-\tau ) \bigr\vert ^{q} \\& \qquad {} + \biggl(\frac{(1+c_{3})(1+c_{4})}{c_{3} c_{4}} \biggr)^{q-1} \bigl\vert D\bigl( \bar{x}_{\varDelta }(t-\tau ),r(t)\bigr)-D\bigl(\bar{x}_{\varDelta }(t-\tau ),\bar{r}(t)\bigr) \bigr\vert ^{q} \\& \quad \leq (1+c_{3})^{q-1} \bigl\vert e_{\varDelta }(t) \bigr\vert ^{q} + \biggl( \frac{(1+c_{3})(1+c_{4})(1+c_{5})}{c_{3}} \biggr)^{q-1}K_{2}^{q} \bigl\vert x(t- \tau )-x_{\varDelta }(t-\tau ) \bigr\vert ^{q} \\& \qquad {} + \biggl(\frac{(1+c_{3})(1+c_{4})(1+c_{5})}{c_{3} c_{5}} \biggr)^{q-1}K_{2}^{q} \bigl\vert x_{\varDelta }(t-\tau )-\bar{x}_{\varDelta }(t-\tau ) \bigr\vert ^{q} \\& \qquad {} + \biggl(\frac{(1+c_{3})(1+c_{4})}{c_{3} c_{4}} \biggr)^{q-1} \bigl\vert D\bigl( \bar{x}_{\varDelta }(t-\tau ),r(t)\bigr)-D\bigl(\bar{x}_{\varDelta }(t-\tau ),\bar{r}(t)\bigr) \bigr\vert ^{q}. \end{aligned}$$
Choose \(c_{3}\) sufficiently large and choose \(c_{4}\), \(c_{5}\) sufficiently small such that \(c_{6}:= (\frac{(1+c_{3})(1+c_{4})(1+c_{5})}{c_{3}} )^{q-1}K_{2}^{q} <1\). Then let \(c_{7}= (\frac{(1+c_{3})(1+c_{4})(1+c_{5})}{c_{3} c_{5}} )^{q-1}K_{2}^{q}\) and \(c_{8}= (\frac{(1+c_{3})(1+c_{4})}{c_{3} c_{4}} )^{q-1}\). Hence we derive from (3.47) that
$$ \begin{aligned} &\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s)-x_{\varDelta }(s) \bigr\vert ^{q} \\ &\quad \leq (1+c_{3})^{q-1}\sup_{0\leq s \leq t} \mathbb{E} \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q} +c_{6}\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s- \tau )-x_{\varDelta }(s-\tau ) \bigr\vert ^{q} \\ &\qquad {} +c_{7}\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(s-\tau )-\bar{x}_{\varDelta }(s-\tau ) \bigr\vert ^{q} \\ &\qquad {} +c_{8} \sup_{0\leq s \leq t}\mathbb{E} \bigl\vert D \bigl(\bar{x}_{\varDelta }(s-\tau ),r(s)\bigr)-D\bigl( \bar{x}_{\varDelta }(s- \tau ),\bar{r}(s)\bigr) \bigr\vert ^{q} \\ &\quad \leq (1+c_{3})^{q-1}\sup_{0\leq s \leq t} \mathbb{E} \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}+c_{6} \sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s)-x_{\varDelta }(s) \bigr\vert ^{q} \\ &\qquad {} +c_{7}\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x_{\varDelta }(s)-\bar{x}_{\varDelta }(s) \bigr\vert ^{q} +c_{6}\sup_{-\tau \leq s \leq 0}\mathbb{E} \bigl\vert \xi (s)- \xi \bigl(\lfloor s/\varDelta \rfloor \varDelta \bigr) \bigr\vert ^{q} \\ &\qquad {} +C\bigl(\varDelta +o(\varDelta )\bigr) \\ &\quad \leq (1+c_{3})^{q-1}\sup_{0\leq s \leq t} \mathbb{E} \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q} +c_{6}\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s)-x_{\varDelta }(s) \bigr\vert ^{q} \\ &\qquad {} +C\bigl(\varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q\alpha }+o( \varDelta )\bigr). \end{aligned} $$
Therefore
$$ \sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s)-x_{\varDelta }(s) \bigr\vert ^{q} \leq \frac{(1+c_{3})^{q-1}}{1-c_{6}}\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert e_{\varDelta }(s) \bigr\vert ^{q}+C\bigl(\varDelta ^{\frac{q}{2}} h^{q}(\varDelta ) +\varDelta ^{q \alpha }+o(\varDelta )\bigr). $$
Then we have
$$ \begin{aligned} &\sup_{0\leq l \leq t}\mathbb{E} \bigl\vert x(l\wedge \rho )-x_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q} \\ &\quad \leq C \biggl( \int _{0}^{t}\sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho )-x_{\varDelta }(l\wedge \rho ) \bigr\vert ^{q}\,ds+\bigl(\varDelta ^{\frac{q}{2}} h^{q}( \varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )}\bigr) \\ &\qquad {} + \int _{0}^{t} \Bigl( \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho -\tau )-x_{\varDelta }(l\wedge \rho - \tau ) \bigr\vert ^{2q} \Bigr)^{ \frac{1}{2}}\,ds \biggr). \end{aligned} $$
An application of Gronwall’s inequality gives that
$$ \begin{aligned} &\sup_{0\leq s \leq t}\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q} \\ &\quad \leq C \biggl( \varDelta _{f}^{q}+ \int _{0}^{t} \Bigl( \sup_{0\leq l \leq s} \mathbb{E} \bigl\vert x(l\wedge \rho -\tau )-x_{\varDelta }(l\wedge \rho - \tau ) \bigr\vert ^{2q} \Bigr)^{\frac{1}{2}}\,ds \biggr), \end{aligned} $$
where \(\varDelta _{f}=\varDelta ^{\frac{1}{2}} h (\varDelta ) \vee \varDelta ^{(\alpha \wedge \theta \wedge \sigma )}\). Then we use the same technique as in Lemma 3.9 to get the convergence rate. Define
$$ q_{i} =\bigl(\lfloor T/ \tau \rfloor +2 -i\bigr)q2^{\lfloor T/ \tau \rfloor +1 -i},\quad i=1,2,\ldots ,\lfloor T/ \tau \rfloor +1. $$
We find that
$$ 2q_{i+1} < q_{i}\quad \text{and} \quad q_{\lfloor T/ \tau \rfloor +1}=q,\quad i=1,2,\ldots ,\lfloor T/ \tau \rfloor . $$
Note that \(|x(s-\tau )-x_{\varDelta }(s-\tau )|=0\) for \(s\in [0,\tau ]\). Then we derive that
$$ \sup_{0\leq s \leq \tau }\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q_{1}} \leq C \varDelta _{f}^{q_{1}}. $$
Then by Hölder’s inequality we obtain that
$$ \begin{aligned} &\sup_{0\leq s \leq 2\tau }\mathbb{E} \bigl\vert x(s\wedge \rho )-x_{\varDelta }(s\wedge \rho ) \bigr\vert ^{q_{2}} \\ &\quad \leq C \biggl(\varDelta _{f}^{q_{2}} + \int _{0}^{2\tau } \bigl( \mathbb{E} \bigl\vert x(s\wedge \rho -\tau )-x_{\varDelta }(s\wedge \rho -\tau ) \bigr\vert ^{2q_{2} \frac{q_{1}}{2q_{2}}} \bigr)^{\frac{q_{2}}{q_{1}}}\,ds \biggr)\leq C \varDelta _{f}^{q_{2}}. \end{aligned} $$
By induction we could get the desired result. We complete the proof. □
Theorem 3.14
Let Assumptions 2.2, 2.3, 3.1–3.4, and 3.6hold. Let \(q\in [2,\bar{q})\) and \(p> (\beta +l_{v}+2)q\). For any sufficiently small \(\varDelta \in (0,1]\), assume that
$$ h(\varDelta ) \geq \varphi \bigl( \bigl(\varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr)^{ \frac{-1}{p-q}} \bigr). $$
(3.53)
Then for every such small Δ, we have
$$ \mathbb{E} \bigl\vert x(T)-x_{\varDelta }(T) \bigr\vert ^{q} \leq C \bigl( \varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr) $$
(3.54)
and
$$ \mathbb{E} \bigl\vert x(T)-\bar{x}_{\varDelta }(T) \bigr\vert ^{q} \leq C \bigl( \varDelta ^{ \frac{q}{2}} h^{q} ( \varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr) $$
(3.55)
for any \(T>0\).
Proof
Let \(\tau _{L}\), \(\tau _{\varDelta ,L}\), and \(\rho _{\varDelta ,L}\) be as before. Denote \(z_{\varDelta }(t)=x(t)-x_{\varDelta }(t)\). We write \(\rho _{\varDelta ,L}=\rho \) for simplicity. Obviously,
$$ \mathbb{E} \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} = \mathbb{E} \bigl( \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \mathbb{I}_{\{\rho >T\}} \bigr)+\mathbb{E} \bigl( \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \mathbb{I}_{\{\rho \leq T\}} \bigr). $$
(3.56)
Let \(\delta >0\) be arbitrary. By Young’s inequality we get
$$ u^{q} v=\bigl(\delta u ^{p} \bigr)^{\frac{q}{p}} \biggl( \frac{v ^{p/(p-q)}}{\delta ^{q/(p-q)}} \biggr) ^{\frac{p-q}{p}} \leq \frac{q\delta }{p} u^{p} + \frac{p-q}{p\delta ^{q/(p-q)}} v^{p/(p-q)} , \quad \forall u,v >0. $$
Hence
$$ \mathbb{E} \bigl( \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \mathbb{I}_{\{ \rho \leq T\}} \bigr)\leq \frac{q\delta }{p}\mathbb{E} \bigl\vert z_{\varDelta }(T) \bigr\vert ^{p} + \frac{p-q}{p\delta ^{q/(p-q)}}\mathbb{P} \{ \rho \leq T \}. $$
(3.57)
Applying Lemmas 3.5 and 3.9 gives that
$$ \mathbb{E} \bigl\vert z_{\varDelta }(T) \bigr\vert ^{p} \leq C. $$
(3.58)
By Lemmas 3.11 and 3.12 we have
$$ \mathbb{P}(\rho \leq T)\leq \mathbb{P}(\tau _{L} \leq T) + \mathbb{P}(\tau _{\varDelta ,L} \leq T) \leq \frac{C}{L^{p}}. $$
(3.59)
Inserting (3.58) and (3.59) into (3.57) yields that
$$ \mathbb{E} \bigl( \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \mathbb{I}_{\{ \rho \leq T\}} \bigr)\leq \frac{C q\delta }{p} + \frac{C(p-q)}{p L^{p} \delta ^{q/(p-q)}}. $$
(3.60)
Choose \(\delta = \varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q( \alpha \wedge \theta \wedge \sigma )}\) and \(L=(\varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )})^{\frac{-1}{p-q}}\). Then we have
$$ \mathbb{E} \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \leq \mathbb{E} \bigl\vert z_{\varDelta }(T\wedge \rho ) \bigr\vert ^{q} +C \bigl(\varDelta ^{\frac{q}{2}} h^{q} ( \varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr). $$
(3.61)
By condition (3.53) we obtain that
$$ \varphi ^{-1}\bigl(h(\varDelta )\bigr) \geq \bigl(\varDelta ^{\frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )}\bigr)^{ \frac{-1}{p-q}}=L. $$
We derive from Lemma 3.13 that
$$ \mathbb{E} \bigl\vert z_{\varDelta }(T) \bigr\vert ^{q} \leq C \bigl(\varDelta ^{ \frac{q}{2}} h^{q} (\varDelta ) \vee \varDelta ^{q(\alpha \wedge \theta \wedge \sigma )} \bigr). $$
(3.62)
Hence we get the desired result (3.54). Then combing Lemma 3.10 and (3.54) gives (3.55). We complete the proof. □