In this section, we will establish the quasi-sure exponential stability theorem based on aperiodic intermittent stochastic noise driven by G-Brownian motions. Since \(x_{0}=0\) implies \(x(t;t_{0},0)=0\), we only need to concentrate on \(x_{0} \neq 0\).
Theorem 3.1
(Stabilization theorem)
Assume that there exists a function \(V \in C^{1,2} ([t_{0}, \infty )\times R^{n};R^{+})\), and constants \(p>0\), \(c_{1}>0\), \(c_{3} \geq 0\), \(c_{4} \geq 0\), \(c_{5}\geq 0\), \(c_{2}\in R \) such that for \(t \geq t_{0}\),
$$\begin{aligned} (\mathrm{i})&\quad c_{1} \Vert x \Vert ^{p} \leq V(t,x), \\ (\mathrm{ii})&\quad V_{t}(t,x)+V_{x}(t,x)f(t,x) \leq c_{2}V(t,x), \\ (\mathrm{iii})&\quad \sigma _{1}^{T}(t,x)V_{xx}(t,x) \sigma _{1}(t,x) \leq c_{3}V(t,x), \\ (\mathrm{iv})&\quad V_{x}(t,x)h_{1}(t,x) \leq c_{4}V(t,x), \\ (\mathrm{v})&\quad \bigl\Vert V_{x}(t,x)\sigma _{1}(t,x) \bigr\Vert ^{2} \geq c_{5}V^{2}(t,x). \end{aligned}$$
Then the solution \(x(t;t_{0},x_{0})\) satisfies
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t;t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p}\quad \textit{q.s.} $$
(3.1)
In particular, if \(c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{\sigma } \bar{\delta }^{2}-2c_{4} \omega _{h} \bar{\delta }^{2}-2c_{2}>0\), then the solution \(x(t;t_{0},x_{0})\) of system (2.2) is quasi-sure exponentially stable.
Proof
Fix any \(x_{0}\neq 0\) and write \(x(t;t_{0},x_{0})=x(t)\). By Lemma 2.1, \(x(t)\neq 0\) for all \(t\geq t_{0}\) q.s. Applying Itô’s formula, for \(t\geq t_{0}\), we get
$$\begin{aligned} \begin{aligned} \log V\bigl(t,x(t)\bigr)={}&\log V(t_{0},x_{0})+ \int _{t_{0}}^{t}F\bigl(s,x(s)\bigr)\,ds + \int _{t_{0}}^{t}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+ \int _{t_{0}}^{t}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) -\frac{1}{2} \int _{t_{0}}^{t}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s)+N(t), \end{aligned} \end{aligned}$$
(3.2)
where
$$ N(t)= \int _{t_{0}}^{t}\frac{V_{x}(s,x(s))\sigma (s,x(s))}{V(s,x(s))}\, d B(s) $$
is a continuous martingale. By Lemma 2.2, taking an arbitrary \(\varepsilon \in (0,1)\), for all \(\omega \in \Omega\) q.s., there exists an integer \(n_{0}(\omega ,P) \) such that if \(n\geq n_{0}\), then
$$ N(t)\leq \frac{2}{\varepsilon }\log (n)+\frac{\varepsilon }{2} \int _{t_{0}}^{t}R\bigl(s,x(s)\bigr)\, d \langle B \rangle (s) $$
holds for all \(t_{0}\leq t\leq t_{0}+n\). Substituting this into (3.2), we have
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+ \int _{t_{0}}^{t}F\bigl(s,x(s)\bigr)\,ds+ \int _{t_{0}}^{t}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+ \int _{t_{0}}^{t}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)-\frac{1}{2}(1-\varepsilon ) \int _{t_{0}}^{t}R\bigl(s,x(s)\bigr)\, d\langle B \rangle (s)+\frac{2}{\varepsilon }\log (n). \end{aligned}$$
Then we consider t in a different time interval. Obviously, there exist two positive integers \(n_{1}\), \(n_{2}\) such that \(t \in [t_{n_{1}}^{h},t_{n_{1}+1}^{h}] \cap [t_{n_{2}}^{\sigma },t_{n_{2}+1}^{ \sigma }]\). Depending on h- and σ-type noise widths, there are four possible cases which need to be discussed.
Case 1. For all \(\omega \in \Omega \) and \(n>n_{0}\), \(t\in [t_{n_{1}}^{h},t_{n_{1}}^{h}+c_{n_{1}}^{h}) \cap [t_{n_{2}}^{ \sigma },t_{n_{2}}^{\sigma }+c_{n_{2}}^{\sigma })\), we have
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+ \int _{t_{0}}^{t}F\bigl(s,x(s)\bigr)\,ds \\ & {}+ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{\sigma }}H_{1}\bigl(s,x(s) \bigr)\, d\langle B \rangle (s)+ \int _{t_{0}^{\sigma }+c_{0}^{\sigma }}^{t_{1}^{\sigma }}H_{1}\bigl(s,x(s) \bigr)\, d \langle B\rangle (s) \\ &{}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t}H_{1}\bigl(s,x(s) \bigr)\, d \langle B\rangle (s) \\ & {}+ \int _{t_{0}}^{t_{0}^{h}+c_{0}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)+ \int _{t_{0}^{h}+c_{0}^{h}}^{t_{1}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s) \\ &{}+\cdots + \int _{t_{n_{1}}^{h}}^{t}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ & {}-\frac{1}{2}(1-\varepsilon ) \biggl[ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{ \sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s)+ \int _{t_{0}^{\sigma }+c_{0}^{ \sigma }}^{t_{1}^{\sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \\ & {}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \biggr]+\frac{2}{\varepsilon }\log (n). \end{aligned}$$
Substituting conditions (ii), (iii), (iv), and (v) into the above equation, we obtain
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{1}{2}c_{3} \bar{\delta }^{2}\bigl[c_{0}^{\sigma }+0+\cdots + \bigl(t-t_{n_{2}}^{\sigma }\bigr)\bigr] \\ &{}+c_{4} \bar{\delta }^{2}\bigl[c_{0}^{h}+0+ \cdots +\bigl(t-t_{n_{1}}^{h}\bigr)\bigr] \\ &{}- \frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2} \bigl[c_{0}^{ \sigma }+0+\cdots + \bigl(t-t_{n_{2}}^{\sigma }\bigr)\bigr]+\frac{2}{\varepsilon }\log (n) \\ \leq &\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{2}{\varepsilon } \log (n) \\ &{}+\frac{1}{2} c_{3} \bar{\delta }^{2} \sum _{i=0}^{n_{2}} c_{i}^{ \sigma }+c_{4} \bar{\delta }^{2}\sum_{i=0}^{n_{1}} c_{i}^{h}- \frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2}\sum _{i=0}^{n_{2}-1} c_{i}^{\sigma }, \end{aligned}$$
which implies that
$$\begin{aligned} \frac{1}{t}\log V\bigl(t,x(t)\bigr) \leq& \frac{1}{t} \biggl[ \log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{2}{\varepsilon }\log (n) \biggr] \\ &{}+ \frac{c_{3} \bar{\delta }^{2} \sum_{i=0}^{n_{2}} c_{i}^{\sigma }}{2t_{n_{2}}^{\sigma }} + \frac{c_{4} \bar{\delta }^{2}\sum_{i=0}^{n_{1}} c_{i}^{h}}{2t_{n_{1}}^{h}} - \frac{(1-\varepsilon )c_{5} \underline{\delta }^{2}\sum_{i=0}^{n_{2}-1} c_{i}^{\sigma }}{t_{n_{2}+1}}. \end{aligned}$$
By Eq. (2.5), we deduce
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log V\bigl(t,x(t)\bigr) \leq c_{2}+ \frac{c_{3} \omega _{\sigma }\bar{\delta }^{2} }{2} +c_{4} \omega _{h} \bar{\delta }^{2}-\frac{1}{2}(1- \varepsilon )c_{5} \omega _{\sigma } \underline{\delta }^{2}. $$
Using condition (i) and letting \(\varepsilon \rightarrow 0\), it follows that
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p} \quad \text{q.s.} $$
Case 2. For all \(\omega \in \Omega \) and \(n>n_{0}\), \(t\in [t_{n_{1}}^{h},t_{n_{1}}^{h}+c_{n_{1}}^{h}) \cap [t_{n_{2}}^{ \sigma }+c_{n_{2}}^{\sigma },t_{n_{2}+1}^{\sigma })\), the integral interval length of \(\sigma (t,x(t))\) has changed compared to Case 1. Hence we have
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+ \int _{t_{0}}^{t}F\bigl(s,x(s)\bigr)\,ds \\ &{}+ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{h}}H_{1}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s) + \int _{t_{0}^{h}+c_{0}^{\sigma }}^{t_{1}^{\sigma }}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)+ \int _{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}^{t}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+ \int _{t_{0}}^{t_{0}^{h}+c_{0}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)+ \int _{t_{0}^{h}+c_{0}^{h}}^{t_{1}^{\sigma }}H_{2}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s) \\ &{}+\cdots + \int _{t_{n_{1}}^{h}}^{t}H_{2}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s) \\ &{}-\frac{1}{2}(1-\varepsilon ) \biggl[ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{ \sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s)+ \int _{t_{0}^{\sigma }+c_{0}^{ \sigma }}^{t_{1}^{\sigma }} R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \\ &{}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \\ &{}+ \int _{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}^{t}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \biggr]+ \frac{2}{\varepsilon }\log (n). \end{aligned}$$
By conditions (ii), (iii), (iv), and (v), we obtain
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{1}{2}c_{3} \bar{\delta }^{2}\bigl[c_{0}^{\sigma }+0+\cdots +c_{n_{2}}^{ \sigma }\bigr] \\ &{}+c_{4} \bar{\delta }^{2}\bigl[c_{0}^{h}+0+\cdots + \bigl(t-t_{n_{1}}^{h}\bigr)\bigr] \\ &{}-\frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2} \bigl[c_{0}^{ \sigma }+0+\cdots + \bigl(t-t_{n_{1}}^{h}\bigr)\bigr]+ \frac{2}{\varepsilon }\log (n) \\ \leq &\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{2}{\varepsilon } \log (n) \\ &{}+\frac{1}{2} c_{3} \bar{\delta }^{2} \sum _{i=0}^{n_{2}} c_{i}^{ \sigma }+c_{4} \bar{\delta }^{2}\sum_{i=0}^{n_{1}} c_{i}^{h}- \frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2}\sum _{i=0}^{n_{2}} c_{i}^{\sigma }. \end{aligned}$$
Using the same method as in Case 1, we conclude
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p} \quad \text{q.s.} $$
Case 3. For all \(\omega \in \Omega \) and \(n>n_{0}\), \(t\in [t_{n_{1}}^{h}+c_{n_{1}}^{h},t_{n_{1}+1}^{h}) \cap [t_{n_{2}}^{ \sigma },t_{n_{2}}^{\sigma }+c_{n_{2}}^{\sigma })\) for all \(\omega \in \Omega \) and \(n>n_{0}\). This case is similar to Case 1 except for the additional time interval \([t_{n_{1}}^{h}+c_{n_{1}}^{h},t_{n_{1}+1}^{h})\) of \(h(t,x(t))\). Since \(h(t,x(t))=0\), \(t \in [t_{n_{1}}^{h}+c_{n_{1}}^{h},t_{n_{1}+1}^{h})\), \(\log V(t,x(t))\) can be written as
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{1}{2}c_{3} \bar{\delta }^{2}\bigl[c_{0}^{\sigma }+0+\cdots + \bigl(t-t_{n_{2}}^{ \sigma }\bigr)\bigr] \\ &{}+c_{4} \bar{\delta }^{2}\bigl[c_{0}^{h}+0+ \cdots +c_{n_{1}}^{h}\bigr]- \frac{1}{2}(1- \varepsilon )c_{5} \underline{\delta }^{2} \bigl[c_{0}^{ \sigma }+0+\cdots +\bigl(t-t_{n_{2}}^{\sigma } \bigr)\bigr] \\ &{}+ \frac{2}{\varepsilon }\log (n) \\ \leq &\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{2}{\varepsilon } \log (n) \\ &{}+\frac{1}{2} c_{3} \bar{\delta }^{2} \sum _{i=0}^{n_{2}} c_{i}^{ \sigma }+c_{4} \bar{\delta }^{2}\sum_{i=0}^{n_{1}} c_{i}^{h}- \frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2}\sum _{i=0}^{n_{2}-1} c_{i}^{\sigma }. \end{aligned}$$
Together with conditions (i)–(v), it follows that
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5}(1-\varepsilon ) \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p}\quad \text{q.s.} $$
As \(\varepsilon \rightarrow 0\), the following inequality holds:
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p} \quad \text{q.s.} $$
Case 4. For all \(\omega \in \Omega \) and \(n>n_{0}\), \(t\in [t_{n_{1}}^{h}+c_{n_{1}}^{h},t_{n_{1}+1}^{h}) \cup [t_{n_{2}}^{ \sigma }+c_{n_{2}}^{\sigma },t_{n_{2}+1}^{\sigma })\). This case is similar to Case 2 except for the time interval of \(h(t,x(t))\). This time \(\log V(t,x(t))\) can be divided into
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+ \int _{t_{0}}^{t}F\bigl(s,x(s)\bigr)\,ds \\ &{}+ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{h}}H_{1}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s)+ \int _{t_{0}^{h}+c_{0}^{\sigma }}^{t_{1}^{\sigma }}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) + \int _{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}^{t}H_{1}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}+ \int _{t_{0}}^{t_{0}^{h}+c_{0}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)+ \int _{t_{0}^{h}+c_{0}^{h}}^{t_{1}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B \rangle (s) \\ &{}+\cdots + \int _{t_{n_{1}}^{h}}^{t_{n_{1}}^{h}+c_{n_{1}}^{h}}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s)+ \int _{t_{n_{1}}^{h}+c_{n_{1}}^{h}}^{t}H_{2}\bigl(s,x(s) \bigr)\,d\langle B\rangle (s) \\ &{}-\frac{1}{2}(1-\varepsilon ) \biggl[ \int _{t_{0}}^{t_{0}^{\sigma }+c_{0}^{ \sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s)+ \int _{t_{0}^{\sigma }+c_{0}^{ \sigma }}^{t_{1}^{\sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \\ &{}+\cdots + \int _{t_{n_{2}}^{\sigma }}^{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \\ &{}+ \int _{t_{n_{2}}^{\sigma }+c_{n_{2}}^{ \sigma }}^{t}R\bigl(s,x(s)\bigr)\,d\langle B \rangle (s) \biggr] + \frac{2}{\varepsilon }\log (n). \end{aligned}$$
The latter implies that
$$\begin{aligned} \log V\bigl(t,x(t)\bigr) =&\log V(t_{0},x_{0})+c_{2} (t-t_{0}) \\ &{}+\frac{1}{2}c_{3} \bar{\delta }^{2} \bigl[c_{0}^{\sigma }+0+\cdots +c_{n_{2}}^{ \sigma }+0 \bigr] \\ &{}+c_{4} \bar{\delta }^{2}\bigl[c_{0}^{h}+0+ \cdots +c_{n_{1}}^{h}+0\bigr] \\ &{}-\frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2} \bigl[c_{0}^{ \sigma }+0+\cdots +c_{n_{2}}^{\sigma }+0\bigr]+\frac{2}{\varepsilon }\log (n) \\ =&\log V(t_{0},x_{0})+c_{2} (t-t_{0})+\frac{2}{\varepsilon }\log (n) \\ &{}+\frac{1}{2} c_{3} \bar{\delta }^{2} \sum _{i=0}^{n_{2}} c_{i}^{ \sigma }+c_{4} \bar{\delta }^{2}\sum_{i=0}^{n_{1}} c_{i}^{h}- \frac{1}{2}(1-\varepsilon )c_{5} \underline{\delta }^{2}\sum _{i=0}^{n_{2}} c_{i}^{\sigma }. \end{aligned}$$
Thus we claim
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{\sigma } \underline{\delta }^{2}-c_{3} \omega _{h}\bar{\delta }^{2}-2c_{4} \omega _{\sigma } \bar{\delta }^{2}-2c_{2}}{2p}\quad \text{q.s.} $$
From the above four cases, for all \(\omega \in \Omega \) and \(t \in [t_{n_{1}}^{h},t_{n_{1}+1}^{h}]\cap [t_{n_{2}}^{\sigma },t_{n_{2}+1}^{ \sigma }]\), the following inequality always holds
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t,t_{0},x_{0}) \bigr\Vert \leq - \frac{c_{5} \omega _{1} \underline{\delta }^{2}-c_{3} \omega _{1}\bar{\delta }^{2}-2c_{4} \omega _{2}\bar{\delta }^{2}-2c_{2}}{2p}\quad \text{q.s.} $$
The proof is complete. □
Remark 3.1
If \(V(t,x)=\|x\|^{2}\), conditions (i)–(v) in Theorem 3.1 become: (i) \(x^{T} f(t, x) \leq s_{1}\|x\|^{2}\); (ii) \(\|\sigma _{1}(t, x) \| \leq s _{2}\|x\|\); (iii) \(x^{T} h_{1}(t, x) \leq s_{3}\|x\|^{2}\); and (iv) \(\|x^{T}\sigma _{1}(t,x)\| \geq s_{4}\|x\|\). Then \(x(t; t_{0},x_{0})\) satisfies
$$ \limsup_{t\rightarrow \infty }\frac{1}{t}\log \bigl\Vert x(t; t_{0},x_{0}) \bigr\Vert \leq -\bigl(s_{4}^{2} \omega _{1} \underline{\delta }^{2}-0.5 s_{2} ^{2} \omega _{1}\bar{\delta }^{2}-s_{3} \omega _{2} \bar{\delta }^{2}-s_{1}\bigr)\quad \text{q.s.} $$
(3.3)
In particular, if \(s_{4}^{2} \omega _{1} \underline{\delta }^{2}-0.5 s_{2} ^{2}\omega _{1} \bar{\delta }^{2}-s_{3} \omega _{2} \bar{\delta }^{2}-s_{1}>0\), the solution \(x(t;t_{0},x_{0})\) of system (2.2) is quasi-sure exponentially stale.
Remark 3.2
If \(h_{1}(t,x)=0\), \(\sigma _{1}(t,x)=g_{1}(t,x)\), and \(\bar{\delta }=\underline{\delta }=1\), system (2.2) becomes an intermittently stochastically perturbed system driven by Brownian motion. More specially, if \(t_{j+1}^{\sigma }-t_{j}^{\sigma }=T\) and \(c_{j}^{\sigma }=\delta \) for all \(j \in N\), system (2.2) becomes a periodic intermittent system. Equation (3.1) becomes
$$ \limsup_{t\rightarrow \infty } \frac{1}{t}\log \bigl\Vert x(t; t_{0},x_{0}) \bigr\Vert \leq -\frac{(c_{5} -c_{3} ) \frac{\delta }{T}-2c_{2}}{2p}\quad \text{a.s.} $$
This agrees with Theorem 1 in Zhang et al. [11]. Our results can be regarded as a generalization of Zhang et al. [11].
Remark 3.3
According to Eq. (3.1), the Lyapunov exponential of \(x(t;t_{0},x_{0})\) depends on perturbation time ratios \(\omega _{h}\), \(\omega _{\sigma }\) and volatility uncertainties \(\underline{\delta }\), δ̄. Thus h-type perturbation’s time ratio and volatility uncertainty \(\underline{\delta }\) can speed up exponential convergence, if the control strategy is designed based on our theoretical results.