- Research
- Open Access
- Published:
On n-polynomial p-convex functions and some related inequalities
Advances in Difference Equations volume 2020, Article number: 666 (2020)
Abstract
In this paper, we introduce a new class of convex functions, so-called n-polynomial p-convex functions. We discuss some algebraic properties and present Hermite–Hadamard type inequalities for this generalization. Moreover, we establish some refinements of Hermite–Hadamard type inequalities for this new class.
1 Introduction
Some geometric properties of convex sets and, to a lesser extent, of convex functions were studied before 1960 by outstanding mathematicians, first of all by Hermann Minkowski and Werner Fenchel. At the beginning of 1960 convex analysis was greatly developed in the works of R. Tyrrell Rockafellar and Jean-Jacques Morreau who initiated a systematic study of this new field. There are several books devoted to different aspects of convex analysis and optimization. See [1–6].
Let \(I=[c,d]\subset \mathbb{R}\) be an interval. Then a real-valued function \(\psi : I\rightarrow \mathbb{R}\) is said to be convex on I if
holds for all x, y in I and \(t\in (0,1) \). The function \(\psi : I \rightarrow \mathbb{R}\) is said to be concave if inequality (1.1) is reversed. For more on convexity, see [7–12].
The idea of convexity is not new one even it occurs in some other form in Archimede’s treatment of orbit length. Nowadays, the application of several works on convexity can be directly or indirectly seen in various subjects like real analysis, functional analysis, linear algebra, and geometry. Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences. Many articles have been written by a number of mathematicians on convex functions and inequalities for their different classes. In the last few decades, the subject of convex analysis got rapid development because of its geometry and its role in the optimization. The deep relation between convex analysis and fractional calculus can never be ignored. For recent work on fractional calculus, we refer to [13–17].
Let \(\psi : I\rightarrow \mathbb{R}\) be a convex function, then for all \(x,y \in I\) and \(t\in (0,1) \), the following holds:
For the extended version of the above inequality, see [18, 19].
In [20], Lipot Fejér presented an extended version of (1.2) inequality known as Fejér inequality or a weighted version of the Hermite–Hadamard inequality. If \(\psi : I \rightarrow R \) is a convex function, then
where \(c\leq d\), and \(w : I\rightarrow R\) is nonnegative, integrable, and symmetric about \(\frac{c+d}{2}\).
The present paper is organized as follows:
First we give some preliminary material and basic definition for n-polynomial p-convex function. In the second section we give some basic results for our newly defined generalization. Next we develop Hermite–Hadamard type inequality. In the last section, we give some theorems related to our work.
2 Preliminaries
We start with some basic definitions.
Definition 2.1
(p-convex set [21])
The interval I is said to be a p-convex set if \([ (t x^{p}+(1-t)y^{p})^{\frac{1}{p}}] \in I \) for all \(x, y \in I\), \(p>0 \) and \(t \in [0,1]\).
Definition 2.2
((p-convex function) [22])
A function \(\psi : I\rightarrow R \) is said to be p-convex if the following inequality
holds for all \(x,y \in I=[c,d] \) and \(t\in [0,1] \) where \(p>0\).
It can be easily seen that, for \(p=1\), p-convexity is reduced to the classical convexity of functions defined on \(I \subset (0, \infty ) \).
Now we recall the definition of harmonically convex function as follows.
Definition 2.3
(Harmonic convex function [23])
Let \(I \subset \mathbb{R} \) be an interval. Then a real-valued function \(\psi : I\rightarrow \mathbb{R} \) is said to be harmonically convex if
holds for all \(x,y \in I \) and \(t\in [0,1]\).
In [24] n-polynomial convexity has been defined.
Definition 2.4
(n-polynomial convex function)
Let \(n\in \mathbb{N}\). A nonnegative function \(\psi : I\rightarrow R \) is called n-polynomial convex function if, for every \(x,y \in I \) and \(t\in [0,1] \),
We will denote by POLC(I) the class of all n-polynomial convex functions on interval I.
We note that every n-polynomial convex function is an h-convex function with the function \(h(t)=\sum_{s=1}^{n} [1-(1-t)^{s} ] \).
In [25] n-polynomial harmonically convexity has been defined.
Definition 2.5
(n-polynomial harmonic convex function)
Let \(n\in \mathbb{N}\). A nonnegative function \(\psi : I\rightarrow R \) is called n-polynomial harmonically convex function if, for every \(x,y \in I \) and \(t\in [0,1]\),
From Definition 2.5, for \(n=2\), we can see that the class of n-polynomial harmonically convex functions satisfies the inequality
for all \(x,y \in I\) and \(t\in [0,1] \).
Now we are going to introduce a new generalization of n-polynomial convex function.
Definition 2.6
(n-polynomial p-convex function)
Let \(n\in \mathbb{N}\). A nonnegative function \(\psi : I\rightarrow R \) is called n-polynomial p-convex function if, for every \(x,y \in I\), \(p>0 \) and \(t\in [0,1] \),
holds.
Remark 2.7
1: if we put \(p=-1 \), then (2.6) is reduced to (2.4) n-polynomial harmonic convex function [25].
2: if we put \(p=1 \), then (2.6) is reduced to (2.3) n-polynomial convex function [24].
3 Basic results
In this section we derive some basic results and propositions related to our new generalization.
The following proposition shows the linearity of n-polynomial p-convex function.
Proposition 3.1
Let \(\phi : I \rightarrow \mathbb{R} \) be a nonnegative n-polynomial p-convex function, and where for \(n\in \mathbb{N}\), \(x,y \in I\), \(p>0\) and \(t\in [0,1]\), then \(\psi +\phi \) is an n-polynomial p-convex function.
Proof
Let ψ and ϕ be two n-polynomial p-convex functions, then for all \(x,y \in I \), \(p>0 \) and \(\in [0,1] \) we have
this assures the n-polynomial p-convexity of \(\psi +\phi \). □
Now we will discus the scalar multiplication of n-polynomial p-convex function.
Proposition 3.2
Let \(\psi : I \rightarrow \mathbb{R} \) be a nonnegative n-polynomial p-convex function and \(\lambda >0 \), where for \(n\in \mathbb{N}\), \(x,y \in I\), \(p>0 \) and \(t\in [0,1] \), then \(\lambda \psi :I\rightarrow \mathbb{R} \) is also an n-polynomial p-convex function.
Proof
Let ψ be an n-polynomial p-convex function, then for all \(x,y \in I\), \(p>0 \) and \(t\in [0,1] \), where \(\lambda >0 \), we have
which shows that λψ is also an n-polynomial p-convex function. □
Proposition 3.3
Let \(\psi : I \rightarrow \mathbb{R} \) be a nonnegative n-polynomial p-convex function, and where for \(n\in \mathbb{N}\), \(x,y \in I\), \(p>0 \) and \(t\in [0,1]\), then
is also an n-polynomial p-convex function.
Proof
Take any \(x,y \in R^{n} \) and \(t\in [0,1] \). Denote \(\psi =\max \psi _{i} \), where \(i=1,2,3,\ldots,n\) ,
⇒ \(\psi =\max \lbrace \psi _{i}, i=1,2,3,\ldots, n \rbrace \) is also an n-polynomial p-convex function.
This completes the proof. □
Proposition 3.4
Let \(\psi _{i}: R^{n}\rightarrow \bar{R} \) for \(i \in I \) be a collection of n polynomial p-convex functions. Then the supremum function
is also n polynomial p-convex function.
Hint. If \(\psi (x) = \sup \) \(\psi _{i}(x), i \in I \), then \(\psi (x)\geq \psi _{i}(x) \), ∀ \(i \in I \).
Proof
Fix \(x,y \in R^{n}\), \(p>0 \) and \(t \in [0,1]\), then for every \(i \in I \) we have
which implies in turn that
This justifies the convexity of supremum function. □
Remark 3.5
1: If we insert \(p=-1 \) in Proposition 3.4, then we will get the result for an n-polynomial harmonically convex function [25, Theorem 2.2].
4 Hermite–Hadamard type inequality for n-polynomial p-convex function
The goal of this paper is to establish some inequalities of Hermite–Hadamard type for n-polynomial p-convex function. Throughout the section, \(L[c,d]\) will represent the space of (Lebesgue) integrable functions on \([c,d] \subseteq \mathbb{R}\). For more on Hermite–Hadamard type inequality, see [23, 26–29].
Theorem 4.1
(Hermite–Hadamard type inequality)
Let \(\psi : [c,d]\rightarrow \mathbb{R} \) be an n-polynomial p-convex function. If \(c< d \) and \(\psi \in L[c,d] \), where \(p>0 \), then the following Hermite–Hadamard type inequalities hold:
Proof
Fix \(x,y \in R^{n}\), \(p>0 \), and \(t \in [0,1]\), then for every \(i \in I \), by the definition of n-polynomial p-convex function of ψ,we have
Integration in the last inequality with respect to \(t\in [0,1]\) yields that
After solving the above inequality (4.3), we get
which is the left-hand side of the theorem.
To prove the right-hand side of the theorem, take
since ψ is an n-polynomial p-convex function:
which is the right-hand side of the theorem. □
Remark 4.2
Imposing some condition on Theorem (4.1), we get a different version of Hermite–Hadamard type inequality.
1. For \(n=1 \) and \(p=1 \), we obtain Hermite–Hadamard type inequality (1.2) for classical convex functions.
2. For \(p=-1 \), we obtain Hermite–Hadamard type inequality for n-polynomial harmonically convex function [25].
3. For \(p=1 \), we obtain Hermite–Hadamard type inequality for n-polynomial classical convex function [24].
5 New inequalities for n-polynomial p-convex function
In this section, we establish new estimates that refine Hermite–Hadamard inequality for a function whose first derivative is absolute value, raised to a certain power which is greater than one.
In [26] the following lemma is given, which will be helpful for generating refinements of Hermite–Hadamard type inequality.
Lemma 5.1
([26])
Let \(\psi : I=[c,d]\subset \mathbb{R}\rightarrow \mathbb{R} \) be a differentiable function on \(I^{o} \) with \(c< d \). If \(\psi ^{\prime } \in L[c,d]\), then
where \(M_{p}^{-1}(c,d;t)= [tc^{p}+(1-t)d^{p} ]^{\frac{1}{p}-1} \).
Theorem 5.2
Let \(\psi : I\rightarrow \mathbb{R} \) be a differentiable function on \(I^{o}, c,d \in I^{o}\) with \(c< d \) and assume that \(\psi ^{\prime }\in L[c,d] \). If \(\psi ^{\prime } \) is an n-polynomial p-convex function on the interval \([c,d] \), then the following inequality holds for \(t \in [0,1]\):
where
and
Proof
The definition of n-polynomial convexity and Lemma 5.1 yields the following:
We get
This completes the proof. □
Remark 5.3
1. For \(p=1\), we have [24, Theorem 5].
Corollary 5.4
If we take \(n=1 \) and \(p=1 \) in inequality (4.1), we get the following inequality:
This inequality coincides with the inequality in [26].
In [30], Iscan gave a refinement of Holder integral inequality as follows.
Theorem 5.5
(Holder–Iscan integral inequality [30])
Let \(p>1 \) and \(\frac{1}{p}+\frac{1}{q}=1 \). If ψ and ϕ are real functions defined on the interval \([c,d] \) and if \(\vert \psi \vert ^{q} \) and \(\vert \phi \vert ^{q} \) are integrable functions on \([c,d] \), then
A refinement of the power mean integral inequality as a different version of the Holder–Iscan integral inequality is given as follows.
Theorem 5.6
(Improved power-mean integral inequality [31])
Let \(q>0 \). If ψ and ϕ are real functions defined on the interval \([c,d]\) and if \(\vert \psi \vert \), \(\vert \psi \vert \vert \phi \vert ^{q}\) are integrable functions on \([c,d] \), then
holds.
Theorem 5.7
Let \(\psi : I\rightarrow \mathbb{R} \) be a differentiable function on \(I^{o}, c,d \in I^{o}\) with \(c< d \), \(q>1\), \(\frac{1}{p}+\frac{1}{q}=1\), and assume that \(\psi '\in L[c,d] \). If \(\psi ' \) is an n-polynomial p-convex function on the interval \([c,d] \), then the following inequality holds for \(t \in [0,1]\):
where
Proof
Using the definition of n-polynomial convexity and Lemma 5.1, we have
which is an n-polynomial p-convex function of \(\vert \psi ' \vert ^{q} \), we get
where
and A is arithmetic mean. This completes the proof of the theorem. □
Remark 5.8
1. For \(p=1 \), we have [24, Theorem 6].
Corollary 5.9
If we take \(n=1 \) and \(p=1 \) in inequality (4.1), we get the following inequality:
This inequality coincides with the inequality in [26].
Theorem 5.10
Let \(\psi : I\rightarrow \mathbb{R} \) be a differentiable function on \(I^{o}, c,d \in I^{o}\) with \(c< d \), \(q>1 \), and assume that \(\vert \psi ' \vert ^{q}\) is an n-polynomial p-convex function on the interval \([c,d] \), then the following inequality holds for \(t \in [0,1]\):
Proof
The definition of n-polynomial convexity and Lemma 5.1 yields the following:
This completes the proof of the theorem. □
Remark 5.11
1. For \(p=1 \), we have [24, Theorem 7].
Corollary 5.12
If we take \(n=1 \) and \(p=1 \) in (4.1), we get the following inequality:
This inequality coincides with the inequality in [26] with \(q=1\).
Availability of data and materials
Not applicable.
References
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441-xi
Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Springer, Berlin (2000). https://doi.org/10.1007/978-1-4757-9859-3-xi
Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimizing Algorithms. Vols. I and II. Springer, Berlin (1993). https://doi.org/10.1007/978-3-662-06409-2-xi
Hiriart-Urruty, J.B., Lemarechal, C.: Fundamental of Convex Analysis. Springer, Berlin (2001). https://doi.org/10.1007/978-3-642-5468-0-xi
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic, Norwell (2004). https://doi.org/10.1007/978-1-4419-8853-9-xi
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) xi-54
Hadamard, J.: Etude sur les properietes des functions entries et en particulier d’une function consideree par Riemann. J. Math. Pures Appl. 58, 171–215 (1893)
Definetti, B.: Sulla stratificazioni convesse. Ann. Mat. Pura Appl. 30, 173–183 (1949)
Manasarian, O.L.: Pseudo-convex functions. SIAM J. Control 3, 281–290 (1965)
Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 7, 72–75 (1966)
Pecaric, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)
Wang, L., Dai, L.-Z., Bian, H.-B., Ma, Y.-F., Zhang, J.-R.: Concrete cracking prediction under combined prestress and strand corrosion. Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Des. Perform. 15(3), 285–295 (2019)
Rashid, S., Kalsoom, H., Hammouch, Z., Ashraf, R., Baleanu, D., Chu, Y.-M.: New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 12, 222 (2020). https://doi.org/10.3390/sym12020222
Rashid, S., Noor, M.A., Sooppy, N.K., Baleanu, D., Rahman, G.: A new dynamic scheme via fractional operators on time scale. Front. Phys. 8, 165 (2020). https://doi.org/10.3389/fphy.2020.00165
Rashid, S., Iscan, I., Baleanu, D., Chu, Y.M.: Generation of new fractional inequalities via n polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 264 (2020). https://doi.org/10.1186/s13662-020-02720-y
Rashid, S., Jarad, F., Noor, M.A., Noor, K.I., Baleanu, D., Liu, J.B.: On Gruss inequalities within generalized K-fractional integrals. Adv. Differ. Equ. 203 (2020). https://doi.org/10.1186/s13662-020-02644-7
Rashid, S., Hammouch, Z., Baleanu, D., Chu, Y.M.: New generalization in the sense of the weighted non-singular fractional integral operator. Fractals 28(8), 2040003 (2020) 11 pages. https://doi.org/10.1142/S0218348X20400034
Awan, U., Noor, M., Noor, K.: On strongly generalized convex function. Filomat 31, 5783–5790 (2018). https://doi.org/10.2298/FIL1718783A
Dai, L.-Z., Bian, H.-B., Wang, L., Potier-Ferry, M., Zhang, J.-R.: Prestress loss diagnostics in pretensioned concrete structures with corrosive cracking. J. Struct. Eng. 146(3), Article ID 04020013 (2020)
Ciobotariu-Boer, V.: Hermite–Hadamard and Fejer inequalities for Wright-convex function. Octogon Math. Mag. 17(1), 53–69 (2009)
Zhang, K.S., Wan, J.P.: p-convex functions and their properties. Pure Appl. Math. 23, 130–133 (2007)
Zhang, K., Wan, J.: p-convex functions and their properties. In: J. Math. Pure. Appl, vol. 23 (2007)
Iscan, I.: Hermite–Hadamard type inequalities for harmonically convex functions. J. Math. Stat. 43, 935–942 (2014)
Toplu, T., Kadakal, M., Iscan, I.: On n-polynomial convexity and some related inequalities. AIMS Math. 5(2), 1304–1318 (2020). https://doi.org/10.3934/math.2020089
Awan, M.U., Akhtar, N., Iftikhar, S., Noor, M.A., Chu, Y.M.: New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. (2020) http://doi.org/10.1186/s13660-020-02393-x
Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and application to special means of trapezoidal formula. Appl. Math. Lett. 11, 91–95 (1998)
Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. Victoria University (2000)
Frang, Z.B., Shi, R.: On the \((p,h)\)-convex function and some integral inequalities. J. Inequal. Appl. 16, Article ID 45 (2014)
Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to mid point formula. Appl. Math. Comput. 147, 137–146 (2004)
Iscan, I.: New refinements of integral and sum forms of Holder inequality. J. Inequal. Appl. (2019) https://doi.org/10.1186/s13660-019-2258-5
Kadakal, M., Iscan, I., Kadakal, H., Iscan, I., Bekar, K.: On improvements of some integral inequalities. Researchgate (2019). https://doi.org/10.13140/RG.2.2.15052.46724
Acknowledgements
The authors are very grateful to the referees for helpful comments and valuable suggestions.
Funding
This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937). The research was supported by the National Natural Science Foundation of China (Grant No. 11971142).
Author information
Authors and Affiliations
Contributions
The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Park, C., Chu, YM., Shoaib Saleem, M. et al. On n-polynomial p-convex functions and some related inequalities. Adv Differ Equ 2020, 666 (2020). https://doi.org/10.1186/s13662-020-03123-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-03123-9
Keywords
- Convex function
- p-convex function
- n-polynomial convexity
- n-polynomial p-convex functions
- Hermite–Hadamard type inequality