- Research
- Open Access
- Published:
Eventual periodicity of the fuzzy max-difference equation \(x_{n} = \max \{ C, \frac{x_{n-m-k}}{x_{n-m}}\}\)
Advances in Difference Equations volume 2020, Article number: 673 (2020)
Abstract
In this paper, we study the eventual periodicity of the fuzzy max-type difference equation \(x_{n} =\max \{C , \frac{x_{n-m-k}}{x_{n-m} }\}, n\in \{0,1,\ldots \} \), where m and k are positive integers, C and the initial values are positive fuzzy numbers. Let the support \(\operatorname{supp} C=\overline{\{t : C(t) > 0\}}=[C_{1},C_{2}]\) of C. We show that: (1) if \(C_{1}>1\), then every positive solution of this equation equals C eventually; (2) there exists a positive fuzzy number C with \(C_{1}=1\) such that this equation has a positive solution which is not eventually periodic; (3) if \(C_{2}\leq 1\), then this equation has a positive solution which is not eventually periodic; (4) if \(C_{1}<1<C_{2}\), then every positive solution of the above equation is not eventually periodic.
1 Introduction
It is well known that difference equations and difference equation systems are often used in the study of linear and nonlinear physical, physiological, and economical problems (for instance, see [1, 2]). In the recent years, because the max operator has a great importance in automatic control models (see [3, 4]), max-type difference equations and systems which are a special type of difference equations and difference equation systems have attracted the attention of many scholars (for instance, see [5–15]).
In [16], Mishev et al. proved that every solution of the difference equation
is eventually periodic, where \(A\in {\mathbf{R}}_{+}\equiv (0,+\infty )\).
In [17], Fotiades and Papaschinopoulos studied the following max-type system of difference equations:
with \(A,B\in {\mathbf{R}}_{+}\) and showed that every positive solution of the above system is eventually periodic.
Further, Su et al. [18] studied eventual periodicity of the following max-type system of difference equations:
where \(A_{n},B_{n}\in {\mathbf{R}}_{+}\) are periodic sequences with period 2 and the initial values \(x_{-2},y_{-2}, x_{-1}, y_{-1}\in {\mathbf{R}}_{+}\) and showed that every solution of the above system is eventually periodic.
Recently there has been a growing interest in the study of fuzzy difference equations (for instance, see [19–31]) because many models in biology, ecology, physiology physics, engineering, economics, probability theory, genetics, psychology and resource management are represented by these equations naturally. For example, fuzzy difference equations are suitable in finance problems. Chrysafis et al. [32] studied the fuzzy difference equation of finance. Their research is in finance which is about the alternative methodology to study the time value of money. In [33], Deeba and Korvin studied the second-order linear difference equation
where \(A,B,C\) and the initial values \(x_{0},x_{-1}\) are fuzzy numbers. This fuzzy equation is a linearized model of a nonlinear model which determines the carbon dioxide \((CO_{2})\) level in the blood.
In [34], Rahmana et al. studied the qualitative behavior of the following second-order fuzzy rational difference equation:
where \(A,B\) and the initial values \(x_{0},x_{-1}\) are positive fuzzy numbers.
In [35], Stefanidou and Papaschinopoulos studied the periodicity of the following fuzzy max-difference equation:
and
where \(k\in {\mathbf{N}}\equiv \{1,2,\ldots \}\), \(A,B\) and the initial values \(z_{i}\ (i\in {\mathbf{Z}}(-k,0))\) are positive fuzzy numbers (where \({\mathbf{Z}}(a,b)\equiv \{a,\ldots ,b\}\) for any integers \(a,b\) with \(a\leq b\)).
Furthermore, Stefanidou and Papaschinopoulos [36] studied the periodicity of the following fuzzy max-difference equation:
where \(A,B\) and the initial values \(z_{i}\ (i\in {\mathbf{Z}}(-d,0))\) with \(d=\max \{k,m\}\) are positive fuzzy numbers. In [37], the authors investigated the periodicity of the positive solutions of the fuzzy max-difference equation
where \(k,m\in {\mathbf{N}}\), \(\alpha _{n}\) is a periodic sequence of positive fuzzy numbers and \(x_{i}\ (i\in {\mathbf{Z}}(-d,0))\) with \(d=\max \{r,m\}\) are positive fuzzy numbers, and showed that, if \(\max (\operatorname{supp} \alpha _{n}) < 1\), then every positive fuzzy number solution of the above equation is eventually periodic with period 2m.
Motivated by the above-mentioned studies for ordinary difference equations and corresponding fuzzy difference equations, this paper is to study the eventual periodicity of the following fuzzy max-difference equation:
where \(m,k\in {\mathbf{N}}\), C and the initial values \(x_{i}\ (i\in {\mathbf{Z}}(-m-k,-1))\) are positive fuzzy numbers.
The rest of this paper is organized as follows. We give some definitions and notations in Sect. 2 and give the main results and their proofs of this paper in Sect. 3.
2 Preliminaries and definitions
For the convenience of the reader, we give the following definitions and notations.
-
(1)
If A is a function from \({\mathbf{R}}=(-\infty ,+\infty )\) into the interval \([0, 1]\), then A is called a fuzzy set.
-
(2)
A fuzzy set A is said to be fuzzy convex if \(A(\lambda t_{1}+(1-\lambda )t_{2})\geq \min \{A(t_{1}),A(t_{2})\}\) for any \(\lambda \in [0,1]\) and any \(t_{1},t_{2}\in {\mathbf{R}}\).
-
(3)
A fuzzy set A is said to be normal if there exists some \(t\in {\mathbf{R}}\) such that \(A(t)=1\).
-
(4)
If A is a fuzzy set, then by a λ-cut of A (for any \(\lambda \in [0,1]\)) we mean the set \(A_{\lambda }= \{t\in {\mathbf{R}}: A(t)\geq \lambda \}\).
It is well known that the λ-cuts of A determine the fuzzy set A. For a subset set B of R we denote by B̅ the closure of B.
Definition 2.1
(see [38])
We say that a fuzzy set A is a fuzzy number if it satisfies the following conditions (i)–(iv):
-
(i)
A is normal;
-
(ii)
A is fuzzy convex;
-
(iii)
A is upper semicontinuous;
-
(iv)
The support of A, \(\operatorname{supp} A=\overline{\bigcup_{\lambda \in (0,1]}A_{\lambda }}= \overline{\{t : A(t) > 0\}}\) is compact.
It is clear that \(A_{\lambda }\) is a closed interval. A fuzzy number A is said to be positive if \(\min (\operatorname{supp} A)>0\). Denote by \(\mathcal{F}^{+}\) the set of all positive fuzzy numbers. If \(B\in {\mathbf{R}}\), then B is a fuzzy number with \(B_{\lambda }= [B,B]\) for any \(\lambda \in [0,1]\), which is said to be a trivial fuzzy number. By [38] we see that, for any \(\lambda \in (0,1]\),
Proposition 2.1
In (2.1), let \([x_{i}]_{\lambda }=[y_{i,\lambda },z_{i,\lambda }]\ (i\in \{n,n-m,n-m-k \})\) and \([C]_{\lambda }=[C_{l,\lambda },C_{r,\lambda }]\) for any \(\lambda \in (0,1]\). Then
Proof
It follows from (2.1) that, for any \(\lambda \in (0,1]\), we have
Let \(a_{\lambda },a'_{\lambda }\in [y_{n-m-k,\lambda },z_{n-m-k,\lambda }] ,b_{\lambda },b'_{\lambda }\in [y_{n-m,\lambda },z_{n-m,\lambda }], c_{\lambda },c'_{\lambda }\in [C_{l,\lambda },C_{r,\lambda }]\) such that
Then we obtain
from which it follows that
Proposition 2.1 is proven. □
Definition 2.2
A sequence of positive fuzzy numbers \(\{x_{n}\}_{n=-m-k}^{\infty }\) is said to be a positive solution of Eq. (1.1) if it satisfies (1.1). \(\{x_{n}\}_{n=-m-k}^{\infty }\) is said to be eventually periodic with period T if there exists \(M\in {\mathbf{N}}\) such that \(x_{n+T} = x_{n} \) for all \(n\geq M\).
Proposition 2.2
Let \(x_{i}\in {\mathcal{F}}^{+}\ (i\in {\mathbf{Z}}(-m-k,-1))\). Then there exists a unique positive solution \(\{x_{n}\}_{n=-m-k}^{\infty }\) of (1.1) with initial values \(x_{i}\ (i\in {\mathbf{Z}}(-m-k,-1))\).
Proof
The proof is similar to that of Proposition 3.1 of [39]. For any \(\lambda \in (0,1]\), write
and \(\{(y_{n,\lambda },z_{n,\lambda })\}^{\infty }_{n=-m-k} ( \lambda \in (0,1])\) is the unique positive solution of the following system of difference equations:
with initial values \((y_{i,\lambda }, z_{i,\lambda })\ (i\in {\mathbf{Z}}(-m-k,-1))\). Since \(C, x_{i}\in {\mathcal{F}}^{+}\ (i\in {\mathbf{Z}}(-m-k,-1))\), there exist \(0\leq P_{0}\leq Q_{0}\) such that, for any \(\lambda _{1},\lambda _{2}\in (0,1]\) with \(\lambda _{1}\leq \lambda _{2}\), we have
It follows from (2.4) that, for any \(\lambda _{1},\lambda _{2}\in (0,1]\) with \(\lambda _{1}\leq \lambda _{2}\), we have
It is easy to see that \(y_{0,\lambda }, z_{0,\lambda }\) are left continuous on \(\lambda \in (0,1]\) (see [40]) and \(\overline{\bigcup_{\lambda \in (0,1]}[y_{0,\lambda }, z_{0,\lambda }]} \subset [P_{1},Q_{1}]\) (i.e., \(\overline{\bigcup_{\lambda \in (0,1]}[y_{0,\lambda }, z_{0,\lambda }]}\) is compact). Hence \([y_{0,\lambda }, z_{0,\lambda }]\) determines a unique \(x_{0}\in \mathcal{F}^{+}\) such that \([x_{0}]_{\lambda }= [y_{0,\lambda }, z_{0,\lambda }]\) for all \(\lambda \in (0,1]\) (see [40]).
Moreover, by mathematical induction on n, it is easy to show that: (1) \(0 < y_{n,\lambda _{1}}\leq y_{n,\lambda _{2}}\leq z_{n,\lambda _{2}} \leq z_{n,\lambda _{1}}\ (n\in {\mathbf{N}}_{0})\); (2) \(y_{n,\lambda }, z_{n,\lambda }\) are left continuous for all \(n\in {\mathbf{N}}_{0}\) and \(\lambda \in (0,1]\); (3) For any \(n\in {\mathbf{N}}_{0}\), there exist \(0< P_{n+1}\leq Q_{n+1}<+\infty \) such that \(\overline{\bigcup_{\lambda \in (0,1]}[y_{n,\lambda }, z_{n,\lambda }]} \subset [P_{n+1},Q_{n+1}]\) (i.e., \(\overline{\bigcup_{\lambda \in (0,1]}[y_{n,\lambda }, z_{n,\lambda }]}\) is compact). Hence by [40], Theorem 2.1, we see that \([y_{n,\lambda }, z_{n,\lambda }]\) determines a sequence \(\{x_{n}\}_{n=-m-k}^{\infty }\) of positive fuzzy numbers such that \([x_{n}]_{\lambda }= [y_{n,\lambda }, z_{n,\lambda }]\) for every \(n\in {\mathbf{N}}_{0}\) and \(\lambda \in (0,1]\), and by Proposition 2.1 we see that \(\{x_{n}\}_{n=-m-k}^{\infty }\) is the unique positive solution of (1.1) with initial values \(x_{i}\ (i\in {\mathbf{Z}}(-m-k,-1))\). The proof is complete. □
3 Main results
In the sequel, let \(\{x_{n}\}_{n=-m-k}^{\infty }\) be a positive solution of (1.1) with initial values \(x_{i}\in {\mathcal{F}}^{+}\ (i\in {\mathbf{Z}}(-m-k,-1))\). Let \(\operatorname{supp} C=[C_{1},C_{2}]\). For any \(\lambda \in (0,1]\), write
Then it follows from Proposition 2.2 that \(\{(y_{n,\lambda },z_{n,\lambda })\}_{n=-m-k}^{\infty }(\lambda \in (0,1])\) satisfies the following system:
with initial values \((y_{i,\lambda }, z_{i,\lambda })\ (i\in {\mathbf{Z}}(-m-k,-1))\). From (3.1) one has, for any \(n\in {\mathbf{N}}_{0}\),
Theorem 3.1
If \(C_{1}>1\), then \(x_{n}=C\) eventually.
Proof
Write \(M=\max \{\sup (\operatorname{supp} x_{j}):j\in {\mathbf{Z}}(0,m+k-1) \}\). From (3.1), (3.2) and a simple inductive argument we obtain the result that, for any \(i\in {\mathbf{Z}}(0,m+k-1)\) and \(n\in {\mathbf{N}}\),
and
Then there exists an \(N\in {\mathbf{N}}\) such that \(M/{C_{1}^{n}}<1\) for any \(n\geq N\), which implies \(y_{n(m+k)+i,\lambda }=C_{l,\lambda }\) and \(z_{n(m+k)+i,\lambda }=C_{r,\lambda }\) for any \(n\geq N\) and \(\lambda \in (0,1]\) and \(i\in {\mathbf{Z}}(0,m+k-1)\). Then \(x_{n}=C\) eventually. The proof is complete. □
Theorem 3.2
There exists an \(C\in {\mathcal{F}}^{+}\) with \(C_{1}=1\) such that (1.1) has a positive solution which is not eventually periodic.
Proof
Define \(C\in {\mathcal{F}}^{+}\) by
Define \(x_{i}\in \mathcal{F}^{+}\ (i\in {\mathbf{Z}}(-m-k,-1))\) by
Then, for any \(n\in {\mathbf{N}}\),
Write \(r=s(m+k)+i,s\in {\mathbf{N}}_{0}\ (i\in {\mathbf{Z}}(0,m+k-1))\). Note \(z_{j(m+k)+i-m,\frac{1}{n}}\geq 1\) for any \(0\leq j\leq s\). Then from (3.1) and a simple inductive argument we have
Thus \(z_{n,\frac{1}{n}}=2e/{(1+\frac{1}{2n})^{s_{1}+1}}\) since \((2-1/2n)(1+\frac{1}{2n})^{s_{1}+1}<(2-1/2n)(1+\frac{1}{2n})^{2n}<2e\), where \(n=s_{1}(m+k)+i\). On the other hand, for any \(n\in {\mathbf{N}}\), there exists an \(N_{1}(n)\in {\mathbf{N}}\) such that \(z_{r,\frac{1}{n}}=2-\frac{1}{2n}\) for every \(r\geq N_{1}(n)\) since \(\lim_{s\longrightarrow \infty }2e/{(1+\frac{1}{2n})^{s}}=0\). Thus \([x_{r}]_{\frac{1}{n}}\neq [x_{n}]_{\frac{1}{n}}\) for any \(r>N_{1}(n)\), which implies \(\{x_{n}\}_{n=-m-k}^{\infty }\) is not eventually periodic. The proof is complete. □
Theorem 3.3
If \(C_{2}\leq 1\), then there exists a positive solution \(\{x_{n}\}_{n=-m-k}^{\infty }\) of (1.1) such that every \(x_{n}>1\) is a trivial fuzzy number (\(n\geq -m-k\)) and \(\lim_{n\longrightarrow \infty }x_{n}=1\).
Proof
We show that the following equation:
has a decreasing solution which tends to 1. Indeed, we write
and
Then \(M_{1}\subset M_{2}\) since for any \((u_{1},\ldots ,u_{m+k})\in M_{1}\), we have \(u_{m+k}u_{k+1}\geq u_{1}\geq \cdots \geq u_{m+k}\geq 1\) and \(u_{m+k}u_{k}\geq u_{m+k}u_{k+1}\geq x_{1}\). Now we define \(T:M_{1}\rightarrow M_{2}\), for any \((u_{1},\ldots ,u_{m+k})\in M_{1}\), by
We show that T is well defined. Indeed, it follows from (3.7) and the definition of \(M_{1}\) that
and
Thus \((v_{1},\ldots ,v_{m+k})\in M_{2}\).
Now we show that T is a bijection from \(M_{1}\) to \(M_{2}\). Indeed, let \(u=(u_{1},\ldots ,u_{m+k}),v=(v_{1},\ldots ,v_{m+k})\in M_{1}\) with \(u\neq v\). Then \(T(u)\neq T(v)\). On the other hand, for any \(v=(v_{1},\ldots ,v_{m+k})\in M_{2}\), we have
Write
which implies \(u\in M_{1}\) and by (3.7) we have \(T(u)=v\).
Furthermore, since \(T^{-1}(v_{1},\ldots ,v_{m+k})=(v_{m+k}v_{k},v_{1},\ldots ,v_{m+k-1})\) is continuous, T is a homeomorphism.
Noting that \(M_{1}\subset M_{2}\) and T is a homeomorphism from \(M_{1}\) onto \(M_{2}\), we see \(T^{-1}(M_{1})\subset T^{-1}(M_{2})=M_{1}\). By induction, it follows that, for every \(n\in {\mathbf{N}}\),
Because \(M_{1}\) is a unbounded connected closed set, we see that \(T^{-n}(M_{1})\) is a unbounded connected closed set for every \(n\in {\mathbf{N}}\). Write
Then Q is also a unbounded connected set.
Let \(\{w_{n}\}_{n=-k-m}^{\infty }\) be a solution of (3.6) with the initial values \((w_{-m-k},\ldots ,w_{-1})\in Q-\{p\}\). Then, for every \(n\in {\mathbf{N}}\),
which implies \(w_{n}\geq w_{n+1}>1\) for any \(n\geq -k-m\). Let \(\lim_{n\longrightarrow \infty }w_{n}=a\). Then by (3.6) we have \(a=1\). It is easy to show that \(\{(w_{n},w_{n})\}_{n=-k-m}^{\infty }\) is also a solution of (3.1) which is not eventually periodic. Thus \(x_{n}=w_{n}\) is a solution of (1.1) such that every \(x_{n}>1\) (\(n \geq -m-k\)) is a trivial fuzzy number and \(\lim_{n\longrightarrow \infty }x_{n}=1\). The proof is complete. □
Theorem 3.4
If \(C_{1}<1<C_{2}\), then every positive solution \(\{x_{n}\}_{n=-m-k}^{\infty }\) of (1.1) is not eventually periodic.
Proof
Since \(C_{1}<1<C_{2}\), we see \(C_{l,\lambda _{1}}< 1<C_{r,\lambda _{1}}\) for some \(\lambda _{1}\in (0,1]\). For any \(\lambda \in (0,\lambda _{1}]\), we have
Write \(M=\max \{\sup (\operatorname{supp} x_{j}):j\in {\mathbf{Z}}(0,m+k-1) \}\). From (3.1), (3.2) and a simple inductive argument we obtain, for any \(i\in {\mathbf{Z}}(0,m+k-1)\) and \(s\in {\mathbf{N}}_{0}\) and \(\lambda \in (0,\lambda _{1}]\),
Thus there exists an \(N\in {\mathbf{N}}\) such that \(y_{n,\lambda }=C_{l,\lambda }\) for any \(n\geq N\) and \(\lambda \in (0,\lambda _{1}]\) since \(\lim_{s\longrightarrow \infty }{M}/{C_{r,\lambda _{1}}^{s}}=0\).
By (3.1) and (3.2) we see that, for any \(n\geq m+N\) and \(\lambda \in (0,\lambda _{1}]\),
If \(z_{n,\lambda }= C_{r,\lambda }>{z_{n-m-k,\lambda }}/{C_{l,\lambda }}\) for some \(n\in {\mathbf{Z}}(m+N,m+N+m+k-1)\), then by (3.11) we obtain \(z_{n+s(m+k),\lambda }=C_{r,\lambda }/C_{l,\lambda }^{s}\) for any \(s\in {\mathbf{N}}_{0}\). If \(z_{n,\lambda }= {z_{n-m-k,\lambda }}/{C_{l,\lambda }}\geq C_{r,\lambda }\) for some \(n\in {\mathbf{Z}}\ (m+N,m+N+m+k-1)\), then by (3.11) we obtain \(z_{n+s(m+k),\lambda }=z_{n-m-k,\lambda }/C_{l,\lambda }^{s+1}\) for any \(s\in {\mathbf{N}}_{0}\). Thus \(\lim_{n\longrightarrow \infty }z_{n,\lambda }=+\infty \). Furthermore, we see that \(\{x_{n}\}_{n=-m-k}^{\infty }\) is not eventually periodic. The proof is complete. □
Availability of data and materials
None.
References
Benest, D., Froeschlè, C. (eds.): Analysis and Modelling of Discrete Dynamical Systems. Advances in Discrete Mathematics and Applications., vol. 1. Gordon & Breach, Amsterdam (1998)
Edelstein-Keshet, L.: Mathematical Models in Biology. The Random House/Birkhauser Mathematics Series. Random House, New York (1988)
Popov, E.P.: Automatic Regulation and Control. Nauka, Moscow (1966)
Gao, Y., Zhang, G.: Oscillation of nonlinear first order neutral difference equations. Appl. Math. E-Notes 1, 5–10 (2001)
Berenhaut, K.S., Foley, J.D., Stević, S.: Boundedness character of positive solutions of a max difference equation. J. Differ. Equ. Appl. 12, 1193–1199 (2006)
Sauer, T.: Global convergence of max-type equations. J. Differ. Equ. Appl. 17, 1–8 (2011)
Shi, Q., Su, X., Yuan, G.: Characters of the solutions to a generalized nonlinear max-type difference equation. Chin. Ann. Math., Ser. B 28, 284–289 (2013)
Stević, S.: Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences. Electron. J. Qual. Theory Differ. Equ. 67, 1 (2014)
Stević, S., Alghamdi, M.A., Alotaibi, A., Shahzad, N.: Boundedness character of a max-type system of difference equations of second order. Electron. J. Qual. Theory Differ. Equ. 45, 1 (2014)
Stević, S., Alghamdi, M.A., Alotaibi, A., Shahzad, N.: Eventual periodicity of some systems of max-type difference equations. Appl. Math. Comput. 236, 635–641 (2014)
Stević, S., Iričanin, B.D., Smarda, Z.: On a product-type system of difference equations of second order solvable in closed form. J. Inequal. Appl. 2015, 327 (2015)
Sun, T., Xi, H.: On the solutions of a system of difference equations with maximum. Appl. Math. Comput. 290, 292–297 (2016)
Sun, T., He, Q., Wu, X., Xi, H.: Global behavior of the max-type difference equation \(x_{n} =\max\{{1}/ {x_{n-m}},{A_{n}}/ {x_{n-r}}\}\). Appl. Math. Comput. 248, 687–692 (2014)
Xiao, Q., Shi, Q.: Eventually periodic solutions of a max-type equation. Math. Comput. Model. 57, 992–996 (2013)
Yazlik, Y., Tollu, D.T., Taskara, N.: On the solutions of a max-type difference equation system. Math. Methods Appl. Sci. 38, 4388–4410 (2015)
Mishev, D., Patula, W.T., Voulov, H.D.: A reciprocal difference equation with maximum. Comput. Math. Appl. 43, 1021–1026 (2002)
Fotiades, E., Papaschinopoulos, G.: On a system of difference equations with maximum. Appl. Math. Comput. 221, 684–690 (2013)
Su, G., Sun, T., Qin, B.: On the solutions of a max-type system of difference equations with period-two parameters. Adv. Differ. Equ. 2018, 358 (2018)
Hatir, E., Mansour, T., Yalcinkaya, I.: On a fuzzy difference equation. Util. Math. 93, 135–151 (2014)
He, Q., Tao, C., Sun, T., Liu, X., Su, D.: Periodicity of the positive solutions of a fuzzy max-difference equation. Abstr. Appl. Anal. 2014, Article ID 760247 (2014)
Horcik, R.: Solution of a system of linear equations with fuzzy numbers. Fuzzy Sets Syst. 159, 1788–1810 (2008)
Lakshmikantham, V., Vatsala, A.S.: Basic theory of fuzzy difference equations. J. Differ. Equ. Appl. 8, 957–968 (2002)
Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. CRC Press, Florida (1997)
Papaschinopoulos, G., Papadopoulos, B.K.: On the fuzzy difference equation \(x_{n+1} = A+ {B}/{x_{n}}\). Soft Comput. 6, 456–461 (2002)
Stefanidou, G., Papaschinopoulos, G.: A fuzzy difference equation of a rational form. J. Nonlinear Math. Phys. 12, 300–315 (2005)
Stefanidou, G., Papaschinopoulos, G., Schinas, C.J.: On an exponential-type fuzzy difference equation. Adv. Differ. Equ. 2010, Article ID 196920 (2010)
Zhang, Q., Liu, J.: On first order fuzzy difference equation \(x_{n+1}=Ax_{n}+B\) (in Chinese). Fuzzy Syst. Math. 23, 74–79 (2009)
Zhang, Q., Liu, J., Luo, Z.: Dynamical behavior of a third-order rational fuzzy difference equation. Adv. Differ. Equ. 2015, Article ID 513662 (2015)
Zhang, Q., Yang, L., Liao, D.: On the fuzzy difference equation \(x_{n+1}=A+\sum^{k}_{i=0}B/x_{n-i}\). World Acad. Sci., Eng. Technol. 75, 1032–1037 (2011)
Zhang, Q., Yang, L., Liao, D.: Behavior of solutions to a fuzzy nonlinear difference equation. Iran. J. Fuzzy Syst. 9, 1–12 (2012)
Zhang, Q., Yang, L., Liao, D.: On first order fuzzy Ricatti difference equation. Inf. Sci. 270, 226–236 (2014)
Chrysafis, K.A., Papadopoulos, B.K., Papaschinopoulos, G.: On the fuzzy difference equations of finance. Fuzzy Sets Syst. 159, 3259–3270 (2008)
Deeba, E.Y., De Korvin, A.: Analysis by fuzzy difference equations of a model of \(CO_{2}\) level in the blood. Appl. Math. Lett. 12, 33–40 (1999)
Ur Rahman, G., Din, Q., Faizullah, F., Khan, F.M.: Qualitative behavior of a second-order fuzzy difference equation. J. Intell. Fuzzy Syst. 34, 745–753 (2018)
Stefanidou, G., Papaschinopoulos, G.: Behavior of the positive solutions of fuzzy max-difference equations. Adv. Differ. Equ. 2, 153–172 (2005)
Stefanidou, G., Papaschinopoulos, G.: The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation. Inf. Sci. 176, 3694–3710 (2006)
Sun, T., Xi, H., Su, G., Qin, B.: Dynamics of the fuzzy difference equation \(z_{n} = \max \{{1}/{z_{n-m}}, {\alpha _{n}}/{z_{n-r}}\}\). J. Nonlinear Sci. Appl. 11, 477–485 (2018)
Papaschinopoulos, G., Papadopoulos, B.K.: On the fuzzy difference equation \(x_{n+1} = A + {x_{n}}/{x_{n-m}}\). Fuzzy Sets Syst. 129, 73–81 (2002)
Papaschinopoulos, G., Stefanidou, G.: Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation. Fuzzy Sets Syst. 140, 523–539 (2003)
Wu, C., Zhang, B.: Embedding problem of noncompact fuzzy number space \(E^{-} \)(I). Fuzzy Sets Syst. 105, 165–169 (1999)
Acknowledgements
The authors would like to thank the referees for their valuable comments and suggestions.
Funding
The research was supported by NNSF of China (11761011, 71862003) and SF of Guangxi University of Finance and Economics (2019QNB10).
Author information
Authors and Affiliations
Contributions
All authors participated in every phase of research conducted for this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Han, C., Su, G., Li, L. et al. Eventual periodicity of the fuzzy max-difference equation \(x_{n} = \max \{ C, \frac{x_{n-m-k}}{x_{n-m}}\}\). Adv Differ Equ 2020, 673 (2020). https://doi.org/10.1186/s13662-020-03136-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-03136-4
Keywords
- Fuzzy max-type difference equation
- Positive solution
- Eventual periodicity