In this part of the manuscript, we verify some existence results by applying some analytical techniques based on the fixed point theory. Let \(0 \leq t_{0} < T \) and take \(\tilde{J} =[t_{0},T] \). Then one can easily confirm that \(\mathcal{X}_{*} = \mathcal{C}^{2}( \tilde{J},\mathbb{R}) \) is a Banach space of continuous mappings furnished with the sup norm \(\Vert u\Vert =\sup_{t\in \tilde{J}}\vert u(t)\vert \). First, we formulate the structure of the solution for the four-point multi-order generalized Caputo type fractional BVP as an equivalent generalized Riemann–Liouville type fractional integral equation in the following lemma.
Lemma 3.1
Let \(\hat{\Upsilon } \in \mathcal{X}_{*}\). Then a map \(\tilde{u}^{*}_{0}\) is a solution for the four-point multi-order linear generalized Caputo type fractional BVP
$$ \textstyle\begin{cases} \lambda ^{*} {}^{CC}\mathcal{D}_{t_{0}}^{k^{*}, \varrho }u(t)+ {}^{CC} \mathcal{D}_{t_{0}}^{\theta ^{*},\varrho }u(t)= \hat{\Upsilon } (t),\quad (t\in \tilde{J}, k^{*}\in (2,3]), \\ u(t_{0})=0, \qquad \mu _{1}^{*} {}^{CC}\mathcal{D}_{t_{0}}^{ \gamma _{1}^{*},\varrho }u(T)+{}^{CC}\mathcal{D}_{t_{0}}^{\gamma _{2}^{*}, \varrho }u(\eta )=\delta _{1}, \\ \mu _{2}^{*}{}^{RC}\mathcal{I}_{t_{0}}^{q_{1}^{*},\varrho }u(T)+{}^{RC} \mathcal{I}_{t_{0}}^{q_{2}^{*},\varrho }u(\nu )=\delta _{2}, \end{cases} $$
(4)
if and only if \(\tilde{u}^{*}_{0}\) is a solution for the generalized Riemann–Liouville type integral equation
$$\begin{aligned} u(t)={}&\frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \hat{\Upsilon }(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-k^{*} } } \\ &{}- \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} u_{0}(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-k^{*}+\theta ^{*} } } \\ &{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } (T)- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u_{0}(T) \\ &{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon }(\eta )- \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u_{0}( \eta )- \frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon }(T) \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u_{0}(T) -\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon }(\nu ) \\ &{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u_{0}( \nu )-\delta _{1}\Delta _{4}+\Delta _{2} \delta _{2} \biggr]+ \frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \\ &{}\times \biggl[-\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \hat{\Upsilon }(T)+ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &{}-\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon }(\eta )+ \frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u_{0}( \eta )+ \frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon }(T) \\ &{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u_{0}(T)+ \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*},\varrho }} \hat{\Upsilon } (\nu ) \\ &{}-\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u_{0}( \nu )+\delta _{1}\Delta _{3}-\delta _{2} \Delta _{1} \biggr] \end{aligned}$$
(5)
provided that
$$\begin{aligned} &\Delta _{1}=\mu _{1}^{*} \varrho ^{\gamma _{1}^{*}} \frac{1}{\Gamma (2-\gamma _{1}^{*})}(T-t_{0})^{\varrho (1-\gamma _{1}^{*})}+ \varrho ^{\gamma _{2}^{*}} \frac{1}{\Gamma (2-\gamma _{2}^{*})}( \eta -t_{0})^{\varrho (1-\gamma _{2}^{*})}, \\ &\Delta _{2}=\mu _{1}^{*}\varrho ^{\gamma _{1}^{*}} \frac{2}{\Gamma (3-\gamma _{1}^{*})}(T-t_{0})^{\varrho (2-\gamma _{1}^{*})}+ \varrho ^{\gamma _{2}^{*}} \frac{2}{\Gamma (3-\gamma _{2}^{*})}(\eta -t_{0})^{ \varrho (2-\gamma _{2}^{*})}, \\ &\Delta _{3}=\frac{\mu _{2}^{*}}{\varrho ^{q_{1}^{*}}} \frac{1}{\Gamma (2+q_{1}^{*})}(T-t_{0})^{\varrho (1+q_{1}^{*})}+ \frac{1}{\varrho ^{q_{2}^{*}}}\frac{1}{\Gamma (2+q_{2}^{*})}(\nu -t_{0})^{ \varrho (1+q_{2}^{*})}, \\ &\Delta _{4}=\frac{\mu _{2}^{*}}{\varrho ^{q_{1}^{*}}} \frac{2}{\Gamma (3+q_{1}^{*})}(T-t_{0})^{\varrho (2+q_{1}^{*})}+ \frac{1}{\varrho ^{q_{2}^{*}}}\frac{2}{\Gamma (3+q_{2}^{*})}(\nu -t_{0})^{ \varrho (2+q_{2}^{*})}, \\ &\Theta ^{*}=\Delta _{2}\Delta _{3}-\Delta _{1}\Delta _{4}. \end{aligned}$$
(6)
Proof
At the beginning, let \(\tilde{u}^{*}_{0}\) be a solution for the four-point multi-order linear generalized Caputo type fractional BVP (4). Then, according to the properties of fractional generalized operators of both Riemann–Liouville and Caputo types, one can write
$$ \tilde{u}^{*}_{0}(t) =\frac{1}{\lambda }{}^{RC}{ \mathcal{I}}_{t_{0}}^{{k^{*}, \varrho }}\hat{\Upsilon }(t)- \frac{1}{\lambda }{}^{RC}{\mathcal{I}}_{t_{0}}^{k^{*}- \theta ^{*},\varrho } \tilde{u}^{*}_{0}(t)+\tilde{c}_{0}^{*}+ \tilde{c}_{1}^{*}(t-t_{0})^{ \varrho }+ \tilde{c}_{2}^{*}(t-t_{0})^{2\varrho }, $$
(7)
where \(\tilde{c}_{0}^{*}\), \(\tilde{c}_{1}^{*}\), and \(\tilde{c}_{2}^{*}\) are arbitrary constants. From the first condition, we get \(\tilde{c}_{0}^{*}=0\). By taking the generalized Caputo type derivative of order \(\gamma \in \{\gamma _{1}^{*}, \gamma _{2}^{*}\} \), we obtain
$$\begin{aligned} \bigl({}^{CC}\mathcal{D}_{t_{0}}^{\gamma,\varrho } \tilde{u}^{*}_{0}\bigr) (t)={}& \frac{1}{\lambda } {}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}-\gamma,\varrho }} \hat{\Upsilon }(t) \\ &{}-\frac{1}{\lambda } {}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}-\theta ^{*}- \gamma,\varrho }} \tilde{u}^{*}_{0}(t)+\tilde{c}_{1}^{*} \varrho ^{ \gamma }\frac{1}{\Gamma (2-\gamma )}(t-t_{0})^{\varrho (1-\gamma )} \\ &{}+\tilde{c}_{2}^{*}\varrho ^{\gamma } \frac{2}{\Gamma (3-\gamma )}(t-t_{0})^{ \varrho (2-\gamma )}. \end{aligned}$$
(8)
Moreover, by taking the generalized Riemann–Liouville type integral of order \(q\in \{q_{1}^{*}, q_{2}^{*}\} \), we obtain
$$\begin{aligned} \bigl({}^{RC}\mathcal{I}_{t_{0}}^{{q,\varrho }} \tilde{u}^{*}_{0}\bigr) (t)= {}&\frac{1}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q+k^{*},\varrho }} \hat{\Upsilon }(t) \\ &{}-\frac{1}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q-\theta ^{*}, \varrho }} \tilde{u}^{*}_{0}(t)+\frac{\tilde{c}_{1}^{*}}{\varrho ^{q}} \frac{1}{\Gamma (2+q)}(t-t_{0})^{\varrho (1+q)} \\ &{}+\frac{\tilde{c}_{2}^{*}}{\varrho ^{q}} \frac{2}{\Gamma (3+q)}(t-t_{0})^{ \varrho (2+q)}. \end{aligned}$$
(9)
By combining equations (8) and (9) with boundary conditions of four-point multi-order BVP (3), we get
$$\begin{aligned} \tilde{c}_{1}^{*}={}& \frac{1}{ \Delta _{2}\Delta _{3}-\Delta _{1}\Delta _{4}} \\ &{}\times \biggl[\frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \hat{\Upsilon }(T)- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \tilde{u}^{*}_{0}(T) \\ &{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon }(\eta ) \\ &{}-\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\rho }} \tilde{u}^{*}_{0}(\eta )- \frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }}\hat{\Upsilon }(T) \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \tilde{u}^{*}_{0}(T) \\ &{}-\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon }(\nu ) +\frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }} \tilde{u}^{*}_{0}( \nu )-\delta _{1}\Delta _{4}+\Delta _{2}\delta _{2} \biggr] \end{aligned}$$
and
$$\begin{aligned} \tilde{c}_{2}^{*}={}& \frac{1}{ \Delta _{2}\Delta _{3}-\Delta _{1}\Delta _{4}} \\ &{}\times \biggl[-\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \hat{\Upsilon }(T)+ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \tilde{u}^{*}_{0}(T) \\ &{}-\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon }(\eta ) \\ &{}+\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \tilde{u}^{*}_{0}(\eta )+ \frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }}\hat{\Upsilon }(T) \\ &{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \tilde{u}^{*}_{0}(T) \\ &{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon }(\nu ) -\frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }} \tilde{u}^{*}_{0}( \nu )+\delta _{1}\Delta _{3}-\delta _{2}\Delta _{1} \biggr]. \end{aligned}$$
Finally, if we substitute constants \(\tilde{c}_{0}^{*}\) and \(\tilde{c}_{1}^{*}\) and \(\tilde{c}_{2}^{*}\) in (7), then we reach the generalized Riemann–Liouville type integral equation (5). In the opposite direction, one can easily verify that \(\tilde{u}^{*}_{0}\) is considered as a solution for the four-point multi-order linear generalized Caputo type fractional BVP (4) whenever \(\tilde{u}^{*}_{0}\) satisfies the generalized Riemann–Liouville type integral equation (5). □
Based on the implemented calculations in Lemma 3.1, we define the operator \(\tilde{\mathcal{F}}_{*}:\mathcal{X}_{*} \to \mathcal{X}_{*} \) in the following framework:
$$\begin{aligned} \tilde{\mathcal{F}}_{*} u(t)={}&\frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \hat{\Upsilon } \bigl( r, u(r) \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}- \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} u(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr)- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)- \frac{\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u(\eta ) \\ &{}-\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T) -\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \\ &{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu ) \\ &{}-\delta _{1}\Delta _{4}+\Delta _{2}\delta _{2} \biggr]+ \frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &{}+\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &{}-\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)+ \frac{\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u(\eta ) \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T)+ \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*},\varrho }} \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \\ &{}-\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu )+\delta _{1}\Delta _{3}-\delta _{2} \Delta _{1} \biggr]. \end{aligned}$$
(10)
It is notable that the four-point multi-order generalized Caputo type fractional BVP (3) has a solution \(\tilde{u}^{*}_{0}\) if and only if \(\tilde{u}^{*}_{0}\) is a fixed point for the self-map \(\tilde{\mathcal{F}}_{*}\). For the sake of convenience in writing, we utilize the following simplified notations:
$$\begin{aligned} \mathcal{W}_{1}={}& \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*}+1 )} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}} \\ &{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &{}+ \frac{\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &{}+ \frac{\mu _{2}^{*}\Delta _{2}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &{}+\frac{\Delta _{2}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr]+ \frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \\ &{}\times \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &{}+ \frac{\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &{}+ \frac{\mu _{2}^{*}\Delta _{1}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &{}+\frac{\Delta _{1}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr] \end{aligned}$$
(11)
and
$$\begin{aligned} \mathcal{W}_{2} ={}&\frac{1}{\lambda \Gamma ( k^{*} +1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}} \\ &{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda \Gamma (k^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{1}^{*}} \\ &{}+ \frac{\Delta _{4}}{\lambda \Gamma (k^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{2}^{*}} \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda \Gamma (q_{1}^{*}+k^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}} \\ &{}+ \frac{\Delta _{2}}{\lambda \Gamma (q_{2}^{*}+k^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}} \biggr] \\ &+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda \Gamma (k^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{1}^{*}} \\ &{}+ \frac{\Delta _{3}}{\lambda \Gamma (k^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{2}^{*}} \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda \Gamma (q_{1}^{*}+k^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}} \\ &{}+ \frac{\Delta _{1}}{\lambda \Gamma (q_{2}^{*}+k^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}} \biggr]. \end{aligned}$$
(12)
Theorem 3.2
Let the real-valued mapping \(\hat{\Upsilon }: \tilde{J}\times \mathcal{X}_{*}\to \mathbb{R} \) be continuous and there be a constant \(\mathcal{L}_{*} > 0 \) such that \(|\hat{\Upsilon }(t, u)-\hat{\Upsilon }(t, u')|\leq \mathcal{L}_{*} |u-u'| \) for all \(t\in \tilde{J} \) and \(u, u'\in \mathcal{X}_{*}\). If \(\mathcal{L}_{*}\mathcal{W}_{2}+\mathcal{W}_{1}<1\), then the four-point multi-order linear generalized Caputo type fractional BVP (3) has a unique solution, where \(\mathcal{W}_{1} \) and \(\mathcal{W}_{2} \) are illustrated by (11) and (12).
Proof
Put \(\sup_{t\in \tilde{J}}|\hat{\Upsilon } (t, 0)|= \mathcal{N}^{*} < \infty \). We choose \(\mathcal{R}^{*}>0\) such that
$$ \frac{ \vert \Theta ^{*} \vert N^{*} \mathcal{W}_{2} +(T-t_{0})^{2\varrho } ( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert ) +(T-t_{0})^{\varrho }( \vert \delta _{1}\Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert )}{ \vert \Theta ^{*} \vert (1-\mathcal{L}_{*}\mathcal{W}_{2}-\mathcal{W}_{1})} \leq \mathcal{R}^{*}, $$
where \(\Delta _{j} (j=1, 2, 3, 4) \) are illustrated by (6). Next, construct the set \(\mathcal{B}_{\mathcal{R}^{*}}^{*}= \{u \in \mathcal{X}_{*}: \|u\| \leq \mathcal{R}^{*}\} \). In this case, we verify that \(\tilde{\mathcal{F}}_{*}\mathcal{B}_{\mathcal{R}^{*}}^{*}\subset \mathcal{B}_{\mathcal{R}^{*}}^{*} \). To observe this, for each \(u\in \mathcal{B}_{\mathcal{R}^{*}}^{*}\), we may write
$$\begin{aligned} \bigl\vert \tilde{\mathcal{F}}_{*}u(t) \bigr\vert \leq{}& \frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \\ &{}\times \bigl( \bigl\vert \hat{\Upsilon } \bigl( r, u(r)\bigr)- \hat{\Upsilon } ( r,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( r,0) \bigr\vert \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+ \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} \\ &{}\times \bigl\vert u(r) \bigr\vert \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } }+ \frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \\ &{}\times \biggl[\frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)-\hat{\Upsilon } ( T,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( T,0) \bigr\vert \bigr) \\ &{}+\frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T) \bigr\vert \\ &{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \eta, u( \eta )\bigr)-\hat{\Upsilon } ( \eta,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( \eta,0) \bigr\vert \bigr) \\ &{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta ) \bigr\vert \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)- \hat{\Upsilon } ( T,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( T,0) \bigr\vert \bigr) \\ &+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T) \bigr\vert \\ &{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \nu, u(\nu )\bigr)- \hat{\Upsilon } ( \nu,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( \nu,0) \bigr\vert \bigr) \\ &{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }} \bigl\vert u(\nu ) \bigr\vert + \vert \delta _{1}\Delta _{4} \vert + \vert \Delta _{2}\delta _{2} \vert \biggr]+ \frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \\ &{}\times \biggl[\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)-\hat{\Upsilon } ( T,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( T,0) \bigr\vert \bigr) \\ &{}+\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T) \bigr\vert \\ &{}+\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \eta, u( \eta )\bigr)-\hat{\Upsilon } ( \eta,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( \eta,0) \bigr\vert \bigr) \\ &{}+\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta ) \bigr\vert \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)- \hat{\Upsilon } ( T,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( T,0) \bigr\vert \bigr) \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T) \bigr\vert \\ &{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \nu, u(\nu )\bigr)- \hat{\Upsilon } ( \nu,0 ) \bigr\vert + \bigl\vert \hat{\Upsilon } ( \nu,0) \bigr\vert \bigr) \\ &{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }} \bigl\vert u(\nu ) \bigr\vert + \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \biggr] \\ \leq{}& \bigl(\mathcal{L}_{*}\|u\|+\mathcal{N}^{*}\bigr) \mathcal{W}_{2}+ \|u\| \mathcal{W}_{1}+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \bigl( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) \\ &{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr) \\ \leq{}& (\mathcal{L}_{*}\mathcal{W}_{2}+\mathcal{W}_{1} ) \mathcal{R}+\mathcal{N}^{*}\mathcal{W}_{2} + \frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) \\ &{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr)\leq \mathcal{R}^{*}. \end{aligned}$$
Thus, we reach the inequality \(\Vert \tilde{\mathcal{F}}_{*} u\Vert \leq \mathcal{R}^{*} \), which means that \(\tilde{\mathcal{F}}_{*} \mathcal{B}_{\mathcal{R}^{*}}^{*}\subset \mathcal{B}_{\mathcal{R}^{*}}^{*} \). In the next stage, let us assume that \(u, u'\in \mathcal{X}_{*} \). For any \(t\in \tilde{J} \), one can write
$$\begin{aligned} & \bigl\vert \tilde{\mathcal{F}}_{*} u(t)- \tilde{ \mathcal{F}}_{*} u'(t) \bigr\vert \\ &\quad \leq \frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \\ &\qquad{}\times \bigl(\bigl\vert \hat{\Upsilon } \bigl( r, u(r)\bigr)- \hat{\Upsilon } \bigl(r, u'(r) \bigr)\bigr\vert \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &\qquad{}+ \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} \\ &\qquad{}\times \bigl\vert u(r)-u'(r) \bigr\vert \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } }+ \frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \\ &\qquad{}\times \biggl[\frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }} \bigl(\bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)-\hat{\Upsilon } \bigl( T,u'(T) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T)-u'(T) \bigr\vert \\ &\qquad{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl(\bigl\vert \hat{\Upsilon } \bigl( \eta, u( \eta )\bigr)-\hat{\Upsilon } \bigl( \eta, u'(\eta ) \bigr)\bigr\vert \bigr) \\ &\qquad{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta )-u'(\eta ) \bigr\vert \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl(\bigl\vert \hat{\Upsilon } \bigl( T, u(T)\bigr)- \hat{\Upsilon } \bigl(T,u'(T) \bigr)\bigr\vert \bigr) \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T)-u'(T) \bigr\vert \\ &\qquad{}\times\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl(\bigl\vert \hat{\Upsilon } \bigl( \nu, u(\nu )\bigr)- \hat{\Upsilon } \bigl(\nu, u'(\nu ) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }} \bigl\vert u(\nu )-u'(\nu ) \bigr\vert \biggr] \\ &\qquad{}+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T) \bigr)-\hat{\Upsilon } \bigl( T, u'(T) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T)-u'(T) \bigr\vert \\ &\qquad{}+\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \eta, u( \eta ) \bigr)-\hat{\Upsilon } \bigl(\eta, u'(\eta ) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta )-u'(\eta ) \bigr\vert \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( T, u(T) \bigr)- \hat{\Upsilon } \bigl(T, u'(T) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T)-u'(T) \bigr\vert \\ &\qquad{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl( \bigl\vert \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr)- \hat{\Upsilon } \bigl( \nu, u'(\nu ) \bigr) \bigr\vert \bigr) \\ &\qquad{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }} \bigl\vert u(\nu )-u'(\nu ) \bigr\vert \biggr] \\ &\quad\leq \bigl(\mathcal{L}_{*} \bigl\Vert u-u' \bigr\Vert \bigr) \mathcal{W}_{2} + \bigl\Vert u-u' \bigr\Vert \mathcal{W}_{1}= ( \mathcal{L}_{*}\mathcal{W}_{2}+ \mathcal{W}_{1} ) \bigl\Vert u-u' \bigr\Vert . \end{aligned}$$
This represents \(\| \tilde{\mathcal{F}}_{*} u- \tilde{\mathcal{F}}_{*} u'\| \leq ( \mathcal{L}_{*}\mathcal{W}_{2}+\mathcal{W}_{1}) \|u-u'\|\), which implies that \(\tilde{\mathcal{F}}_{*} \) is a contraction since \(\mathcal{L}_{*}\mathcal{W}_{2}+\mathcal{W}_{1} < 1\). Hence, with due attention to the Banach principle, the operator \(\tilde{\mathcal{F}}_{*} \) has a unique fixed point, which means that the four-point multi-order nonlinear generalized Caputo type fractional BVP (3) has a unique solution. □
Here, by applying another method based on Krasnoselskii’s fixed point theorem, we derive another kind of existence criterion of solutions for the proposed problem (3).
Theorem 3.3
Consider a continuous map \(\hat{\Upsilon }: \tilde{J} \times \mathcal{X}_{*} \to \mathbb{R} \). Let there be a positive constant \(\mathcal{L}_{*} \) so that an inequality \(|\hat{\Upsilon }(t, u)-\hat{\Upsilon }(t, u')|\leq \mathcal{L}_{*} |u-u'| \) holds for any \(t\in \tilde{J} \) and \(u, u'\in \mathcal{X}_{*}\). If there exists \(\mathcal{V}(t)\in \mathcal{C}_{\mathbb{R}^{+}}(\tilde{J})\) provided that \(\hat{\Upsilon } (t,u)\leq \mathcal{V}(t)\) for all \((t,u)\in \tilde{J}\times \mathcal{X}_{*} \) and \(\mathcal{L}_{*}\mathcal{W}_{2}< \)1, then the four-point multi-order nonlinear generalized Caputo type fractional BVP (3) has at least one solution. Note that \(\mathcal{W}_{2}\) is defined in (12).
Proof
By setting \(\Vert \mathcal{V} \Vert =\sup_{t\in \tilde{J}}|\mathcal{V}(t)| \) and choosing an appropriate constant \(r^{*}>0\), construct the nonempty set \(\mathcal{B}_{r^{*}}^{*} = \{u\in \mathcal{X}_{*}: \|u\|\leq r^{*} \} \), where
$$ \frac{ \vert \Theta ^{*} \vert \Vert \mathcal{V} \Vert \mathcal{W}_{2} +(T-t_{0})^{2\varrho } ( \vert \delta _{1} \Delta _{3} \vert + \vert \delta _{2} \Delta _{1} \vert ) +(T-t_{0})^{\varrho }( \vert \delta _{1}\Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert )}{ \vert \Theta ^{*} \vert (1-\mathcal{W}_{1})} \leq r^{*} $$
and \(\Delta _{1},\Delta _{2},\Delta _{3},\Delta _{4}\), \(\mathcal{W}_{1}\) and \(\mathcal{W}_{2}\) are given by (6), (11), and (12), respectively. For every \(t \in \tilde{J} \), we consider two operators \(\hat{\mathcal{F}}_{1} \) and \(\hat{\mathcal{F}}_{2} \) on \(\mathcal{B}_{r^{*}}^{*} \) by the following defined rules:
$$\begin{aligned} \hat{\mathcal{F}}_{1}u(t)= {}&\frac{-1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} u(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T)- \frac{\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u(\eta ) \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T)+ \frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }}u( \nu ) \biggr] \\ &{}+\frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T)\frac{\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\theta ^{*}-\gamma _{2}^{*},\varrho }}u( \eta ) \\ &{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T)- \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }}u( \nu ) \biggr] \end{aligned}$$
and
$$\begin{aligned} \hat{\mathcal{F}}_{2}u(t)={}&\frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \hat{\Upsilon } \bigl( r, u(r) \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr)+ \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }}\hat{ \Upsilon } \bigl( \eta, u(\eta ) \bigr) \\ &{}-\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr)- \frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }}\hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) -\delta _{1}\Delta _{4}+\Delta _{2}\delta _{2} \biggr] \\ &{}+\frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr)- \frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }}\hat{ \Upsilon } \bigl( \eta, u(\eta ) \bigr) \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr)+ \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }}\hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr)+\delta _{1}\Delta _{3}- \delta _{2} \Delta _{1} \biggr]. \end{aligned}$$
In this position, we intend to prove that \(\hat{\mathcal{F}}_{1}u +\hat{\mathcal{F}}_{2}u' \in \mathcal{B}_{r^{*}}^{*} \). Let \(u, u' \in \mathcal{B}_{r^{*}}^{*} \). Then one can write
$$\begin{aligned} & \bigl\vert \hat{\mathcal{F}}_{1} u(t)+ \hat{ \mathcal{F}}_{2} u'(t) \bigr\vert \\ &\quad \leq \Vert u \Vert \biggl[ \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*}+1 )} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}}+ \frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \\ &\qquad{}\times \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &\qquad{}+ \frac{\mu _{2}^{*}\Delta _{2}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &\qquad{}+\frac{\Delta _{2}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr] \\ &\qquad{}+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &\qquad{}+ \frac{\mu _{2}^{*}\Delta _{1}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &\qquad{}+\frac{\Delta _{1}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr] \biggr] \\ &\qquad{}+ \Vert \mathcal{V} \Vert \biggl[\frac{1}{\lambda \Gamma ( k^{*} +1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}} \\ &\qquad{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda \Gamma (k^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{4}}{\lambda \Gamma (k^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{2}^{*}} \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda \Gamma (q_{1}^{*}+k^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}} \\ &\qquad{}+ \frac{\Delta _{2}}{\lambda \Gamma (q_{2}^{*}+k^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}} \biggr] \\ &\qquad{}+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert } \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda \Gamma (k^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{3}}{\lambda \Gamma (k^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\gamma _{2}^{*}} + \frac{\mu _{2}^{*}\Delta _{1}}{\lambda \Gamma (q_{1}^{*}+k^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}} \\ &\qquad{}+ \frac{\Delta _{1}}{\lambda \Gamma (q_{2}^{*}+k^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}} \biggr] \biggr]+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) \\ &\qquad{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr) \\ &\quad\leq \bigl(r^{*}\mathcal{W}_{1}+ \Vert \mathcal{V} \Vert \mathcal{W}_{2} \bigr)+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2} \Delta _{1} \vert \bigr) \\ &\qquad{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr)\leq r^{*}, \end{aligned}$$
and so it follows that \(\hat{\mathcal{F}}_{1}u +\hat{\mathcal{F}}_{2}u' \in \mathcal{B}_{r^{*}}^{*} \). Now, we claim that \(\hat{\mathcal{F}}_{2} \) is a contraction. To confirm this claim, for each two elements u, \(u'\in \mathcal{B}_{r^{*}}^{*} \), we have
$$\begin{aligned} & \bigl\vert \hat{\mathcal{F}}_{2} u(t)- \hat{\mathcal{F}}_{2} u'(t) \bigr\vert \\ &\quad = \biggl\vert \frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \\ &\qquad{}\times \hat{\Upsilon } \bigl( r, u(r) \bigr)-\hat{\Upsilon } \bigl( r, u'(r) \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &\qquad{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }} \bigl(\hat{\Upsilon } \bigl( T, u(T) \bigr)- \hat{\Upsilon } \bigl( T, u'(T) \bigr) \bigr) \\ &\qquad{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl(\hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)-\hat{\Upsilon } \bigl( \eta, u'(\eta ) \bigr) \bigr) \\ &\qquad{}-\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl(\hat{\Upsilon } \bigl( T, u(T) \bigr)-\hat{\Upsilon } \bigl( T, u'(T) \bigr) \bigr) \\ &\qquad{}-\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl(\hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr)- \hat{\Upsilon } \bigl( \nu, u( \nu ) \bigr) \bigr) \biggr] \\ &\qquad{}+\frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }} \bigl(\hat{\Upsilon } \bigl( T, u(T) \bigr)- \hat{\Upsilon } \bigl( T, u'(T) \bigr) \bigr) \\ &\qquad{}-\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \bigl(\hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)-\hat{\Upsilon } \bigl( \eta, u'(\eta ) \bigr) \bigr) \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \bigl(\hat{\Upsilon } \bigl( T, u(T) \bigr)-\hat{\Upsilon } \bigl( T, u'(T) \bigr) \bigr) \\ &\qquad{}+\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \bigl(\hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr)- \hat{\Upsilon } \bigl( \nu, u'(\nu ) \bigr) \bigr) \biggr] \biggr\vert \\ &\quad\leq \mathcal{L}_{*}\mathcal{W}_{2} \bigl\Vert u-u' \bigr\Vert . \end{aligned}$$
Since \(\mathcal{L}_{*}\mathcal{W}_{2}< 1 \), thus \(\mathcal{F}_{2} \) is a contraction. In the subsequent step, we check the continuity of \(\hat{\mathcal{F}}_{1} \) on \(\mathcal{B}_{r^{*}}^{*} \). To reach this aim, let \(\{u_{n}\} \) be a sequence in \(\mathcal{B}_{r^{*}}^{*} \) approaching a point \(u\in \mathcal{B}_{r^{*}}^{*} \). Then, due to the continuity of the generalized Riemann–Liouville type operator, one can write
$$\begin{aligned} \lim_{n\to +\infty }\hat{\mathcal{F}}_{1} u_{n}(t) ={}& \frac{-1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} \\ &{}\times \lim_{n\to +\infty }u_{n}(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \lim_{n\to +\infty }u_{n}(T) \\ &{}- \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \lim_{n\to +\infty }u_{n}( \eta ) \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \lim_{n\to +\infty }u_{n}(T)+ \frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}\lim_{n\to +\infty }u_{n}( \nu ) \biggr] \\ &{}+\frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}\lim_{n\to +\infty }u_{n}(T) \\ &{}+ \frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \lim_{n\to +\infty }u_{n}( \eta ) \\ &{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \lim_{n\to +\infty }u_{n}(T)- \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}\lim_{n\to +\infty }u_{n}( \nu ) \biggr] \\ ={}& \hat{\mathcal{F}}_{1} u(t) \end{aligned}$$
for any \(t\in [t_{0},T] \). This indicates that \(\hat{\mathcal{F}}_{1} \) is a continuous operator on \(\mathcal{B}_{r^{*}}^{*} \). Next, we are going to investigate that \(\hat{\mathcal{F}}_{1}(\mathcal{B}_{r^{*}}^{*}) \) is uniformly bounded on \(\mathcal{B}_{r^{*}}^{*} \). For any \(u\in \mathcal{B}_{r^{*}}^{*} \), we have
$$\begin{aligned} \bigl\vert \hat{\mathcal{F}}_{1} u(t) \bigr\vert \leq{}& \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} \bigl\vert u(r) \bigr\vert \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &{}+\frac{(T-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T) \bigr\vert + \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta ) \bigr\vert \\ &{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T) \bigr\vert +\frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }} \bigl\vert u( \nu ) \bigr\vert \biggr] \\ &{}+\frac{(T-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }} \bigl\vert u(T) \bigr\vert + \frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }} \bigl\vert u(\eta ) \bigr\vert \\ &{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }} \bigl\vert u(T) \bigr\vert +\frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}-\theta ^{*},\varrho }} \bigl\vert u( \nu ) \bigr\vert \biggr] \\ \leq {}&\mathcal{W}_{1} \Vert u \Vert =\mathcal{W}_{1} r^{*}. \end{aligned}$$
Thus \(\Vert \hat{\mathcal{F}}_{1}\Vert \leq \mathcal{W}_{1} r^{*}\) for all \(u\in \mathcal{B}_{r^{*}}^{*}\) with \(\mathcal{W}_{1} \) given in (11). The latter inequality confirms the fact that \(\hat{\mathcal{F}}_{1} \) is uniformly bounded on \(\mathcal{B}_{r^{*}}^{*}\). Eventually, we review another property of the operator \(\mathcal{F}_{1} \), i.e., its equicontinuity. For each \(t_{1}, t_{2} \in \tilde{J}\) with \(t_{1} < t_{2} \) and each \(u \in \mathcal{B}_{r^{*}}^{*} \), we have
$$\begin{aligned} & \bigl\vert \mathcal{F}_{1}u(t_{2}) - \mathcal{F}_{1}u(t_{1}) \bigr\vert \\ &\quad\leq \frac{r^{*} ( 2 \vert ((t_{2}-t_{0})^{\varrho }-(t_{2}-t_{0})^{\varrho })^{k^{*}-\theta ^{*}} \vert + \vert (t_{2}-t_{0})^{\varrho (k^{*}-\theta ^{*})} -(t_{1}-t_{0})^{\varrho (k^{*}-\theta ^{*})} \vert )}{\lambda ^{*}\Gamma (k^{*}-\theta ^{*}+1)} \\ &\qquad{} +r^{*} \biggl\vert \frac{(t_{2}-t_{0})^{\varrho }-(t_{1}-t_{0})^{\varrho }}{\Theta ^{*}} \biggr\vert \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{4}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &\qquad{}+ \frac{\mu _{2}^{*}\Delta _{2}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &\qquad{}+\frac{\Delta _{2}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr] \\ &\qquad{}+r^{*} \biggl\vert \frac{(t_{2}-t_{0})^{2\varrho }-(t_{1}-t_{0})^{2\varrho }}{\Theta ^{*}} \biggr\vert \\ &\qquad{}\times \biggl[ \frac{\mu _{1}^{*}\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{1}^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{1}^{*}} \\ &\qquad{}+ \frac{\Delta _{3}}{\lambda \Gamma (k^{*}-\theta ^{*}-\gamma _{2}^{*}+1)} \biggl( \frac{(\eta -t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}-\theta ^{*}- \gamma _{2}^{*}} \\ &\qquad{}+ \frac{\mu _{2}^{*}\Delta _{1}}{\lambda \Gamma (q_{1}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(T-t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{1}^{*}+k^{*}- \theta ^{*}} \\ &\qquad{}+\frac{\Delta _{1}}{\lambda \Gamma (q_{2}^{*}+k^{*}-\theta ^{*}+1)} \biggl( \frac{(\nu -t_{0})^{\varrho }}{ \varrho } \biggr)^{q_{2}^{*}+k^{*}- \theta ^{*}} \biggr]. \end{aligned}$$
As you observe, the RHS of the latter inequality approaches zero independently of u whenever \(t_{1} \to t_{2} \). Hence, the operator \(\mathcal{F}_{1} \) is equicontinuous, and so \(\mathcal{F}_{1} \) is relatively compact on \(\mathcal{B}_{r^{*}}^{*} \). Consequently, by invoking the Arzela–Ascoli theorem, \(\mathcal{F}_{1} \) is compact on \(\mathcal{B}_{r^{*}}^{*} \). In conclusion, by taking into account Theorem 2.3, the four-point multi-order nonlinear generalized Caputo type fractional BVP (3) has at least one solution. □
Here, with due attention to the Leray–Schauder theorem, we provide another criterion for the existence of solutions for the proposed problem (3).
Theorem 3.4
Let \(\hat{\Upsilon }: \tilde{J} \times \mathcal{X}_{*} \to \mathbb{R} \) be continuous and there exist a nondecreasing continuous function \(\Psi:[0,\infty )\to (0,\infty ) \) and \(\Phi \in \mathcal{C}_{\mathbb{R}^{+}}(\tilde{J})\) such that \(|\hat{\Upsilon }(t,u)|\leq \Phi (t)\Psi (\|u\|)\) for each \((t,u)\in \tilde{J}\times \mathcal{X}_{*}\). Moreover, suppose that there is a constant \(\mathcal{Q}^{*} > 0 \) such that
$$\begin{aligned} &\frac{\mathcal{Q}^{*} \vert \Theta ^{*} \vert }{\mathcal{Q}^{*} \vert \Theta ^{*} \vert \mathcal{W}_{1}+ \Psi (\mathcal{Q}^{*}) \Vert \Phi \Vert \vert \Theta ^{*} \vert \mathcal{W}_{2}+(T-t_{0})^{2\varrho }( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert ) +(T-t_{0})^{\varrho } ( \vert \delta _{1}\Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert )} \\ &\quad >1, \end{aligned}$$
(13)
where \(\mathcal{W}_{1}\) and \(\mathcal{W}_{2}\) are represented by (11) and (12), respectively. Then the four-point multi-order nonlinear generalized Caputo type fractional BVP (3) has at least one solution.
Proof
Consider the operator \(\tilde{\mathcal{F}}_{*} \) formulated by (10). We intend to verify that \(\tilde{\mathcal{F}}_{*} \) maps bounded sets into bounded subsets of \(\mathcal{X}_{*} \). Select an appropriate constant \(\rho ^{*} > 0 \) and build a bounded ball \(\mathcal{B}_{\rho ^{*}}^{*} = \{u\in \mathcal{X}_{*}:\|u\|\leq \rho ^{*}\} \) in \(\mathcal{X}_{*} \). Then, for each \(t\in \tilde{J} \), we have
$$\begin{aligned} & \bigl\vert \tilde{\mathcal{F}}_{*} u(t) \bigr\vert \\ &\quad \leq \sup _{t\in \tilde{J}} \biggl\vert \frac{1}{\lambda \Gamma ( k^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*} -1} \hat{\Upsilon } \bigl( r, u(r) \bigr) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &\qquad{}- \frac{1}{\lambda \Gamma ( k^{*}-\theta ^{*} )} \int _{t_{0}}^{t} \biggl( \frac{(t-t_{0})^{\varrho }- (r-t_{0})^{\varrho }}{ \varrho } \biggr)^{k^{*}- \theta ^{*} -1} u(r) \frac{ \mathrm{d}r}{(r-t_{0})^{1-\varrho } } \\ &\qquad{}+\frac{(t-t_{0})^{\varrho }}{\Theta ^{*}} \biggl[ \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr)- \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &\qquad{}+\frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)- \frac{\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u(\eta ) \\ &\qquad{}-\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T) -\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \\ &\qquad{}+\frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu ) \\ &\qquad{}-\delta _{1}\Delta _{4}+\Delta _{2}\delta _{2} \biggr]+ \frac{(t-t_{0})^{2\varrho }}{\Theta ^{*}} \biggl[- \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &\qquad{}+\frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &\qquad{}-\frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr)+ \frac{\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u(\eta ) \\ &\qquad{}+\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( T, u(T) \bigr) \\ &\qquad{}-\frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T)+ \frac{\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*},\varrho }} \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \\ &\qquad{}-\frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu ) +\delta _{1}\Delta _{3}-\delta _{2} \Delta _{1} \biggr] \biggr\vert \\ &\quad \leq \Vert \Phi \Vert \Psi \bigl( \Vert u \Vert \bigr)\mathcal{W}_{2}+ \Vert u \Vert \mathcal{W}_{1} \\ &\qquad{}+\frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) + \frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr), \end{aligned}$$
and consequently,
$$\begin{aligned} \bigl\Vert \tilde{\mathcal{F}}_{*} (t) \bigr\Vert \leq {}&\Vert \Phi \Vert \Psi \bigl( \Vert u \Vert \bigr)\mathcal{W}_{2}+ \Vert u \Vert \mathcal{W}_{1}+ \frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) \\ &{}+\frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr). \end{aligned}$$
Now, we continue to prove that the operator \(\tilde{\mathcal{F}}_{*}\) maps bounded sets (balls) into equicontinuous sets of \(\mathcal{X}_{*}\). Assuming \(t_{1}, t_{2} \in \tilde{J} \) with \(t_{1} < t_{2} \) and \(u \in \mathcal{B}_{\rho ^{*}}^{*} \), we have
$$\begin{aligned} & \bigl\vert \tilde{\mathcal{F}}_{*}u(t_{2}) - \tilde{ \mathcal{F}}_{*}u(t_{1}) \bigr\vert \\ &\quad \leq\frac{\Phi (t)\Psi ( \Vert u \Vert ) ( 2 \vert ((t_{2}-t_{0})^{\varrho }-(t_{2}-t_{0})^{\varrho })^{k^{*}} \vert + \vert (t_{2}-t_{0})^{\varrho k^{*}} -(t_{1}-t_{0})^{\varrho k^{*}} \vert )}{\lambda ^{*}\Gamma (k^{*}+1)} \\ &\qquad{}+ \frac{ \Vert u \Vert ( 2 \vert ((t_{2}-t_{0})^{\varrho }-(t_{2}-t_{0})^{\varrho })^{k^{*}-\theta } \vert + \vert (t_{2}-t_{0})^{\varrho ( k^{*}-\theta )} -(t_{1}-t_{0})^{\varrho (k^{*}-\theta )} \vert )}{\lambda ^{*}\Gamma (k^{*}-\theta +1)} \\ &\qquad{}+ \frac{ \vert (t_{2}-t_{0})^{\varrho }-(t_{1}-t_{0})^{\varrho } \vert }{ \vert \Theta ^{*} \vert } \biggl[ \biggl\vert \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr) \biggr\vert \\ &\qquad{}+\biggl\vert \frac{\mu _{1}^{*}\Delta _{4}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \\ &\qquad{}+ \biggl\vert \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }} \hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr) \biggr\vert + \biggl\vert \frac{\Delta _{4}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u( \eta ) \biggr\vert \\ &\qquad{}+\biggl\vert \frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*},\varrho }} \hat{\Upsilon } \bigl( T , u(T) \bigr)\biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\mu _{2}^{*}\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}-\theta ^{*},\varrho }}u(T) \biggr\vert + \biggl\vert \frac{\Delta _{2}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }}\hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\Delta _{2}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu ) \biggr\vert \\ &\qquad{}+ \vert \delta _{1}\Delta _{4} \vert + \vert \Delta _{2} \delta _{2} \vert \biggr]+ \frac{ \vert (t_{2}-t_{0})^{2\varrho }-(t_{1}-t_{0})^{2\varrho } \vert }{ \vert \Theta ^{*} \vert } \\ &\qquad{}\times \biggl[ \biggl\vert \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\gamma _{1}^{*},\varrho }}\hat{\Upsilon } \bigl( T, u(T) \bigr) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\mu _{1}^{*}\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}-\theta ^{*}-\gamma _{1}^{*},\varrho }}u(T) \biggr\vert \biggl\vert \frac{\Delta _{3}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{k^{*}- \gamma _{2}^{*},\varrho }}\hat{\Upsilon } \bigl( \eta, u(\eta ) \bigr) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\Delta _{3}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}- \theta ^{*}-\gamma _{2}^{*},\varrho }}u( \eta ) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC} \mathcal{I}_{t_{0}}^{{q_{1}^{*}+k^{*},\varrho }} \hat{\Upsilon } \bigl( T , u(T) \bigr) \biggr\vert \biggl\vert \frac{\mu _{2}^{*}\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{1}^{*}- \theta ^{*},\varrho }}u(T) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{q_{2}^{*}+k^{*}, \varrho }} \hat{\Upsilon } \bigl( \nu, u(\nu ) \bigr) \biggr\vert \\ &\qquad{}+ \biggl\vert \frac{\Delta _{1}}{\lambda }{}^{RC}\mathcal{I}_{t_{0}}^{{k^{*}+q_{2}^{*}- \theta ^{*},\varrho }}u( \nu ) \biggr\vert + \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \biggr]. \end{aligned}$$
If \(t_{1} \to t_{2}\), then the RHS of the above inequality approaches 0 independently of \(u\in \mathcal{B}_{\rho ^{*}}^{*} \). This implies the equicontinuity of \(\tilde{\mathcal{F}}_{*}\), and so the relative compactness of \(\tilde{\mathcal{F}}_{*}\) on \(\mathcal{B}_{\rho ^{*}}^{*}\). Hence from the Arzela–Ascoli theorem it follows that \(\tilde{\mathcal{F}}_{*}\) is completely continuous, and so \(\tilde{\mathcal{F}}_{*}\) is compact on \(\mathcal{B}_{\rho ^{*}}^{*}\). The desired result is completed from the Leray–Schauder theorem 2.4 once we can verify the boundedness of the set of solutions for an equation \(u=\omega ^{*} \tilde{\mathcal{F}}_{*} u \) for some \(\omega ^{*} \in (0,1) \). To reach this goal, let us assume that u is a solution for the latter equation. For any \(t\in \tilde{J} \), we obtain
$$\begin{aligned} \bigl\vert u(t) \bigr\vert \leq{}& \Vert \Phi \Vert \Psi \bigl( \Vert u \Vert \bigr)\mathcal{W}_{2}+ \Vert u \Vert \mathcal{W}_{1}+ \frac{(T-t_{0})^{2\varrho }}{ \vert \Theta ^{*} \vert }\bigl( \vert \delta _{1} \Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert \bigr) \\ &{}+ \frac{(T-t_{0})^{\varrho }}{ \vert \Theta ^{*} \vert } \bigl( \vert \delta _{1} \Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert \bigr), \end{aligned}$$
and so
$$\begin{aligned} &\frac{ \Vert u \Vert \vert \Theta ^{*} \vert }{ \Vert u \Vert \vert \Theta ^{*} \vert \mathcal{W}_{1}+\Psi ( \Vert u \Vert ) \Vert \Phi \Vert \vert \Theta ^{*} \vert \mathcal{W}_{2}+(T-t_{0})^{2\varrho }( \vert \delta _{1}\Delta _{3} \vert + \vert \delta _{2}\Delta _{1} \vert ) +(T-t_{0})^{\varrho }( \vert \delta _{1}\Delta _{4} \vert + \vert \delta _{2}\Delta _{2} \vert )}\\ &\quad < 1 . \end{aligned}$$
Select the constant \(\mathcal{Q}^{*} \) with \(\Vert u\Vert \ne \mathcal{Q}^{*} \). Put \(\mathcal{U}=\{x\in \mathcal{X}_{*}: \Vert u \Vert <\mathcal{Q}^{*}\}\). Then one can realize that the operator \(\tilde{\mathcal{F}}_{*}:\bar{\mathcal{U}}\to \mathcal{X}_{*} \) is continuous and completely continuous. By considering the choice of \(\mathcal{U} \), there is no \(u\in \partial \mathcal{U} \) satisfying \(u=\omega ^{*} \tilde{\mathcal{F}}_{*} u\) for some \(\omega ^{*} \in (0,1) \). Therefore by utilizing the Leray–Schauder theorem, it is deduced that \(\tilde{\mathcal{F}}_{*} \) is an operator having a fixed point \(u\in \bar{\mathcal{U}} \) which is a solution for the four-point multi-order nonlinear generalized Caputo type fractional BVP (3). □