Murray, J.D.: Mathematical Biology: I. An Introduction, vol. 17. Springer, Berlin (2007)
Google Scholar
Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 291(1054), 451–524 (1981)
Article
Google Scholar
Berezovskaya, F.S., Song, B., Castillo-Chavez, C.: Role of prey dispersal and refuges on predator–prey dynamics. SIAM J. Appl. Math. 70(6), 1821–1839 (2010)
Article
MathSciNet
MATH
Google Scholar
Djilali, S.: Herd behavior in a predator–prey model with spatial diffusion: bifurcation analysis and Turing instability. J. Appl. Math. Comput. 58(1–2), 125–149 (2018)
Article
MathSciNet
MATH
Google Scholar
Djilali, S.: Impact of prey herd shape on the predator–prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)
Article
MathSciNet
MATH
Google Scholar
Cressman, R., Garay, J.: A predator–prey refuge system: evolutionary stability in ecological systems. Theor. Popul. Biol. 76(4), 248–257 (2009)
Article
MATH
Google Scholar
Chen, S., Wei, J., Yu, J.: Stationary patterns of a diffusive predator–prey model with Crowley–Martin functional response. Nonlinear Anal., Real World Appl. 39, 33–57 (2018)
Article
MathSciNet
MATH
Google Scholar
Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three-species predator–prey model with herd behavior and time fractional-order derivative. Math. Methods Appl. Sci. 43(4), 1736–1752 (2020)
Article
MathSciNet
MATH
Google Scholar
Ghanbari, B., Gómez-Aguilar, J.F.: Modeling the dynamics of nutrient–phytoplankton–zooplankton system with variable-order fractional derivatives. Chaos Solitons Fractals 116, 114–120 (2018)
Article
MathSciNet
MATH
Google Scholar
Ghanbari, B., Günerhan, H., Srivastava, H.M.: An application of the Atangana–Baleanu fractional derivative in mathematical biology: a three-species predator–prey model. Chaos Solitons Fractals 138, 109910 (2020)
Article
MathSciNet
Google Scholar
Owolabi, K.M., Atangana, A.: Mathematical modelling and analysis of fractional epidemic models using derivative with exponential kernel. In: Fractional Calculus in Medical and Health Science, pp. 109–128. CRC Press, Boca Raton (2020)
Chapter
Google Scholar
Souna, F., Lakmeche, A., Djilali, S.: The effect of the defensive strategy taken by the prey on predator–prey interaction. J. Appl. Math. Comput. 64, 665–690 (2020)
Article
MathSciNet
Google Scholar
Peet, A.B., Deutsch, P.A., Peacock-López, E.: Complex dynamics in a three-level trophic system with intraspecies interaction. J. Theor. Biol. 232(4), 491–503 (2005)
Article
MathSciNet
MATH
Google Scholar
Sunaryo, M.S.W., Salleh, Z., Mamat, M.: Mathematical model of three species food chain with Holling type-III functional response. Int. J. Pure Appl. Math. 89(5), 647–657 (2013)
Google Scholar
Upadhyay, R.K., Raw, S.N.: Complex dynamics of a three species food-chain model with Holling type IV functional response. Nonlinear Anal., Model. Control 16(3), 353–374 (2011)
MathSciNet
MATH
Google Scholar
Jana, D., Agrawal, R., Upadhyay, R.K.: Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain. Chaos Solitons Fractals 69, 50–63 (2014)
Article
MathSciNet
MATH
Google Scholar
Volterra, V.: Fluctuations in the abundance of a species considered mathematically 1 (1926)
Kilbas, A.: Theory and applications of fractional differential equations
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
MATH
Google Scholar
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods, vol. 3. World Scientific, Singapore (2012)
Book
MATH
Google Scholar
Yang, X.-J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, San Diego (2015)
MATH
Google Scholar
Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)
Article
MATH
Google Scholar
Darzi, R., Agheli, B.: A convenience approximate method for solving an inverse heat conduction problem. Prog. Fract. Differ. Appl. 6, 23–28 (2020)
Article
Google Scholar
Yazdani, A., Mojahed, N., Babaei, A., Cendon, E.V.: Using finite volume-element method for solving space fractional advection-dispersion equation. Prog. Fract. Differ. Appl. 6, 55–66 (2020)
Google Scholar
Yousef, A.M., Rida, S.Z., Gouda, Y.Gh., Zaki, A.S.: On the fractional optimal control problems with a general derivative operator. Prog. Fract. Differ. Appl. 5, 297–306 (2019)
Google Scholar
Jajarmi, A., Baleanu, D.: A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 8, 220 (2020)
Article
Google Scholar
Sajjadi, S.S., Baleanu, D., Jajarmi, A., Pirouz, H.M.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos Solitons Fractals 138, 109919 (2020)
Article
MathSciNet
Google Scholar
Baleanu, D., Jajarmi, A., Sajjadi, S.S., Asad, J.H.: The fractional features of a harmonic oscillator with position-dependent mass. Commun. Theor. Phys. 72(5), 055002 (2020)
Article
MathSciNet
Google Scholar
Jajarmi, A., Yusuf, A., Baleanu, D., Inc, M.: A new fractional HRSV model and its optimal control: a non-singular operator approach. Phys. A, Stat. Mech. Appl. 547, 123860 (2020)
Article
MathSciNet
Google Scholar
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020)
Article
MathSciNet
Google Scholar
Jajarmi, A., Baleanu, D.: On the fractional optimal control problems with a general derivative operator. Asian J. Control (2019). https://doi.org/10.1002/asjc.2282
Article
Google Scholar
Abdon, A.: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)
Article
MathSciNet
MATH
Google Scholar
Abdon, A.: Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons Fractals 114, 347–363 (2018)
Article
MathSciNet
MATH
Google Scholar
Abdon, A.: Fractional discretization: the African’s tortoise walk. Chaos Solitons Fractals 130, 109399 (2020)
Article
MathSciNet
Google Scholar
Abdon, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133(4), 166 (2018)
Article
Google Scholar
Djilali, S., Ghanbari, B.: Coronavirus pandemic: a predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil. Chaos Solitons Fractals 138, 109971 (2020)
Article
MathSciNet
Google Scholar
Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132(10), 444 (2017)
Article
Google Scholar
Ghanbari, B., Atangana, A.: A new application of fractional Atangana–Baleanu derivatives: designing ABC-fractional masks in image processing. Phys. A, Stat. Mech. Appl. 542, 123516 (2020)
Article
MathSciNet
Google Scholar
Lizzy, R.M., Balachandran, K., Trujillo, J.J.: Controllability of nonlinear stochastic fractional neutral systems with multiple time varying delays in control. Chaos Solitons Fractals 102, 162–167 (2017)
Article
MathSciNet
MATH
Google Scholar
Tang, B.: Dynamics for a fractional-order predator–prey model with group defense. Sci. Rep. 10, 4906 (2020)
Article
Google Scholar
Ghanbari, B., Kumar, D.: Numerical solution of predator–prey model with Beddington–deAngelis functional response and fractional derivatives with Mittag-Leffler kernel. Chaos, Interdiscip. J. Nonlinear Sci. 29(6), 063103 (2019)
Article
MathSciNet
MATH
Google Scholar
Baisad, K., Moonchai, S.: Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator–prey model with Allee effect and Holling type-III functional response. Adv. Differ. Equ. 2018, 82 (2018)
Article
MathSciNet
MATH
Google Scholar
Yavuz, M., Sene, N.: Stability analysis and numerical computation of the fractional predator–prey model with the harvesting rate. Fractal Fract. 4(3), 35 (2020)
Article
Google Scholar
Ghaziani, R.K., Alidousti, J., Eshkaftaki, A.B.: Stability and dynamics of a fractional order Leslie–Gower prey–predator model. Appl. Math. Model. 40(3), 2075–2086 (2016)
Article
MathSciNet
MATH
Google Scholar
Moustafa, M., Mohd, M.H., Ismail, A.I., Abdullah, F.A.: Dynamical analysis of a fractional-order Rosenzweig–Macarthur model incorporating a prey refuge. Chaos Solitons Fractals 109, 1–13 (2018)
Article
MathSciNet
MATH
Google Scholar
Ghaziani, R.K., Alidousti, J.: Stability analysis of a fractional order prey–predator system with nonmonotonic functional response. Comput. Methods Differ. Equ. 4(2), 151–161 (2016)
MathSciNet
MATH
Google Scholar
Xie, Y., Lu, J., Wang, Z.: Stability analysis of a fractional-order diffused prey–predator model with prey refuges. Phys. A, Stat. Mech. Appl. 526, 120773 (2019)
Article
MathSciNet
Google Scholar
Supajaidee, N., Moonchai, S.: Stability analysis of a fractional-order two-species facultative mutualism model with harvesting. Adv. Differ. Equ. 2017(1), 372 (2017)
Article
MathSciNet
MATH
Google Scholar
Alidousti, J., Ghahfarokhi, M.M.: Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Appl. Math. Model. 72, 385–402 (2019)
Article
MathSciNet
MATH
Google Scholar
Abdon, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Article
Google Scholar
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)
Google Scholar
Yasar, B.Y.: Generalized Mittag-Leffler function and its properties. New Trends Math. Sci. 3(1), 12 (2015)
MathSciNet
Google Scholar
Gakkhar, S., Gupta, K.: A three species dynamical system involving prey–predation, competition and commensalism. Appl. Math. Comput. 273, 54–67 (2016)
MathSciNet
MATH
Google Scholar
Garrappa, R.: Numerical solution of fractional differential equations: a survey and a software tutorial. Mathematics 6(2), 16 (2018)
Article
MATH
Google Scholar
Gao, W., Ghanbari, B., Baskonus, H.M.: New numerical simulations for some real world problems with Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 128, 34–43 (2019)
Article
MathSciNet
Google Scholar
Ghanbari, B., Kumar, S., Kumar, R.: A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 133, 109619 (2020)
Article
MathSciNet
Google Scholar
Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos, Interdiscip. J. Nonlinear Sci. 29(9), 093111 (2019)
Article
MathSciNet
MATH
Google Scholar