In this paper, \(\mathbb{F}\) represents real field \(\mathbb{R}\) or complex field \(\mathbb{F}\). For a function \(\mathcal{U} \in \mathcal{S}\), \(\mathcal{S}\) is the space of rapidly decreasing functions on the real axis \(\mathbb{R}\). The Fourier transform and inverse Fourier transform of function \(\mathcal{U}(t)\) are defined as follows:
$$\begin{aligned}& \widehat{\mathcal{U}}(\vartheta ) = \bigl(\mathcal{F}\mathcal{U}(t) \bigr) ( \vartheta ) = \int _{-\infty }^{\infty } \mathcal{U}(t) e^{i\vartheta t }\,dt, \quad \vartheta \in \mathbb{R}, \\& \mathcal{U}(t) = \bigl(\mathcal{F}^{-1}\widehat{\mathcal{U}}(\vartheta ) \bigr) (t) = \frac{1}{2\pi } \int _{-\infty }^{\infty } \widehat{\mathcal{U}}( \vartheta ) e^{-i\vartheta t}\,d\vartheta , \quad t \in \mathbb{R}, \end{aligned}$$
where \((t,\vartheta )\) are space and frequency variable, respectively, and the integration paths run along the real axes \(t \in (-\infty , \infty ) \) and \(\vartheta \in (-\infty , \infty ) \). The operator \(\widehat{\mathcal{U}}\) can be defined on the spaces \(L_{p}(\mathbb{R})\), \(1 \leq p \leq 2\). The Fourier transform of the function \(\mathcal{U}(t)\) is defined only when improper integral converges. It can be used to solve differential equations, ordinary and partial, as well as fractional and integral equations.
For working with fractional Fourier transform and with fractional differentiation and integration operators, some other spaces of functions are usually employed. In this paper, we say in the framework of the Lizorkin space of function (see [39–41]). Its definition is provided below.
Definition 2.1
Let us denote by \(V(\mathbb{R})\) the set of functions \(v \in \mathcal{S}\) satisfying the conditions
$$ \frac{d^{n}v}{dt^{n}}\bigg| _{t=0} = 0, \quad n=0,1,2,3,\ldots. $$
The Lizorkin space \(\Phi (\mathbb{R}) \subset L^{1}(\mathbb{R})\) is defined as the Fourier pre-image of the space \(V(\mathbb{R})\) in the space \(\mathcal{S}\), i.e.,
$$ \Phi (\mathbb{R}) = \bigl\{ \mathcal{U} \in \mathcal{S}; \mathcal{F}( \mathcal{U}) \in V(\mathbb{R}) \bigr\} . $$
According to the definition of the Lizorkin space, the orthogonality condition is satisfied by any function \(\mathcal{U}(t) \in \Phi (\mathbb{R})\), i.e.,
$$ \int _{-\infty }^{\infty } t^{n} \mathcal{U}(t)\,dt = 0, \quad n=0,1,2,3,\ldots. $$
It is known that the Lizorkin space \(\Phi (\mathbb{R})\) is invariant with respect to the fractional integration and differentiation operator (this is not the case for the whole space \(\mathcal{S}\) of the rapidly decreasing functions because the fractional integrals and derivatives of the functions from the space \(\mathcal{S}\) do not always belong to the space \(\mathcal{S}\)).
Definition 2.2
([42])
The definition of a fractional Fourier transform (FRFT) of a function \(\mathcal{U} \in \Phi (\mathbb{R})\) of order ν, (\(0< \nu \leq 1\)) is
$$\begin{aligned} \widehat{\mathcal{U}}_{\nu }(\vartheta ) = \bigl(\mathcal{F}_{\nu } \mathcal{U}(t) \bigr) (\vartheta )= \int _{-\infty }^{\infty } \mathcal{U}(t) e_{ \nu }( \vartheta ,t)\,dt, \end{aligned}$$
where
$$\begin{aligned}& e_{\nu }(\vartheta ,t)= \textstyle\begin{cases} e^{-i \vert \vartheta \vert ^{1/\nu }} t ;& \vartheta \leq 0, \\ e^{i \vert \vartheta \vert ^{1/\nu }} t ; &\vartheta \geq 0 \end{cases}\displaystyle =e^{i \operatorname{sign}{(\vartheta )} \vert \vartheta \vert ^{1/ \nu }t}, \\& \operatorname{sign} {(\vartheta )}= \textstyle\begin{cases} -1 ;& \vartheta < 0 , \\ 1 ; &\vartheta \geq 0. \end{cases}\displaystyle \end{aligned}$$
If \(\nu = 1\), the FRFT is concurring with Fourier transform. Function \(\mathcal{U} \in \Phi (\mathbb{R})\) has an inverse fractional Fourier transform in the form of
$$ \mathcal{U}(t) = \frac{1}{2\pi \nu } \int _{-\infty }^{\infty }e^{-i \operatorname{sign}{( \vartheta )} \vert \vartheta \vert ^{1/\nu }t} \vert \vartheta \vert ^{\frac{1}{\nu }-1}\widehat{\mathcal{U}}_{\nu }(\vartheta )\,d \vartheta , $$
for any \(t \in \mathbb{R}\) and \(\nu >0\), the relation
$$ \mathcal{F}^{-1}\mathcal{F}(\mathcal{U})= \mathcal{U} $$
holds true almost everywhere on \(\mathbb{R}\).
Definition 2.3
The function \((\mathcal{U}_{1}*\mathcal{U}_{2})(t) = \int _{\mathbb{R}}\mathcal{U}_{1}(t- \tau )\mathcal{U}_{2}(\tau )\,d\tau \) is called the convolution of both functions \(\mathcal{U}_{1}\) and \(\mathcal{U}_{2}\) defined on \(\mathbb{R}\).
Some properties of FRFT that are closely related to the solution are:
-
1
If \((\mathcal{F}_{\nu }\mathcal{U}_{1}(t) )(\vartheta ) = (\mathcal{F}_{\nu }\mathcal{U}_{2}(t) )(\vartheta )\), then \(\mathcal{U}_{1}(t) = \mathcal{U}_{2}(t)\), \(\forall t \in \mathbb{R} \);
-
2
\(F (\mathcal{F}_{\nu }\mathcal{U}(t-\xi ) )(\vartheta ) = e_{ \nu }(\vartheta ,\xi )\widehat{\mathcal{U}}(\vartheta )\);
-
3
\(\mathcal{F}_{\nu } ( \mathcal{U}_{1}(t) * \mathcal{U}_{2}(t) )(\vartheta ) = \mathcal{F}_{\nu } ( \mathcal{U}_{1}(t))(\vartheta ) \mathcal{F}_{\nu } (\mathcal{U}_{2}(t) )(\vartheta )\);
-
4
\(\mathcal{F}_{\nu }^{-1} ( \mathcal{U}_{1} \mathcal{U}_{2} )(t) = \mathcal{F}_{\nu }^{-1} ( \mathcal{U}_{1})(t) * \mathcal{F}_{\nu }^{-1} ( \mathcal{U}_{2} )(t)\).
Definition 2.4
([43])
The definition of the Mittag-Leffler function is
$$ E_{\nu }(t) = \sum_{m=0}^{\infty } \frac{t^{m}}{\Gamma {(\nu m+1)}}, \quad 0 < \nu \leq 1. $$
The above function with one parameter can be extended to a general function consisting of two parameters, i.e.,
$$ E_{\nu ,\beta }(t) = \sum_{m=0}^{\infty } \frac{t^{m}}{\Gamma {(\nu m + \beta )}}, \quad 0 < \nu , \beta \leq 1. $$
Definition 2.5
([44])
The definition of the left- and right-hand side Riemann–Liouville fractional integral with order \(\nu > 0\) pertaining to function \(\mathcal{U}(t)\) is
$$ \bigl({}^{\mathrm{RL}}\mathcal{I}_{+}^{\nu } \mathcal{U} \bigr) (t) = \frac{1}{\Gamma {\nu }} \int _{-\infty }^{t} (t-s)^{\nu -1} \mathcal{U}(s)\,ds \quad (\text{Left RLI}) $$
(2.1)
and
$$ \bigl({}^{\mathrm{RL}}\mathcal{I}_{-}^{\nu }\mathcal{U} \bigr) (t) = \frac{1}{\Gamma {\nu }} \int _{t}^{\infty } (s-t)^{\nu -1} \mathcal{U}(s)\,ds \quad (\text{Right RLI}), $$
where \(\operatorname{Re}(\nu )>0\), we have \(\Gamma {\nu }= \int _{0}^{\infty } e^{-t}t^{\nu -1}\,dt\).
Definition 2.6
([44])
Given function \(\mathcal{U} \in \Phi (\mathbb{R})\), the definition of the Riemann–Liouville derivative with fractional order \(\nu > 0\), \(m = [\nu ]+1\) is
$$ \mathcal{D}_{+}^{\nu }\mathcal{U}(t) = \biggl( \frac{d}{dt} \biggr)^{m} \mathcal{I}_{+}^{m-\nu } \mathcal{U}(t) \quad (\text{Left RLD}), $$
and
$$ \mathcal{D}_{-}^{\nu }\mathcal{U}(t) = \biggl(- \frac{d}{dt} \biggr)^{m} \mathcal{I}_{-}^{m-\nu } \mathcal{U}(t) \quad (\text{Right RLD}), $$
provided that it exists. Here, the integer part of real number ν is denoted by \([\nu ]\).
Definition 2.7
([9])
Let \(0 < \nu < 1\), and a function \(\mathcal{U} \in \Phi (\mathbb{R})\). The definition of the left- and right-hand side of \(\mathcal{ABR}\) fractional derivative is
$$ {}^{\mathcal{ABR}}\mathcal{D}_{+}^{\nu }\mathcal{U}(t) = \frac{\mathcal{B}(\nu )}{1-\nu } \frac{d}{dt} \int _{-\infty }^{t} \mathcal{U}(s) E_{\nu } \biggl( \frac{-\nu }{1-\nu }(t-s)^{\nu } \biggr)\,ds \quad (\text{Left ABRD}) $$
and
$$ {}^{\mathcal{ABR}}\mathcal{D}_{-}^{\nu }\mathcal{U}(t) = \frac{\mathcal{B}(\nu )}{1-\nu } \frac{d}{dt} \int _{t}^{\infty } \mathcal{U}(s) E_{\nu } \biggl( \frac{-\nu }{1-\nu }(s-t)^{\nu } \biggr)\,ds \quad (\text{Right ABRD}), $$
where \(\mathcal{B}(\nu )\) is a normalization function. More details on the \(\mathcal{ABR}\) fractional derivative can be found in [45, 46].
Definition 2.8
([9])
Given \(0 < \nu < 1\) and function \(\mathcal{U} \in \Phi (\mathbb{R})\), the definition of the left and right \(\mathcal{AB}\) fractional integral is
$$ {}^{\mathcal{AB}}\mathcal{I}_{+}^{\nu }\mathcal{U}(t) = \frac{1-\nu }{\mathcal{B}(\nu )} \mathcal{U}(t) + \frac{\nu }{\mathcal{B}(\nu )\Gamma {(\nu )}} \int _{-\infty }^{t} \mathcal{U}(t) (t-s)^{\nu -1}\,ds \quad (\text{Left ABI}) $$
and
$$ {}^{\mathcal{AB}}\mathcal{I}_{-}^{\nu }\mathcal{U}(t) = \frac{1-\nu }{\mathcal{B}(\nu )} \mathcal{U}(t) + \frac{\nu }{\mathcal{B}(\nu )\Gamma {(\nu )}} \int _{t}^{\infty } \mathcal{U}(t) (s-t)^{\nu -1}\,ds \quad (\text{Right ABI}). $$
Lemma 2.1
(Integration by parts; [47])
For any functions \(\mathcal{U}(t), \mathcal{V}(t) \in \Phi (\mathbb{R})\), we have
$$\begin{aligned}& \int _{-\infty }^{\infty } \mathcal{U}(t){}^{\mathcal{ABR}} \mathcal{D}_{+}^{ \nu }\mathcal{V}(t)\,dt = \int _{-\infty }^{\infty }\mathcal{V}(t){}^{\mathcal{ABR}} \mathcal{D}_{-}^{\nu } \mathcal{U}(t)\,dt, \\& \int _{-\infty }^{\infty } \mathcal{U}(t){}^{\mathcal{ABR}} \mathcal{D}_{-}^{ \nu }\mathcal{V}(t)\,dt = \int _{-\infty }^{\infty }\mathcal{V}(t){}^{\mathcal{ABR}} \mathcal{D}_{+}^{\nu } \mathcal{U}(t)\,dt. \end{aligned}$$
Theorem 2.1
(Arzela–Ascoli’s theorem; [48])
-
(1)
A family \(\mathcal{B}\) of continuous functions on \(\mathbb{I}=[a,b]\) is a uniformly bounded set if there exists \(\lambda >0\) with
$$ \Vert \mathcal{U} \Vert = \sup \bigl\vert \mathcal{U}(t) \bigr\vert < \lambda , \quad \forall \mathcal{U} \in \mathcal{B}. $$
-
(2)
\(\mathcal{B}\) is an equicontinuous set, i.e., for any \(\epsilon >0\), there exists \(\delta > 0\) such that
$$ \vert t_{1} - t_{2} \vert \le \delta \Rightarrow \bigl\vert \mathcal{U}(t_{1}) - \mathcal{U}(t_{2}) \bigr\vert \le \epsilon , \quad \forall \mathcal{U} \in \mathcal{B}. $$
Let \(\{ u_{n} \} _{n \in N}\) be a family of continuous functions on \(\mathbb{I}=[a,b]\). If the sequence is uniformly bounded and equicontinuous, then there exists a subsequence \(\{ u_{n_{1}}(t) \} _{n_{1} \in N}\) that converges uniformly.
Theorem 2.2
(Banach fixed point theorem; [49])
Let \(\mathcal{B}\) be a nonempty closed subset of a Banach space ψ. Then any contraction mapping Δ from ψ into itself has a unique fixed point.
Theorem 2.3
(Schaefer’s fixed point theorem; [49])
A Banach space is denoted as ψ, and a completely continuous mapping is \(\Delta : \psi \rightarrow \psi \). As such, if
$$ \mathcal{B} = \{ \mathcal{U} \in \psi \vert \mathcal{U}= \theta \Delta \mathcal{U}, 0 < \theta < 1 \} $$
is a bounded set, then there is at least one fixed point on ψ in Δ.
Lemma 2.2
([50])
Suppose that \(\mathcal{U} \in \Phi (\mathbb{R})\) is a continuously differential function, \(0 < \nu \le 1\), and \(\vartheta \in \mathbb{R}/ \{ 0 \} \), then
$$\begin{aligned} {}^{\mathrm{RL}} \mathcal{I}_{+}^{\nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) &= e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{ \frac{-(\nu m +1)}{\nu }} e^{-i \operatorname{sign}(\vartheta )(1+\nu m)\pi /2}. \end{aligned}$$
(2.2)
Proof
By taking into account the Riemann–Liouville fractional integral equation (2.1), we get
$$\begin{aligned} {}^{\mathrm{RL}} \mathcal{I}_{+}^{\nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) = \frac{1}{\Gamma {(1+\nu m)}} \int _{- \infty }^{t} (t-s)^{1+\nu m-1} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}s}\,ds, \end{aligned}$$
using the variables substitution \(\eta = t-s\), we obtain
$$\begin{aligned} & {}^{\mathrm{RL}} \mathcal{I}_{+}^{\nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) \\ &\quad = \frac{1}{\Gamma {(1+\nu m)}} e^{i \operatorname{sign}( \vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \int _{0}^{ \infty } \eta ^{\nu m} e^{-i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{ \frac{1}{\nu }}\eta } \,d\eta \\ &\quad = e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \frac{1}{\Gamma {(1+\nu m)}} \int _{0}^{\infty } \eta ^{\nu m} \cos \bigl( \vert \vartheta \vert ^{\frac{1}{\nu }} \eta \bigr) \,d\eta \\ &\quad \quad {} -i \operatorname{sign}(\vartheta ) e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{ \frac{1}{\nu }}t} \frac{1}{\Gamma {(1+\nu m)}} \int _{0}^{\infty } \eta ^{ \nu m} \sin \bigl( \vert \vartheta \vert ^{\frac{1}{\nu }} \eta \bigr) \,d\eta . \end{aligned}$$
(2.3)
Both the integrals in the above equation can be evaluated from using the integral formula in [51]:
$$\begin{aligned}& \frac{1}{\Gamma {(1+\nu m)}} \int _{0}^{\infty } \eta ^{(\nu m+1)-1} \cos \bigl( \vert \vartheta \vert ^{\frac{1}{\nu }} \eta \bigr) \,d\eta = \vert \vartheta \vert ^{\frac{-(1+\nu m)}{\nu }} \cos \bigl((1+\nu m)\pi /2 \bigr), \end{aligned}$$
(2.4)
$$\begin{aligned}& \frac{1}{\Gamma {(1+\nu m)}} \int _{0}^{\infty } \eta ^{(\nu m+1)-1} \sin \bigl( \vert \vartheta \vert ^{\frac{1}{\nu }} \eta \bigr) \,d\eta = \operatorname{sign}( \vartheta ) \vert \vartheta \vert ^{\frac{-(1+\nu m)}{\nu }} \sin \bigl((1+ \nu m)\pi /2 \bigr). \end{aligned}$$
(2.5)
Substituting equation (2.4) and (2.5) in equation (2.3), we get
$$\begin{aligned} {}^{\mathrm{RL}} \mathcal{I}_{+}^{\nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) = e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{ \frac{-(\nu m +1)}{\nu }} e^{-i \operatorname{sign}(\vartheta )(1+\nu m)\pi /2}. \end{aligned}$$
□
Proceeding in a similar way, we prove the next lemma.
Lemma 2.3
([50])
Suppose that \(\mathcal{U} \in \Phi (\mathbb{R})\) is a continuously differential function, \(0 < \nu \le 1\), and \(\vartheta \in \mathbb{R}/ \{ 0 \} \), then
$$\begin{aligned} {}^{\mathrm{RL}} \mathcal{I}_{-}^{\nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) &= e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{ \frac{-(\nu m +1)}{\nu }} e^{i \operatorname{sign}(\vartheta )(1+\nu m)\pi /2}. \end{aligned}$$
Lemma 2.4
Let \(0 < \nu \le 1\) be noninteger, the left-hand side of \(\mathcal{ABR}\) fractional derivative \({}^{\mathcal{ABR}}\mathcal{D}_{+}^{\nu }\) satisfies the following condition:
$$\begin{aligned} {}^{\mathcal{ABR}}\mathcal{D}_{+}^{\nu } \bigl(e^{i \operatorname{sign}{\nu } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{-m} e^{-i \operatorname{sign}( \vartheta )(\nu m)\pi /2}. \end{aligned}$$
Proof
$$\begin{aligned} &{}^{\mathcal{ABR}}\mathcal{D}_{+}^{\nu } \bigl(e^{i \operatorname{sign}{\nu } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) \\ &\quad =\frac{\mathcal{B}(\nu )}{1-\nu } \frac{d}{dt} \int _{-\infty }^{t} e^{i \operatorname{sign}{ \nu } \vert \vartheta \vert ^{\frac{1}{\nu }}s} E_{\nu } \biggl( \frac{-\nu }{1-\nu } (t-s)^{\nu } \biggr) \,ds \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} \frac{1}{\Gamma {(m\nu +1)}} \frac{d}{dt} \int _{-\infty }^{t} e^{i \operatorname{sign}{\nu } \vert \vartheta \vert ^{\frac{1}{\nu }}t} (t-s)^{m \nu } \,ds \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} \frac{d}{dt} \bigl( {}^{\mathrm{RL}}\mathcal{I}_{+}^{ \nu m+1} \bigl(e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{ \frac{1}{\nu }}t} \bigr) \bigr) \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} \frac{d}{dt} \bigl( e^{i \operatorname{sign}( \vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{\frac{-(\nu m +1)}{\nu }} e^{-i \operatorname{sign}(\vartheta )(1+ \nu m)\pi /2} \bigr) \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} e^{-i \operatorname{sign}(\vartheta )(1+\nu m)\pi /2} \vert \vartheta \vert ^{\frac{-(\nu m +1)}{\nu }} i \vert \vartheta \vert ^{\frac{1}{\nu }} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{-m} \bigl(\cos ( \nu m)\pi /2-i \operatorname{sign}( \vartheta )\sin (\nu m)\pi /2 \bigr) \\ &\quad = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{-m} e^{-i \operatorname{sign}( \vartheta )(\nu m)\pi /2}. \end{aligned}$$
This completes the proof. □
The following lemma is derived in a similar way.
Lemma 2.5
Let \(\nu \in (0,1)\), the right-hand side of \(\mathcal{ABR}\) fractional derivative pertaining to function \(\mathcal{U}(t)\) is formulated as follows:
$$\begin{aligned} {}^{\mathcal{ABR}}\mathcal{D}_{-}^{\nu } \bigl(e^{i \operatorname{sign}{\nu } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) = \frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty }(-1)^{m+1} \biggl( \frac{\nu }{1-\nu } \biggr)^{m} e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }t}} \vert \vartheta \vert ^{-m} e^{i \operatorname{sign}( \vartheta )(\nu m)\pi /2}. \end{aligned}$$
Some new operational relations are presented next. They are derived for a general fractional derivative operator \(\mathcal{D}_{\beta }^{\nu }\), which contains both the left- and right-hand side pertaining to the \(\mathcal{ABR}\) fractional derivatives:
$$ \bigl(\mathcal{D}_{\beta }^{\nu }\mathcal{U} \bigr) (t) = (1-\beta ) \bigl(\mathcal{D}_{+}^{ \nu }\mathcal{U} \bigr) (t) - \beta \bigl(\mathcal{D}_{-}^{\nu }\mathcal{U} \bigr) (t), \quad 0 < \nu \leq 1, \beta \in \mathbb{R}. $$
(2.6)
Theorem 2.4
Given \(0 < \nu \le 1\) and a mapping \(\mathcal{U} \in \Phi (\mathbb{R})\), the fractional Fourier transform of fractional operator in equation (2.6) is expressed in the following form:
$$ \mathcal{F}_{\nu } \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U}(t) \bigr) (\vartheta ) = \sum_{m=0}^{\infty } \mathcal{H}_{\nu }( \vartheta ) \vert \vartheta \vert ^{-m} \bigl(\mathcal{F}_{\nu } \mathcal{U}(t) \bigr) (\vartheta ), $$
where \(\mathcal{H}_{\nu }(\vartheta )\) is given by
$$ \mathcal{H}_{\nu }(\vartheta ) = \frac{\mathcal{B}(\nu )}{1-\nu } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} \bigl(-\cos (\nu m \pi /2)+i \operatorname{sign}( \vartheta ) (1-2\beta ) \sin (\nu m \pi /2) \bigr). $$
Proof
If \(\vartheta = 0\), we have \(\mathcal{F}_{\nu }({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U})(0)=0 \) for any \(\mathcal{U}\) that belongs to \(\Phi (\mathbb{R})\).
For \(\vartheta \neq 0\),
$$\begin{aligned} &\mathcal{F}_{\nu } \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U}(t) \bigr) (\vartheta ) \\ &\quad = \int _{-\infty }^{\infty } e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigl({}^{\mathcal{ABR}} \mathcal{D}_{\beta }^{\nu } \mathcal{U}(t) \bigr)\,dt \\ &\quad =(1-\beta ) \int _{-\infty }^{\infty } e^{i \operatorname{sign}(\vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigl({}^{\mathcal{ABR}} \mathcal{D}_{+}^{ \nu }\mathcal{U}(t) \bigr)\,dt - \beta \int _{-\infty }^{\infty } e^{i \operatorname{sign}( \vartheta ) \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigl({}^{\mathcal{ABR}} \mathcal{D}_{-}^{\nu }\mathcal{U}(t) \bigr)\,dt \\ &\quad= (1-\beta ) \int _{-\infty }^{\infty } \bigl({}^{\mathcal{ABR}} \mathcal{D}_{-}^{ \nu }e^{i \operatorname{sign}{\vartheta } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \bigr) \mathcal{U}(t)\,dt - \beta \int _{-\infty }^{\infty } \bigl({}^{\mathcal{ABR}} \mathcal{D}_{+}^{\nu }e^{i \operatorname{sign}{\vartheta } \vert \vartheta \vert ^{ \frac{1}{\nu }}t} \bigr)\mathcal{U}(t)\,dt \\ &\quad= (\beta -1)\frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl(\frac{-\nu }{1-\nu } \biggr)^{m} \vert \vartheta \vert ^{-m} e^{-i \operatorname{sign}(\vartheta )\nu m \pi /2} \int _{-\infty }^{\infty } e^{i \operatorname{sign}{ \vartheta } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \mathcal{U}(t)\,dt \\ &\quad\quad {} - (\beta )\frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl(\frac{-\nu }{1-\nu } \biggr)^{m} \vert \vartheta \vert ^{-m} e^{i \operatorname{sign}(\vartheta )\nu m \pi /2} \int _{-\infty }^{\infty } e^{i \operatorname{sign}{ \vartheta } \vert \vartheta \vert ^{\frac{1}{\nu }}t} \mathcal{U}(t)\,dt \\ &\quad= -\frac{\mathcal{B}(\nu )}{1-\nu } \sum_{m=0}^{\infty } \biggl( \frac{-\nu }{1-\nu } \biggr)^{m} \vert \vartheta \vert ^{-m} \cos ( \nu m \pi /2) \mathcal{F}_{\nu } \bigl( \mathcal{U}(t) \bigr) \\ &\quad\quad {} +i(1-2\beta ) \operatorname{sign}(\vartheta )\frac{\mathcal{B}(\nu )}{1-\nu } \sum _{m=0}^{ \infty } \biggl(\frac{-\nu }{1-\nu } \biggr)^{m} \vert \vartheta \vert ^{-m} \sin (\nu m \pi /2) \mathcal{F}_{\nu } \bigl(\mathcal{U}(t) \bigr) \\ &\quad= \sum_{m=0}^{\infty } \mathcal{H}_{\nu }(\vartheta ) \vert \vartheta \vert ^{-m} \mathcal{F}_{\nu } \bigl(\mathcal{U}(t) \bigr) (\vartheta ), \end{aligned}$$
(2.7)
where \(\mathcal{H}_{\nu }(\vartheta ) = \frac{\mathcal{B}(\nu )}{1-\nu } ( \frac{-\nu }{1-\nu } )^{m} (-\cos (\nu m \pi /2)+i(1-2 \beta )\operatorname{sign}(\vartheta ) \sin (\nu m \pi /2) )\). □
Remark 2.1
Let us take \(\mathcal{H}_{\nu _{1}}(\vartheta )= \frac{\mathcal{B}(\nu )}{1-\nu } ( \frac{-\nu }{1-\nu } )^{m} (-\cos (\nu m \pi /2)-i(1-2 \beta ) \sin (\nu m \pi /2) ) \) for \(\vartheta < 0\) and \(\mathcal{H}_{\nu _{2}}(\vartheta ) = \frac{\mathcal{B}(\nu )}{1-\nu } ( \frac{-\nu }{1-\nu } )^{m} (-\cos (\nu m \pi /2)+i(1-2 \beta ) \sin (\nu m \pi /2) ) \) for \(\vartheta \ge 0\).
Definition 2.9
FODE
$$ \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U} \bigr) (t) = \mathcal{G}(t), \quad \forall t \in \mathbb{R}, $$
(2.8)
is stable in the Hyers–Ulam sense if there exists a continuously differentiable mapping \(\mathcal{U} : \mathbb{R} \rightarrow \mathbb{F}\) that is able to satisfy the following inequality:
$$ \bigl\vert \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U}(t) \bigr) - \mathcal{G}(t) \bigr\vert \le \epsilon , \quad \forall t \in \mathbb{R}, $$
(2.9)
there exists a solution \(\mathcal{U} : \mathbb{R} \rightarrow \mathbb{F}\) of differential equation (2.8) with
$$ \bigl\vert \mathcal{U}(t)- \mathcal{U}_{\nu }(t) \bigr\vert \leq K \epsilon , \quad \forall t \in \mathbb{R}, $$
where \(\epsilon > 0\) and \(K>0\) is Hyers–Ulam stability(HUS) constant.
Definition 2.10
FODE (2.8) is stable in the generalized Hyers–Ulam sense if there exists a continuously differentiable mapping \(\phi : \mathbb{R} \rightarrow \mathbb{R}\) in a way that given any solution \(\mathcal{U} : \mathbb{R} \rightarrow \mathbb{F}\) that is able to satisfy inequality (2.9), a solution \(\mathcal{U}_{\nu } : \mathbb{R} \rightarrow \mathbb{F}\) of the considered equation (2.8) is available, in which
$$ \bigl\vert \mathcal{U}(t)- \mathcal{U}_{\nu }(t) \bigr\vert \leq \phi ( \epsilon ), \quad \forall t \in \mathbb{R}. $$
Definition 2.11
FODE (2.8) is stable in the Hyers–Ulam–Rassias sense subject to \(\phi : \mathbb{R} \rightarrow \mathbb{R}\) if there exists \(K_{\phi } \in \mathbb{R}\), in a way that given any \(\epsilon >0\) and any solution \(\mathcal{U} : \mathbb{R} \rightarrow \mathbb{F}\) that is able to satisfy the following inequality:
$$ \bigl\vert \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U} \bigr) (t) - \mathcal{G}(t) \bigr\vert \le \epsilon \phi (t), \quad \forall t \in \mathbb{R}, $$
a unique solution \(\mathcal{U}_{\nu } : \mathbb{R} \rightarrow \mathbb{F}\) with respect to considered problem (2.8) exists, in which
$$ \bigl\vert \mathcal{U}(t)- \mathcal{U}_{\nu }(t) \bigr\vert \leq K_{\phi } \epsilon \phi (t), \quad \forall t \in \mathbb{R}. $$
Definition 2.12
Fractional differential equation (2.8) is stable in the generalized Hyers–Ulam–Rassias sense subject to \(\phi : \mathbb{R} \rightarrow \mathbb{R}\) if there exists \(K_{\phi } \in \mathbb{R}\), in such a way that given any solution \(\mathcal{U} : \mathbb{R} \rightarrow \mathbb{F}\) that is able to satisfy the following inequality:
$$ \bigl\vert \bigl({}^{\mathcal{ABR}}\mathcal{D}_{\beta }^{\nu } \mathcal{U} \bigr) (t) - \mathcal{G}(t) \bigr\vert \le \phi (t), \quad \forall t \in \mathbb{R}, $$
a unique solution \(\mathcal{U}_{\nu } : \mathbb{R} \rightarrow \mathbb{F}\) of differential equation (2.8) exists, in which
$$ \bigl\vert \mathcal{U}(t)- \mathcal{U}_{\nu }(t) \bigr\vert \leq K_{\phi } \phi (t), \quad \forall t \in \mathbb{R}. $$