Let \(\mathbb{X}\) be a Banach space with the norm \(\|\cdot \|\) whose positive cone is defined by \(\mathbb{K}=\{x\in \mathbb{X}: x\geq 0\}\). \((\mathbb{X}, \|\cdot \|)\) is a partially ordered Banach space with the order relation ⊑ induced by cone \(\mathbb{K}\).
Denote by Ω a collection of continuous and strictly increasing function \(\omega : \mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\).
We now discuss our results in partially ordered Banach spaces.
Theorem 2.1
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone \(\mathbb{K}\) is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \Theta \bigl(\hbar ;\chi \bigl(\mathfrak{F}(\Xi )\bigr) + \omega \bigl(\chi \bigl(\mathfrak{F}( \Xi )\bigr)\bigr)\bigr) \leq \psi \bigl(\Theta \bigl(\hbar ;\chi (\Xi ) + \omega \bigl(\chi (\Xi )\bigr)\bigr)\bigr), $$
(2.1)
for all bounded subset Ξ in \(\mathbb{X}\), where χ denotes the arbitrary MNC, \(\hbar \in \mathbb{H}(\mathbb{R}_{+})\), \(\Theta (\circ ; \cdot ) \in \Delta \), \(\psi \in \Psi \), \(\omega \in \Omega \).
If ∃ an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) of successive iterations converges monotonically to \(\varrho ^{*}\).
Proof
Assume \(\varsigma _{0} \in \mathbb{X}\) and define a sequence \(\{\varsigma _{n}\} \subset \mathbb{X}\) by
$$ \varsigma _{n+1}= \mathfrak{F}\varsigma _{n}, \qquad n \in \mathbb{N}^{*}= \mathbb{N}\cup \{0\} .$$
(2.2)
Since \(\mathfrak{F}\) is non-decreasing and \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), we have
$$ \varsigma _{0} \sqsubseteq \varsigma _{1} \sqsubseteq \varsigma _{2} \sqsubseteq \cdots \sqsubseteq \varsigma _{n} \sqsubseteq \cdots $$
(2.3)
Denote \(\mathfrak{B}_{n} = \overline{\operatorname{conv}}\{\varsigma _{n}, \varsigma _{n+1}, \ldots \}\) for \(n \in \mathbb{N}^{*}\). By (2.2) and (2.3), each \(\mathfrak{B}_{n}\) is a bounded and closed subset in \(\mathbb{X}\) and
$$ \mathfrak{B}_{0} \supset \mathfrak{B}_{1} \supset \cdots \supset \mathfrak{B}_{n} \supset \cdots . $$
(2.4)
Following (2.1), we obtain
$$\begin{aligned} &\Theta \bigl(\hbar ;\chi (\mathfrak{B}_{n+1}) + \omega \bigl(\chi ( \mathfrak{B}_{n + 1})\bigr)\bigr) \\ &\quad = \Theta \bigl(\hbar ;\chi \bigl(\overline{\operatorname{Conv}}\bigl(\mathfrak{F} ( \mathfrak{B}_{n})\bigr)\bigr) + \omega \bigl(\chi \bigl(\overline{ \operatorname{Conv}}\bigl(\mathfrak{F}( \mathfrak{B}_{n})\bigr)\bigr)\bigr) \bigr) \\ &\quad = \Theta \bigl(\hbar ;\chi \bigl(\mathfrak{F}( \mathfrak{B}_{n}) \bigr) + \omega \bigl( \chi \bigl(\mathfrak{F}( \mathfrak{B}_{n}) \bigr)\bigr)\bigr) \\ &\quad \leq \psi \bigl(\Theta \bigl(\hbar ;\chi (\mathfrak{B}_{n}) + \omega \bigl(\chi ( \mathfrak{B}_{n})\bigr)\bigr)\bigr) \\ &\quad \leq \psi ^{2}\bigl(\Theta \bigl(\hbar ;\chi ( \mathfrak{B}_{n-1}) + \omega \bigl( \chi (\mathfrak{B}_{n-1}) \bigr)\bigr)\bigr) \\ &\quad \leq \cdots \\ &\quad\leq \psi ^{n}\bigl(\Theta \bigl(\hbar ;\chi ( \mathfrak{B}_{0}) + \omega \bigl( \chi (\mathfrak{B}_{0}) \bigr)\bigr)\bigr). \end{aligned}$$
(2.5)
Taking the limit \(n \to \infty \) in (2.5), we have by the virtue of \(\psi \in \Psi \)
$$ \lim_{n \to \infty } \Theta \bigl(\hbar ;\chi (C_{n+1}) + \omega \bigl(\chi ( \mathfrak{B}_{n + 1})\bigr)\bigr)=0. $$
By the virtue of (iii) of Definition 1.1, we get
$$ \Theta \Bigl(\hbar ; \lim_{n \to \infty } \chi (\mathfrak{B}_{n+1}) + \lim_{n \to \infty } \omega \bigl(\chi (\mathfrak{B}_{n + 1}) \bigr)\Bigr)=0, $$
and therefore
$$ \lim_{n \to \infty } \chi (\mathfrak{B}_{n+1}) =0. $$
(2.6)
Since \(\mathfrak{B}_{n} \subset \mathfrak{B}_{n-1}\), we have
$$ \overline{\mathfrak{B}}_{\infty } = \bigcap_{n=1}^{\infty } \mathfrak{B}_{n} \neq \emptyset \quad \text{and}\quad \mathfrak{B}_{\infty } \in \operatorname{Ker}\beta . $$
Hence, for every \(\epsilon > 0\) there exists an \(n_{0} \in \mathbb{N}\) such that
$$ \beta (\mathfrak{B}_{n}) < \epsilon ,\quad \forall n \geq n_{0}. $$
From this we conclude that \(\overline{\mathfrak{B}}_{n_{0}}\) and consequently \(\mathfrak{B}_{0}\) is a compact chain in \(\mathbb{X}\). Hence, \(\{\varsigma _{n}\}\) has a convergent subsequence. Applying the monotone property of \(\mathfrak{F}\) and the normality of cone K, the whole sequence \(\{\varsigma _{n}\} = \{\mathfrak{F}^{n}\varsigma _{0}\}\) converges monotonically to a point, say \(\varrho ^{*} \in \mathfrak{B}_{0}\). Finally, from the continuity of \(\mathfrak{F}\), we get
$$ \mathfrak{F} \varrho ^{*} = \mathfrak{F} \Bigl(\lim _{n \to \infty } \varsigma _{n}\Bigr) = \lim _{n \to \infty } \mathfrak{F} \varsigma _{n}= \lim _{n \to \infty } \varsigma _{n+1} = \varrho ^{*}. $$
□
On different setting of functions \(\hbar \in \mathbb{H}(\mathbb{R}_{+})\), \(\Theta (\circ ; \cdot ) \in \Delta \), \(\omega : \mathbb{R}^{+} \to \mathbb{R}^{+}\) satisfying the condition (2.1) in Theorems 2.1, we can get some new DFPTs. For example, if we set first \(\omega (t)=0\) and secondly \(\psi (\zeta )=\lambda \zeta \) (\(\lambda \in (0,1)\)) and finally ħ= identity map with \(\Theta (\hbar ; \zeta ) =\zeta \), then we have following DFPTs, respectively.
Theorem 2.2
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone \(\mathbb{K}\) is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \Theta \bigl(\hbar ;\chi \bigl(\mathfrak{F}(\mathfrak{B})\bigr) \bigr) \leq \psi \bigl(\Theta \bigl( \hbar ;\chi (\mathfrak{B})\bigr)\bigr), $$
(2.7)
for all bounded subset \(\mathfrak{B}\) in \(\mathbb{X}\), where χ denotes the arbitrary MNC, \(\hbar \in \mathbb{H}(\mathbb{R}_{+})\). \(\Theta (\circ ; \cdot ) \in \Delta \), \(\psi \in \Psi \).
If ∃ an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) converges monotonically to \(\varrho ^{*}\).
Theorem 2.3
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone \(\mathbb{K}\) is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \Theta \bigl(\hbar ;\chi \bigl(\mathfrak{F}(\mathfrak{B})\bigr) + \omega \bigl(\chi \bigl( \mathfrak{F}(\mathfrak{B})\bigr)\bigr)\bigr) \leq \lambda \bigl(\Theta \bigl(\hbar ;\chi ( \mathfrak{B}) + \omega \bigl(\chi ( \mathfrak{B})\bigr)\bigr)\bigr), $$
(2.8)
for all bounded subset \(\mathfrak{B}\) in \(\mathbb{X}\), where χ denotes the arbitrary MNC, \(\hbar \in \mathbb{H}(\mathbb{R}_{+})\), \(\Theta (\circ ; \cdot ) \in \Delta \), \(\psi \in \Psi \), \(\omega \in \Omega \).
If ∃ an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) of successive iterations converges monotonically to \(\varrho ^{*}\).
Theorem 2.4
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone \(\mathbb{K}\) is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \chi \bigl(\mathfrak{F}(\mathfrak{B})\bigr) + \omega \bigl(\chi \bigl(\mathfrak{F}( \mathfrak{B})\bigr)\bigr) \leq \psi \bigl(\chi (\mathfrak{B}) + \omega \bigl(\chi ( \mathfrak{B})\bigr)\bigr), $$
(2.9)
for all bounded subset \(\mathfrak{B}\) in \(\mathbb{X}\), where χ denotes the arbitrary MNC, \(\psi \in \Psi \), \(\omega \in \Omega \).
If ∃ an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) of successive iterations converges monotonically to \(\varrho ^{*}\).
If we take \(\operatorname{diam} (\mathfrak{B}) =\) diameter of \(\mathfrak{B}\), then we have the following.
Proposition 2.5
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone K is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \operatorname{diam}\bigl(\mathfrak{F}(\mathfrak{B})\bigr) + \omega \bigl(\operatorname{diam}\bigl(\mathfrak{F}( \mathfrak{B})\bigr)\bigr) \leq \psi \bigl(\operatorname{diam}(\mathfrak{B}) + \omega \bigl(\operatorname{diam}( \mathfrak{B})\bigr)\bigr) $$
(2.10)
for all bounded subset \(\mathfrak{B}\) in \(\mathbb{X}\), where \(\psi \in \Psi \), \(\omega \in \Omega \).
If there exists an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) of successive iterations converges monotonically to \(\varrho ^{*}\).
Proof
Theorem 2.1 and Proposition 3.2 [12] claim the existence of a \(\mathfrak{F}\)-invariant nonempty closed convex subset \(\mathfrak{B}\) with \(\operatorname{diam}(\mathfrak{B}_{\infty }) = 0\), that is, \(\mathfrak{B}_{\infty }\) has a singleton element, hence we have a fixed point of \(\mathfrak{F} \neq \emptyset \).
To prove uniqueness, we suppose that there exist two distinct fixed points \(\zeta , \xi \in \mathfrak{B}\), then we may define the set \(\Lambda := \{\zeta ,\xi \}\). In this case \(\operatorname{diam}(\Lambda ) = \operatorname{diam}(\mathfrak{F}(\Lambda )) = \|\xi -\zeta \| > 0\). Then using (2.10), we get
$$ \operatorname{diam}\bigl(\mathfrak{F}(\Lambda )\bigr) + \omega \bigl( \operatorname{diam}\bigl(\mathfrak{F}(\Lambda )\bigr)\bigr) \leq \psi \bigl( \operatorname{diam}(\Lambda ) + \omega \bigl(\operatorname{diam}(\Lambda )\bigr) \bigr), $$
a contradiction with the property of \(\psi \in \Psi \), \(\psi (t)< t\) for each \(t > 0\) and hence \(\xi = \zeta \). □
The following is the generalized classical fixed point result derived from Proposition 2.3.
Theorem 2.6
Let \((\mathbb{X}, \|\cdot \|, \sqsubseteq )\) be a partially ordered Banach space, whose positive cone K is normal. Suppose that \(\mathfrak{F}: \mathbb{X}\rightarrow \mathbb{X}\) is a continuous, non-decreasing and bounded mapping satisfying the following contraction:
$$ \Vert \mathfrak{F}\zeta -\mathfrak{F}\xi \Vert + \omega \bigl( \Vert \mathfrak{F}\zeta -\mathfrak{F}\xi \Vert \bigr)\leq \psi \bigl( \Vert \zeta - \xi \Vert + \omega \bigl( \Vert \zeta -\xi \Vert \bigr) \bigr) $$
(2.11)
for all \(\zeta ,\xi \in \mathbb{X}\), where \(\psi \in \Psi \), \(\omega \in \Omega \). If there exists an element \(\varsigma _{0}\in \mathbb{X}\) such that \(\varsigma _{0} \sqsubseteq \mathfrak{F}\varsigma _{0}\), then \(\mathfrak{F}\) has a unique fixed point \(\varrho ^{*}\) and the sequence \(\{\mathfrak{F}^{n}\varsigma _{0}\}\) of successive iterations converges monotonically to \(\varrho ^{*}\).
Proof
Let \(\chi :\mathfrak{M}_{\mathbb{X}}\rightarrow \mathbb{R}^{+}\) be a set quantity defined by the formula \(\chi(\mathbb{X})=\operatorname{diam}\mathbb{X}\), where \(\operatorname{diam}\mathbb{X}=\sup \{\Vert \zeta -\xi \Vert :\zeta ,\xi \in \mathbb{X}\}\) stands for the diameter of \(\mathcal{X}\). It is easily seen that χ is a MNC in a space \(\mathbb{X}\) in the sense of Definition 1.1. Therefore from (2.11) we have
$$\begin{aligned} \sup_{\zeta ,\xi \in \mathbb{X}}\bigl[ \Vert \mathfrak{F}\zeta - \mathfrak{F}\xi \Vert + \omega \bigl( \Vert \mathfrak{F}\zeta -\mathfrak{F} \xi \Vert \bigr)\bigr] \leq & \sup_{\zeta ,\xi \in \mathbb{X}} \Vert \mathfrak{F}\zeta - \mathfrak{F}\xi \Vert + \omega \Bigl(\sup_{\zeta ,\xi \in \mathbb{X}} \Vert \mathfrak{F}\zeta -\mathfrak{F}\xi \Vert \Bigr) \\ \leq & \sup_{\zeta ,\xi \in \mathbb{X}} \psi \bigl[ \Vert \mathfrak{F} \zeta - \mathfrak{F}\xi \Vert + \omega \bigl( \Vert \mathfrak{F}\zeta - \mathfrak{F} \xi \Vert \bigr)\bigr] \\ \leq & \psi \Bigl[\sup_{\zeta ,\xi \in \mathbb{X}} \Vert \zeta -\xi \Vert + \omega \Bigl(\sup_{\zeta ,\xi \in \mathbb{X}} \Vert \zeta -\xi \Vert \Bigr) \Bigr], \end{aligned}$$
which implies that
$$ \operatorname{diam}\bigl(\mathfrak{F}(\mathbb{X})\bigr)+ \omega \bigl( \operatorname{diam}\bigl(\mathfrak{F}(\mathbb{X})\bigr)\bigr) \leq \psi \bigl( \operatorname{diam}(\mathbb{X})+ \phi \bigl(\operatorname{diam}(\mathbb{X})\bigr) \bigr). $$
Thus following Proposition 2.3, \(\mathfrak{F}\) has an unique fixed point. □