Skip to main content

Theory and Modern Applications

Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions

Abstract

The primary objective of this paper is establishing new Hermite–Hadamard-type inequalities for interval-valued coordinated functions via Riemann–Liouville-type fractional integrals. Moreover, we obtain some fractional Hermite–Hadamard-type inequalities for the product of two coordinated h-convex interval-valued functions. Our results generalize several well-known inequalities.

1 Introduction

The classical Hermite–Hadamard inequalities state that

$$\begin{aligned} f \biggl(\frac{o+\varsigma }{2} \biggr)\leq \frac{1}{\varsigma -o} \int _{o}^{ \varsigma }f(\chi )\,d\chi \leq \frac{f(o)+f(\varsigma )}{2}, \end{aligned}$$
(1.1)

where \(f:\mathcal{I}\rightarrow \mathbb{R}\) is a convex function on the closed bounded interval \(\mathcal{I}\) of \(\mathbb{R}\), and \(o,\varsigma \in \mathcal{I}\) with \(o<\varsigma \). Since they play a crucial role in convex analysis and can be a very powerful tool for measuring and computing errors, many authors have devoted their efforts to generalize inequalities (1.1); see [16]. It is worth noting that Sarikaya et al. [7] established new Hermite–Hadamard-type inequalities via the Riemann–Liouville fractional integrals. Since then, many papers have generalized different forms of fractional integrals and presented new and interesting refinements of Hermite–Hadamard-type inequalities using these integrals. Fernandez and Mohammed [8] established some Hermite–Hadamard-type inequalities for the Atangana–Baleanu fractional integral. Mohammed and Abdeljawad [9] proved new Hermite–Hadamard-type inequalities in the context of fractional calculus with respect to functions involving nonsingular kernels. For other related results, we refer the readers to [719].

On the other hand, to improve the reliability of the calculation results and automatic operation error analysis, Moore [20] introduced the theory of interval analysis. Interval analysis has a strong model for handling interval uncertainty and has been widely applied and stretched in control theory [21], dynamical game theory [22], and many others. Recently, numerous famous inequalities have been extended to interval-valued functions. Chalco-Cano et al. [23] obtained Ostrowski-type inequalities for interval-valued functions by using the Hukuhara derivative. Román-Flores et al. [24] derived the Minkowski and Beckenbach-type inequalities for interval-valued functions. Liu et al. [18] proved Hermite–Hadamard-type inequalities via interval Riemann–Liouville-type fractional integrals for interval-valued functions. Very recently, Zhao et al. [25, 26] established Hermite–Hadamard-type inequalities for interval-valued coordinated functions. Budak et al. [27] gave a definition of Riemann–Liouville-type fractional integrals for interval-valued coordinated functions and presented some new Hermite–Hadamard-type inequalities.

Motivated by Zhao et al. [25, 26] and Budak et al. [27], we present a new class of Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions via Riemann–Liouville-type fractional integrals. We also establish Hermite–Hadamard-type inequalities for the products of two interval-valued coordinated functions.

The paper is organized as follows. Section 2 contains some necessary preliminaries. In Sect. 3, we establish some new Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions via Riemann–Liouville-type fractional integrals. We end with Sect. 4 of conclusions.

2 Preliminaries

In this section, we recall some basic definitions and results on interval analysis. We denote by \(\mathbb{R}_{\mathcal{I}}\) the set of closed bounded intervals of \(\mathbb{R}\) and by \(\mathbb{R}^{+}\) and \(\mathbb{R}_{ \mathcal{I}}^{+}\) the sets of positive real numbers and positive intervals, respectively. We also denote \(\triangle =[o,\varsigma ]\times [\rho ,q]\). For more notions on interval-valued functions, see [28, 29].

Definition 2.1

([29])

Let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). We say that \(f:[o,\varsigma ]\rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) is an h-convex interval-valued function if for all \(\chi ,\gamma \in [o,\varsigma ]\) and \(\tau \in [0,1]\), we have

$$\begin{aligned} f\bigl(\tau \chi +(1-\tau )\gamma \bigr)\supseteq h(\tau )f(\chi )+h(1-\tau )f( \gamma ). \end{aligned}$$

We denote the set of all h-convex interval-valued functions by \(SX(h,[o,\varsigma ],\mathbb{R}_{\mathcal{I}}^{+})\).

Definition 2.2

([26])

A function \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) is said to be a coordinated convex interval-valued function if

$$\begin{aligned} \begin{aligned} &\mathcal{F}\bigl(\tau \chi +(1-\tau )\gamma ,\theta \mu +(1-\theta )\nu \bigr) \\ &\quad \supseteq \tau \theta \mathcal{F}(\chi ,\mu )+\tau (1-\theta ) \mathcal{F}(\chi ,\nu )+(1-\tau )\theta \mathcal{F}(\gamma ,\mu )+(1- \tau ) (1- \theta )\mathcal{F}(\gamma ,\nu ) \end{aligned} \end{aligned}$$

for all \((\chi ,\gamma ),(\mu ,\nu )\in \triangle \) and \(\tau ,\theta \in [0,1]\).

Definition 2.3

([25])

Let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). Then \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) is called a coordinated h-convex interval-valued function on if the partial mappings

$$\begin{aligned}& \mathcal{F}_{\gamma }:[o,\varsigma ]\rightarrow \mathbb{R}_{ \mathcal{I}}^{+},\qquad \mathcal{F}_{\gamma }(\chi )=\mathcal{F}(\chi , \gamma ), \\& \mathcal{F}_{\chi }:[\rho ,q]\rightarrow \mathbb{R}_{\mathcal{I}}^{+},\qquad \mathcal{F}_{\chi }(\gamma )=\mathcal{F}(\chi ,\gamma ) \end{aligned}$$

are h-convex for all \(\gamma \in [\rho ,q]\) and \(\chi \in [o,\varsigma ]\). We denote the set of all coordinated h-convex interval-valued functions on by \(SX(ch,\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\).

The families of all Riemann-integrable real-valued functions on \([o,\varsigma ]\), interval-valued functions on \([o,\varsigma ]\) and on are denoted by \(\mathcal{R}_{([o,\varsigma ])}\), \(\mathcal{IR}_{([o,\varsigma ])}\), and \(\mathcal{ID}_{(\triangle )}\). We have the following:

Theorem 2.4

([30])

Let \(f:[o,\varsigma ]\rightarrow \mathbb{R}_{\mathcal{I}}\) be such that \(f=[\underline{f},\overline{f}]\). Then \(f\in \mathcal{IR}_{([o,\varsigma ])}\) iff \(\underline{f}\), \(\overline{f}\in \mathcal{R}_{([o,\varsigma ])}\) and

$$ (\mathcal{IR}) \int _{o}^{\varsigma }f(s)\,ds= \biggl[(\mathcal{R}) \int _{o}^{ \varsigma }\underline{f}(s)\,ds,(\mathcal{R}) \int _{o}^{\varsigma } \overline{f}(s)\,ds \biggr]. $$

Theorem 2.5

([31])

Let \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}\). If \(\mathcal{F}\in \mathcal{ID}_{(\triangle )}\), then

$$ (\mathcal{ID}) \iint _{\triangle } {\mathcal{F}}(t,s)\,dt \,ds=(\mathcal{IR}) \int _{o}^{\varsigma }\,dt(\mathcal{IR}) \int _{\rho }^{q}\mathcal{{F}}(t,s)\,ds. $$

Definition 2.6

([16])

Let \(f:[o,\varsigma ]\rightarrow \mathbb{R}_{\mathcal{I}}\) and \(f\in \mathcal{IR}_{([o,\varsigma ])}\). Then the interval Riemann–Liouville-type integrals of f are defined by

$$ \begin{aligned} &\mathfrak{J}_{o^{+}}^{\alpha }f(\vartheta )=\frac{1}{\Gamma (\alpha )} \int _{o}^{\vartheta }(\vartheta -\chi )^{\alpha -1}f(\chi )\,d\chi ,\quad \vartheta >o, \\ &\mathfrak{J}_{\varsigma ^{-}}^{\alpha }f(\vartheta )= \frac{1}{\Gamma (\alpha )} \int _{\vartheta }^{\varsigma }(\chi - \vartheta )^{\alpha -1}f(\chi )\,d\chi , \quad \vartheta < \varsigma , \end{aligned} $$

where \(\alpha >0\), and Γ is the gamma function.

Theorem 2.7

([32])

Let \(f:[o,\varsigma ]\rightarrow \mathbb{R}_{\mathcal{I}}^{+}\), \(f \in \mathcal{IR}_{([o,\varsigma ])}\), and \(h:[0,1]\rightarrow \mathbb{R}^{+}\). If \(f\in SX(h,[o,\varsigma ], \mathbb{R}^{+}_{\mathcal{I}})\), then

$$\begin{aligned} \begin{aligned} \frac{1}{\alpha h(\frac{1}{2})}{f} \biggl( \frac{o+\varsigma }{2} \biggr) &\supseteq \frac{\Gamma (\alpha )}{(\varsigma -o)^{\alpha }} \bigl[\mathfrak{J}^{\alpha }_{o^{+}}{f}( \varsigma )+ {\mathfrak{J}}^{ \alpha }_{\varsigma ^{-}}{f}(o) \bigr] \\ & \supseteq \bigl[f(o)+f(\varsigma )\bigr]{ \int _{0}^{1} \tau ^{\alpha -1} \bigl[h(\tau )+h(1-\tau ) \bigr]\,d\tau } \end{aligned} \end{aligned}$$
(2.1)

with \(\alpha >0\).

The Riemann–Liouville-type fractional integrals of interval-valued coordinated functions \(\mathcal{F}(t,s)\) are given as follows.

Definition 2.8

([27])

Let \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) and \(\mathcal{F}\in \mathcal{ID}_{(\triangle )}\). The Riemann–Liouville-type integrals \(\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta }\), \(\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\), \(\mathfrak{J}_{ \varsigma ^{-},\rho ^{+}}^{\alpha ,\beta }\), \(\mathfrak{J}_{\varsigma ^{-},q^{-}}^{ \alpha ,\beta }\) of \(\mathcal{F}\) of order \(\alpha ,\beta >0\) are defined by

$$\begin{aligned} &\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}(\chi , \gamma )=\frac{1}{\Gamma (\alpha )\Gamma (\beta )} \int _{o}^{\chi } \int _{\rho }^{\gamma }(\chi -t)^{\alpha -1}(\gamma -s)^{\beta -1} \mathcal{F}(t,s)\,ds \,dt, \quad \chi >o,\gamma >\rho , \\ &\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}(\chi ,\gamma )= \frac{1}{\Gamma (\alpha )\Gamma (\beta )} \int _{o}^{\chi } \int _{ \gamma }^{q}(\chi -t)^{\alpha -1}(s-\gamma )^{\beta -1}\mathcal{F}(t,s)\,ds \,dt, \quad \chi >o,\gamma < q, \\ &\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha ,\beta }\mathcal{F}( \chi ,\gamma )= \frac{1}{\Gamma (\alpha )\Gamma (\beta )} \int _{\chi }^{ \varsigma } \int _{\rho }^{\gamma }(t-\chi )^{\alpha -1}(\gamma -s)^{ \beta -1}\mathcal{F}(t,s)\,ds \,dt, \quad \chi < \varsigma ,\gamma >\rho , \\ &\mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha ,\beta }\mathcal{F}(\chi , \gamma )= \frac{1}{\Gamma (\alpha )\Gamma (\beta )} \int _{\chi }^{ \varsigma } \int _{\gamma }^{q}(t-\chi )^{\alpha -1}(s-\gamma )^{\beta -1} \mathcal{F}(t,s)\,ds \,dt, \quad \chi < \varsigma ,\gamma < q. \end{aligned}$$

3 Main results

In this section, we prove some new Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions via the interval Riemann–Liouville-type integrals.

Theorem 3.1

Let \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) be such that \(\mathcal{F}=[\underline{\mathcal{F}},\overline{\mathcal{F}}]\) and \(\mathcal{F}\in \mathcal{ID}_{(\triangle )}\), and let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). If \(\mathcal{F}\in SX(ch,\triangle ,\mathbb{R}^{+}_{\mathcal{I}})\), then

$$\begin{aligned} \begin{aligned} &\frac{1}{\alpha \beta h^{2}(\frac{1}{2})} \mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \\ &\quad \supseteq \frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }}\\ &\qquad {}\times \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }\mathcal{F}(o,\rho ) \bigr] \\ &\quad \supseteq \bigl[\mathcal{F}(o,\rho )+\mathcal{F}(o,q)+\mathcal{F}( \varsigma ,\rho )+\mathcal{F}(\varsigma ,q) \bigr] \\ &\qquad {}\times \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h(\tau )h(\theta )+h(1-\tau )h(\theta )\\ &\qquad {}+h(\tau )h(1-\theta )+h(1- \tau )h(1-\theta ) \bigr]\,d\tau \,d\theta \end{aligned} \end{aligned}$$
(3.1)

with \(\alpha ,\beta >0\).

Proof

Since \(\mathcal{F}\in SX(ch,\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), we have

$$ \frac{1}{h^{2}(\frac{1}{2})}\mathcal{F} \biggl(\frac{\chi +\gamma }{2}, \frac{\mu +\nu }{2} \biggr)\supseteq \mathcal{F}(\chi ,\mu )+\mathcal{F}( \gamma ,\mu )+\mathcal{F}( \chi ,\nu )+\mathcal{F}(\gamma ,\nu ). $$

Let \(\chi =\tau o+(1-\tau )\varsigma \), \(\gamma =(1-\tau )o+\tau \varsigma \), \(\mu =\theta \rho +(1-\theta )q\), \(w=(1-\theta )\rho +\theta q\), \(\tau ,\theta \in [0,1]\). Then

$$ \begin{aligned} &\frac{1}{h^{2}(\frac{1}{2})} \mathcal{F} \biggl(\frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr) \\ &\quad \supseteq \mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,\theta \rho +(1- \theta ) q\bigr)+ \mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr) \\ &\qquad {}+\mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,(1-\theta )\rho +\theta q\bigr)+ \mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,(1-\theta ) \rho +\theta q \bigr). \end{aligned} $$
(3.2)

Consequently,

$$\begin{aligned} &\frac{1}{\alpha \beta h^{2}(\frac{1}{2})}\mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \\ &\quad =\frac{1}{ h^{2}(\frac{1}{2})} \mathcal{F} \biggl( \frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1}\,d\theta \,d\tau \\ &\quad \supseteq \biggl[ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{ \beta -1}\mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d\theta \,d\tau \\ &\qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d \theta \,d\tau \\ & \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{ \beta -1}\mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,(1-\theta ) \rho + \theta q\bigr)\,d\theta \,d\tau \\ &\qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{ \beta -1}\mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,(1-\theta ) \rho + \theta q\bigr)\,d\theta \,d\tau \biggr] \\ &\quad = \biggl[ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[\underline{\mathcal{F}}\bigl(\tau o+(1-\tau ) \varsigma , \theta \rho +(1-\theta ) q\bigr), \\ &\qquad \overline{\mathcal{F}}\bigl(\tau o+(1-\tau ) \varsigma ,\theta \rho +(1-\theta ) \,dq\bigr) \bigr]\,d\theta \,d\tau \\ & \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[\underline{\mathcal{F}}\bigl((1-\tau ) o+\tau \varsigma , \theta \rho +(1-\theta ) q\bigr), \\ &\qquad\overline{\mathcal{F}}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1-\theta ) q\bigr) \bigr]\,d\theta \,d\tau \\ &\qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[\underline{\mathcal{F}}\bigl(\tau o+(1-\tau ) \varsigma ,(1- \theta ) \rho +\theta q\bigr), \\ &\qquad\overline{\mathcal{F}}\bigl(\tau o+(1-\tau ) \varsigma ,(1-\theta ) \rho +\theta q\bigr) \bigr]\,d\theta \,d\tau \\ &\qquad{} + \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[\underline{\mathcal{F}}\bigl((1-\tau ) o+\tau \varsigma ,(1- \theta ) \rho +\theta q\bigr), \\ &\qquad\overline{\mathcal{F}}\bigl((1-\tau ) o+\tau \varsigma ,(1-\theta ) \rho +\theta q\bigr) \bigr]\,d\theta \,d\tau \biggr] \\ &\quad = \biggl[ \int _{\varsigma }^{o} \int _{q}^{\rho } \bigl(\eta (\chi ) \bigr)^{\alpha -1} \bigl(\zeta (\gamma ) \bigr)^{\beta -1} \underline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{\rho -q} \frac{d\chi }{o-\varsigma }, \\ &\qquad \int _{\varsigma }^{o} \int _{q}^{\rho } \bigl(\eta (\chi ) \bigr)^{\alpha -1} \bigl(\zeta (\gamma ) \bigr)^{\beta -1} \overline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{\rho -q} \frac{d\chi }{o-\varsigma } \biggr] \\ &\qquad {}+ \biggl[ \int _{o}^{\varsigma } \int _{q}^{\rho } \bigl(1-\eta (\chi ) \bigr)^{\alpha -1} \bigl(\zeta (\gamma ) \bigr)^{\beta -1} \underline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{\rho -q} \frac{d\chi }{\varsigma -o}, \\ &\qquad \int _{o}^{\varsigma } \int _{q}^{\rho } \bigl(1-\eta ( \chi ) \bigr)^{\alpha -1} \bigl(\zeta (\gamma ) \bigr)^{\beta -1} \overline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{\rho -q} \frac{d\chi }{\varsigma -a} \biggr] \\ &\qquad {}+ \biggl[ \int _{\varsigma }^{o} \int _{\rho }^{q} \bigl(\eta (\chi ) \bigr)^{\alpha -1} \bigl(1-\zeta (\gamma ) \bigr)^{\beta -1} \underline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{q-\rho } \frac{d\chi }{o-\varsigma }, \\ &\qquad \int _{\varsigma }^{o} \int _{\rho }^{q} \bigl(\eta ( \chi ) \bigr)^{\alpha -1} \bigl(1-\zeta (\gamma ) \bigr)^{\beta -1} \overline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{q-\rho } \frac{d\chi }{o-\varsigma } \biggr] \\ &\qquad {}+ \biggl[ \int _{o}^{\varsigma } \int _{\rho }^{q} \bigl(1-\eta (\chi ) \bigr)^{\alpha -1} \bigl(1-\zeta (\gamma ) \bigr)^{\beta -1} \underline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{q-\rho } \frac{d\chi }{\varsigma -o}, \\ &\qquad \int _{o}^{\varsigma } \int _{\rho }^{q} \bigl(1-\eta ( \chi ) \bigr)^{\alpha -1} \bigl(1-\zeta (\gamma ) \bigr)^{\beta -1} \overline{ \mathcal{F}}(\chi ,\gamma )\frac{d\gamma }{q-\rho } \frac{d\chi }{\varsigma -o} \biggr] \\ &\quad = \frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \underline{\mathcal{F}}(\varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{ \alpha ,\beta } \underline{\mathcal{F}}(\varsigma ,\rho )+\mathfrak{J}_{ \varsigma ^{-},\rho ^{+}}^{\alpha ,\beta } \underline{\mathcal{F}}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha ,\beta } \underline{\mathcal{F}}(o,\rho ), \\ & \qquad \mathfrak{J}_{o^{+},\rho ^{+}}^{ \alpha ,\beta }\overline{ \mathcal{F}}(\varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{ \alpha ,\beta }\overline{ \mathcal{F}}(\varsigma ,\rho )+\mathfrak{J}_{ \varsigma ^{-},\rho ^{+}}^{\alpha ,\beta } \overline{\mathcal{F}}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha ,\beta } \overline{F}(o, \rho ) \bigr] \\ &\quad =\frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }\mathcal{F}(o,\rho ) \bigr], \end{aligned}$$
(3.3)

where \(\eta (\chi )=\frac{\varsigma -\chi }{\varsigma -o}\), \(\zeta (\gamma )= \frac{q-\gamma }{q-\rho }\).

Similarly, since \(\mathcal{F}\in SX(ch,\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\),

$$ \begin{aligned} &\mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,\theta \rho +(1-\theta ) q\bigr)+ \mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1-\theta ) q\bigr) \\ &\qquad {}+\mathcal{F}\bigl(\tau o+(1-\tau ) \varsigma ,(1-\theta )\rho +\theta q\bigr)+ \mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,(1-\theta ) \rho +\theta q\bigr) \\ &\quad \supseteq \bigl[h(\tau )h(\theta )+h(1-\tau )h(\theta )+h(\tau )h(1- \theta )+h(1-\tau )h(1-\theta ) \bigr] \\ &\qquad {}\times \bigl[\mathcal{F}(o,\rho )+\mathcal{F}(o,q)+\mathcal{F}( \varsigma ,\rho )+\mathcal{F}(\varsigma ,q) \bigr]. \end{aligned} $$
(3.4)

Multiplying both sides of (3.4) by \(\tau ^{\alpha -1}\theta ^{\beta -1}\) and integrating on \([0,1]\times [0,1]\), we have

$$\begin{aligned} \begin{aligned} &\frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[ \mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,q)+ \mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+ \mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+\mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta } \mathcal{F}(o,\rho ) \bigr] \\ &\quad \supseteq \bigl[\mathcal{F}(o,\rho )+\mathcal{F}(o,q)+\mathcal{F}( \varsigma , \rho )+\mathcal{F}(\varsigma ,q) \bigr] \\ &\qquad {}\times \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h(\tau )h(\theta )+h(1-\tau )h(\theta )\\ &\qquad {}+h(\tau )h(1-\theta )+h(1- \tau )h(1-\theta ) \bigr]\,d\tau \,d\theta . \end{aligned} \end{aligned}$$
(3.5)

Using inequalities (3.3) and (3.5) completes the proof. □

Example 3.2

Let \(\triangle =[0,2]\times [0,2]\). Let \(h(\theta )=\theta \), \(\alpha =\beta =\frac{1}{2}\), and \(\mathcal{F}(\chi ,\gamma )= [(2-\sqrt{\chi })(2-\sqrt{\gamma }), (2+ \sqrt{\chi })(2+\sqrt{\gamma }) ]\). Then

$$\begin{aligned}& \frac{1}{\alpha \beta h^{2}(\frac{1}{2})}\mathcal{F} \biggl( \frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr)=[16,144], \\& \begin{aligned} &\frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }\mathcal{F}(o,\rho ) \bigr] \\ &\quad = \biggl[66-16\sqrt{2}-8\sqrt{2}\pi +2\pi +\frac{\pi ^{2}}{2}, 66+16 \sqrt{2}+8\sqrt{2}\pi +2\pi +\frac{\pi ^{2}}{2} \biggr], \end{aligned} \end{aligned}$$

and

$$ \begin{aligned} & \bigl[\mathcal{F}(o,\rho )+\mathcal{F}(o,q)+ \mathcal{F}(\varsigma , \rho )+\mathcal{F}(\varsigma ,q) \bigr] \\ &\qquad {}\times \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h(\tau )h(\theta )+h(1-\tau )h(\theta )\\ &\qquad {}+h(\tau )h(1-\theta )+h(1- \tau )h(1-\theta ) \bigr]\,d\tau \,d\theta \\ &\quad = [72-32\sqrt{2}, 72+32\sqrt{2} ]. \end{aligned} $$

Therefore

$$ \begin{aligned} {}[16,144]&\supseteq \biggl[66-16\sqrt{2}-8\sqrt{2}\pi +2\pi + \frac{\pi ^{2}}{2}, 66+16\sqrt{2}+8\sqrt{2}\pi +2\pi + \frac{\pi ^{2}}{2} \biggr]\\ &\supseteq [72-32 \sqrt{2}, 72+32\sqrt{2} ]. \end{aligned} $$

Consequently, Theorem 3.1 is verified.

Remark 3.3

If \(\underline{\mathcal{F}}=\overline{\mathcal{F}}\) and \(h(\theta )=\theta \), then we get Theorem 3 of [33]. If \(\underline{\mathcal{F}}=\overline{\mathcal{F}}\), \(h(\theta )=\theta \) and \(\alpha =\beta =1\), then we get Theorem 1 of [34].

Theorem 3.4

Let \(\mathcal{F}:\triangle \rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) be such that \(\mathcal{F}=[\underline{\mathcal{F}},\overline{\mathcal{F}}]\) and \(\mathcal{F}\in \mathcal{ID}_{(\triangle )}\), and let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). If \(\mathcal{F}\in SX(ch,\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), then

$$\begin{aligned} \begin{aligned} &\frac{1}{h^{2} (\frac{1}{2} )} \mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \\ &\quad \supseteq \frac{\Gamma (\alpha +1)}{2 h (\frac{1}{2} )(\varsigma -o)^{\alpha }} \biggl[\mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F} \biggl(\varsigma , \frac{\rho +q}{2} \biggr)+\mathfrak{J}_{\varsigma^{-}}^{\alpha } \mathcal{F} \biggl(o,\frac{\rho +q}{2} \biggr) \biggr] \\ &\qquad {}+ \frac{\Gamma (\beta +1)}{2 h (\frac{1}{2} )(q-\rho )^{\beta }} \biggl[\mathfrak{J}_{\rho ^{+}}^{\beta } \mathcal{F} \biggl( \frac{o+\varsigma }{2},q \biggr)+\mathfrak{J}_{q^{-}}^{\beta } \mathcal{F} \biggl(\frac{o+\varsigma }{2},\rho \biggr) \biggr] \\ &\quad \supseteq \frac{ \Gamma (\alpha +1)\Gamma (\beta +1)}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }}\\ &\qquad {}\times \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }F(o,\rho ) \bigr] \\ &\quad \supseteq \frac{\beta \Gamma (\alpha +1)}{(\varsigma -o)^{\alpha }} \bigl[\mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F}(\varsigma ,\rho )+ \mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F}(\varsigma ,q)+\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F}(\varsigma ,q) \bigr]\\ &\qquad {}\times \int _{0}^{1} \theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta \\ &\qquad {}+\frac{\alpha \Gamma (\beta +1)}{(q-\rho )^{\beta }} \bigl[ \mathfrak{J}_{\rho ^{+}}^{\beta } \mathcal{F}(o,q)+\mathfrak{J}_{\rho^{+}}^{ \beta }\mathcal{F}(\varsigma ,q)+\mathfrak{J}_{q^{-}}^{\beta } \mathcal{F}(o,\rho )+ \mathfrak{J}_{q^{-}}^{\beta }\mathcal{F}( \varsigma ,\rho ) \bigr] \\ &\qquad {}\times\int _{0}^{1}\tau ^{\alpha -1} \bigl[h(\tau )+h(1- \tau ) \bigr]\,d\tau \\ &\quad \supseteq \alpha \beta \bigl[\mathcal{F}(o,\rho )+\mathcal{F}(o,q)+ \mathcal{F}(\varsigma ,\rho )+\mathcal{F}(\varsigma ,q) \bigr] \\ &\qquad {}\times\int _{0}^{1} \tau ^{\alpha -1} \bigl[h(\tau )+h(1-\tau ) \bigr]\,d\tau \int _{0}^{1} \theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta . \end{aligned} \end{aligned}$$
(3.6)

Proof

Using Theorem 2.7 and \(\mathcal{F}\in SX(ch,\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), we get

$$\begin{aligned} \begin{aligned} \frac{1}{\beta h(\frac{1}{2})}\mathcal{F}_{\chi } \biggl( \frac{\rho +q}{2} \biggr)&\supseteq \frac{\Gamma (\beta )}{(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{\rho ^{+}}^{ \beta } \mathcal{F}_{\chi }(q)+\mathfrak{J}_{q^{-}}^{\beta } \mathcal{F}_{ \chi }(\rho ) \bigr] \\ &\supseteq \bigl[\mathcal{F}_{\chi }(\rho )+\mathcal{F}_{\chi }(q) \bigr] \int _{0}^{1}\theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta , \end{aligned} \end{aligned}$$

that is,

$$\begin{aligned} \begin{aligned} &\frac{1}{\beta h(\frac{1}{2})} \mathcal{F} \biggl(\chi , \frac{\rho +q}{2} \biggr)\\ &\quad \supseteq \frac{1}{(q-\rho )^{\beta }} \biggl[ \int _{\rho }^{q}(q-\gamma )^{\beta -1}\mathcal{F}( \chi ,\gamma )\,d \gamma + \int _{\rho }^{q}(\gamma -\rho )^{\beta -1} \mathcal{F}(\chi , \gamma )\,d\gamma \biggr] \\ &\quad \supseteq \bigl[\mathcal{F}(\chi ,\rho )+\mathcal{F}(\chi ,q) \bigr] \int _{0}^{1}\theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta \end{aligned} \end{aligned}$$

for all \(\chi \in [o,\varsigma ]\). Moreover, we have

$$\begin{aligned} \begin{aligned} &\frac{1}{\beta (\varsigma -o)^{\alpha } h (\frac{1}{2} )} \int _{o}^{\varsigma }(\varsigma -\chi )^{\alpha -1} \mathcal{F} \biggl( \chi ,\frac{\rho +q}{2} \biggr)\,d\chi \\ &\quad \supseteq \frac{ 1}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \biggl[ \int _{o}^{\varsigma } \int _{\rho }^{q}(\varsigma -\chi )^{\alpha -1}(q- \gamma )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \\ &\qquad {} + \int _{o}^{\varsigma } \int _{\rho }^{q}(\varsigma -\chi )^{ \alpha -1}( \gamma -\rho )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d \gamma \,d\chi \biggr] \\ &\quad \supseteq \frac{1}{(\varsigma -o)^{\alpha }} \int _{o}^{\varsigma } \int _{0}^{1}(\varsigma -\chi )^{\alpha -1} \bigl[\mathcal{F}(\chi , \rho )+\mathcal{F}(\chi ,q) \bigr]\theta ^{\beta -1} \bigl[h(\theta )+h(1- \theta ) \bigr]\,d\theta \,d\chi \end{aligned} \end{aligned}$$
(3.7)

and

$$\begin{aligned} \begin{aligned} &\frac{1}{\beta (\varsigma -o)^{\alpha } h (\frac{1}{2} )} \int _{o}^{\varsigma }(\chi -o)^{\alpha -1}\mathcal{F} \biggl(\chi , \frac{\rho +q}{2} \biggr)\,d\chi \\ &\quad \supseteq \frac{ 1}{(\varsigma -o)^{\alpha }(q-{\rho })^{\beta }} \biggl[ \int _{o}^{\varsigma } \int _{\rho }^{q}(\chi -o)^{\alpha -1}(q-\gamma )^{ \beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \\ & \qquad {}+ \int _{o}^{\varsigma } \int _{\rho }^{q}( \chi -o)^{\alpha -1}(\gamma -\rho )^{\beta -1}\mathcal{F}(\chi , \gamma )\,d\gamma \,d\chi \biggr] \\ &\quad \supseteq \frac{1}{(\varsigma -o)^{\alpha }} \int _{o}^{\varsigma } \int _{0}^{1}(\chi -o)^{\alpha -1} \bigl[ \mathcal{F}(\chi ,\rho )+ \mathcal{F}(\chi ,q) \bigr]\theta ^{\beta -1} \bigl[h(\theta )+h(1- \theta ) \bigr]\,d\theta \,d\chi . \end{aligned} \end{aligned}$$
(3.8)

Similarly, we have

$$\begin{aligned} \begin{aligned} &\frac{1}{\alpha (q-\rho )^{\beta } h (\frac{1}{2} )} \int _{ \rho }^{q}(q-\gamma )^{\beta -1}\mathcal{F} \biggl( \frac{o+\varsigma }{2},\gamma \biggr)\,d\gamma \\ &\quad \supseteq \frac{ 1}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \biggl[ \int _{o}^{\varsigma } \int _{\rho }^{q}(\varsigma -\chi )^{\alpha -1}(q- \gamma )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \\ &\qquad {} + \int _{o}^{\varsigma } \int _{\rho }^{q}(\chi -o)^{\alpha -1}(q- \gamma )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \biggr] \\ &\quad \supseteq \frac{1}{(q-\rho )^{\beta }} \int _{\rho }^{q} \int _{0}^{1}(q- \gamma )^{\beta -1} \bigl[ \mathcal{F}(o,\gamma )+\mathcal{F}( \varsigma ,\gamma ) \bigr]\tau ^{\alpha -1} \bigl[h(\tau )+h(1- \tau ) \bigr]\,d\tau \,d\gamma \end{aligned} \end{aligned}$$
(3.9)

and

$$\begin{aligned} \begin{aligned} &\frac{1}{\alpha (q-\rho )^{\beta } h (\frac{1}{2} )} \int _{ \rho }^{q}(\gamma -\rho )^{\beta -1} \mathcal{F} \biggl( \frac{o+\varsigma }{2},\gamma \biggr)\,d\gamma \\ &\quad \supseteq \frac{ 1}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \biggl[ \int _{o}^{\varsigma } \int _{\rho }^{q}(\varsigma -\chi )^{\alpha -1}( \gamma -\rho )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \\ &\qquad {} + \int _{o}^{\varsigma } \int _{\rho }^{q}(\chi -o)^{\alpha -1}( \gamma -\rho )^{\beta -1}\mathcal{F}(\chi ,\gamma )\,d\gamma \,d\chi \biggr] \\ &\quad \supseteq \frac{1}{(q-\rho )^{\beta }} \int _{\rho }^{q} \int _{0}^{1}( \gamma -\rho )^{\beta -1} \bigl[ \mathcal{F}(o,\gamma )+\mathcal{F}( \varsigma ,\gamma ) \bigr]\tau ^{\alpha -1} \bigl[h(\tau )+h(1- \tau ) \bigr]\,d\tau \,d\gamma . \end{aligned} \end{aligned}$$
(3.10)

Summing inequalities (3.7)–(3.10), we have

$$\begin{aligned} \begin{aligned} &\frac{\Gamma (\alpha +1)}{2 h (\frac{1}{2} )(\varsigma -o)^{\alpha }} \biggl[ \mathfrak{J}_{o^{+}}^{\alpha }\mathcal{F} \biggl(\varsigma , \frac{\rho +q}{2} \biggr)+\mathfrak{J}_{\varsigma ^{-}}^{\alpha } \mathcal{F} \biggl(o,\frac{\rho +q}{2} \biggr) \biggr] \\ &\qquad {}+ \frac{\Gamma (\beta +1)}{2 h (\frac{1}{2} )(q-\rho )^{\beta }} \biggl[\mathfrak{J}_{\rho ^{+}}^{\beta } \mathcal{F} \biggl( \frac{o+\varsigma }{2},q \biggr)+\mathfrak{J}_{q^{-}}^{\beta } \mathcal{F} \biggl(\frac{o+\varsigma }{2},\varsigma \biggr) \biggr] \\ &\quad \supseteq \frac{ \Gamma (\alpha +1)\Gamma (\beta +1)}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }\mathcal{F}(o,\rho ) \bigr] \\ &\quad \supseteq \frac{\beta \Gamma (\alpha +1)}{(\varsigma -o)^{\alpha }} \bigl[\mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F}(\varsigma ,\rho )+ \mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F}(\varsigma ,q)+\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F}(\varsigma ,q) \bigr]\\ &\qquad {}\times \int _{0}^{1} \theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta \\ &\qquad {}+\frac{\alpha \Gamma (\beta +1)}{(q-\rho )^{\beta }} \bigl[ \mathfrak{J}_{\rho ^{+}}^{\beta } \mathcal{F}(o,q)+\mathfrak{J}_{\rho^{+}}^{ \beta }\mathcal{F}(\varsigma ,q)+\mathfrak{J}_{q^{-}}^{\beta } \mathcal{F}(o,\varsigma )+ \mathfrak{J}_{q^{-}}^{\beta }\mathcal{F}( \varsigma ,\rho ) \bigr]\\ &\qquad {}\times \int _{0}^{1}\tau ^{\alpha -1} \bigl[h(\tau )+h(1- \tau ) \bigr]\,d\tau , \end{aligned} \end{aligned}$$

which gives the second and third inequalities in (3.6).

Using the first inequality in (2.1), we get

$$\begin{aligned} \begin{aligned} \frac{1}{ h^{2} (\frac{1}{2} )} \mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr)\supseteq \frac{\Gamma (\alpha +1)}{h (\frac{1}{2} )(\varsigma -o)^{\alpha }} \biggl[\mathfrak{J}_{\varsigma ^{-}}^{\alpha }\mathcal{F} \biggl(o, \frac{\rho +q}{2} \biggr)+\mathfrak{J}_{o^{+}}^{\alpha } \mathcal{F} \biggl(\varsigma ,\frac{\rho +q}{2} \biggr) \biggr] \end{aligned} \end{aligned}$$
(3.11)

and

$$\begin{aligned} \begin{aligned} \frac{1}{ h^{2} (\frac{1}{2} )} \mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr)\supseteq \frac{\Gamma (\beta +1)}{h (\frac{1}{2} )(q-\rho )^{\beta }} \biggl[\mathfrak{J}_{q^{-}}^{\beta }\mathcal{F} \biggl( \frac{o+\varsigma }{2},\rho \biggr)+\mathfrak{J}_{\rho ^{+}}^{\beta } \mathcal{F} \biggl(\frac{o+\varsigma }{2},q \biggr) \biggr]. \end{aligned} \end{aligned}$$
(3.12)

Summing inequalities (3.11) and (3.12), we get the first inequality in (3.6).

Using the second inequality in (2.1), we also state

$$\begin{aligned}& \frac{\Gamma (\alpha )}{(\varsigma -o)^{\alpha }} \bigl[\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F} (o, \rho )+ \mathfrak{J}_{o^{+}}^{\alpha }\mathcal{F} (\varsigma ,\rho ) \bigr]\supseteq \bigl[\mathcal{F}(o,\rho )+\mathcal{F}( \varsigma ,\rho ) \bigr] \int _{0}^{1}\tau ^{\alpha -1} \bigl[h(\tau )+h(1- \tau ) \bigr]\,d\tau , \\& \frac{\Gamma (\alpha )}{(\varsigma -o)^{\alpha }} \bigl[\mathfrak{J}_{ \varsigma ^{-}}^{\alpha }\mathcal{F} (o,q )+\mathfrak{J}_{o^{+}}^{ \alpha }\mathcal{F} (\varsigma ,q ) \bigr]\supseteq \bigl[ \mathcal{F}(o,q)+\mathcal{F}(\varsigma ,q) \bigr] \int _{0}^{1}\tau ^{ \alpha -1} \bigl[h(\tau )+h(1-\tau ) \bigr]\,d\tau , \\& \frac{\Gamma (\beta )}{(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{q^{-}}^{ \beta }\mathcal{F} (o,\rho )+\mathfrak{J}_{\rho ^{+}}^{ \beta }\mathcal{F} (o,q ) \bigr] \supseteq \bigl[ \mathcal{F}o,\rho )+\mathcal{F}(o,q) \bigr] \int _{0}^{1}\theta ^{ \beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta , \end{aligned}$$

and

$$\begin{aligned} \frac{\Gamma (\beta )}{(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{q^{-}}^{ \beta } \mathcal{F} (\varsigma ,\rho )+\mathfrak{J}_{\rho ^{+}}^{ \beta }F ( \varsigma ,q ) \bigr]\supseteq \bigl[F( \varsigma ,\rho )+F(\varsigma ,q) \bigr] \int _{0}^{1}\theta ^{\beta -1} \bigl[h(\theta )+h(1-\theta ) \bigr]\,d\theta , \end{aligned}$$

which gives the last inequality in (3.6). This completes the proof. □

Remark 3.5

If \(\underline{\mathcal{F}}=\overline{\mathcal{F}}\) and \(h(\theta )=\theta \), then we get Theorem 4 of [33]. If \(\alpha =\beta =1\), then we get Theorem 3.5 of [25]. If \(\alpha =\beta =1\) and \(h(\theta )=\theta \), then we get Theorem 7 of [26].

Theorem 3.6

Let \(\mathcal{F},\mathcal{G}:\triangle \rightarrow \mathbb{R}_{ \mathcal{I}}^{+}\) be such that \(\mathcal{F}=[\underline{\mathcal{F}},\overline{\mathcal{F}}]\), \(\mathcal{G}=[\underline{\mathcal{G}},\overline{\mathcal{G}}]\), and \(\mathcal{F}\mathcal{G}\in \mathcal{ID}_{(\triangle )}\), and let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). If \(\mathcal{F}\in SX(ch_{1},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\) and \(\mathcal{G}\in SX(ch_{2},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), then

$$\begin{aligned} \begin{aligned} &\frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[ \mathfrak{J}^{\alpha ,\beta }_{\varsigma ^{-},\rho ^{+}} \mathcal{F}(o,q)\mathcal{G}(o,q)+ { \mathfrak{J}}^{\alpha ,\beta }_{ \varsigma ^{-},q^{-}}\mathcal{F}(o,\rho )\mathcal{G}(o,\rho ) \\ & \qquad {}+\mathfrak{J}^{\alpha ,\beta }_{o^{+}, \rho ^{+}}\mathcal{F}( \varsigma ,q)\mathcal{G}(\varsigma ,q)+ { \mathfrak{J}}^{\alpha ,\beta }_{o^{+},q^{-}} \mathcal{F}(\varsigma , \rho )\mathcal{G}(\varsigma ,\rho ) \bigr] \\ &\quad \supseteq \mathcal{M}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(1-\tau )h_{1}(1- \theta )h_{2}(1-\tau )h_{2}(1-\theta ) \\ &\qquad {}+h_{1}(1-\tau )h_{1}(\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(\tau )h_{1}(1- \theta )h_{2}(\tau )h_{2}(1-\theta )\\ &\qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}( \tau )h_{2}(\theta ) \bigr]\,d\tau \,d\theta \\ &\qquad{} + \mathcal{N}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(1-\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ &\qquad {}+h_{1}(1-\tau )h_{1}(1-\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(\tau )h_{1}(1- \theta )h_{2}(\tau )h_{2}(\theta )\\ &\qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}( \tau )h_{2}(1-\theta ) \bigr]\,d\tau \,d\theta \\ &\qquad{} + \mathcal{P}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(1-\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ &\qquad {}+h_{1}(1-\tau )h_{1}(1-\theta ) h_{2}(\tau )h_{2}(1-\theta )+h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(\theta )\\ &\qquad {}+h_{1}(1-\tau )h_{1}(\theta )h_{2}(\tau )h_{2}( \theta ) \bigr]\,d\tau \,d\theta \\ &\qquad{} + \mathcal{Q}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ &\qquad {}+h_{1}(\tau )h_{1}(1-\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(1-\tau )h_{1}( \theta )h_{2}(\tau )h_{2}(1-\theta )\\ &\qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \bigr]\,d\tau \,d\theta , \end{aligned} \end{aligned}$$
(3.13)

where

$$\begin{aligned}& \mathcal{M}(o,\varsigma ,\rho ,q)=\mathcal{F}(o,\rho )\mathcal{G}(o, \rho )+ \mathcal{F}(\varsigma ,\rho )\mathcal{G}(\varsigma ,\rho )+ \mathcal{F}(o,q) \mathcal{G}(o,q)+\mathcal{F}(\varsigma ,q)\mathcal{G}( \varsigma ,q), \\& \mathcal{N}(o,\varsigma ,\rho ,q)=\mathcal{F}(o,\rho )\mathcal{G}(o,q)+ \mathcal{F}(\varsigma ,\rho )\mathcal{G}(\varsigma ,q)+\mathcal{F}(o,q) \mathcal{G}(o,\rho )+\mathcal{F}(\varsigma ,q)\mathcal{G}(\varsigma , \rho ), \\& \mathcal{P}(o,\varsigma ,\rho ,q)=\mathcal{F}(o,\rho )\mathcal{G}(\varsigma, \rho )+ \mathcal{F}(\varsigma ,\rho )\mathcal{G}(o,\rho )+\mathcal{F}(o,q) \mathcal{G}( \varsigma ,q)+\mathcal{F}(\varsigma ,q)\mathcal{G}(o,q), \\& \mathcal{Q}(o,\varsigma ,\rho ,q)=\mathcal{F}(o,\rho )\mathcal{G}( \varsigma ,q)+\mathcal{F}(\varsigma ,\rho )\mathcal{G}(o,q)+ \mathcal{F}(o,q)\mathcal{G}( \varsigma ,\rho )+\mathcal{F}(\varsigma ,q) \mathcal{G}(o,\rho ). \end{aligned}$$

Proof

Since \(\mathcal{F}\in SX(ch_{1},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\) and \(\mathcal{G}\in SX(ch_{2},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), we have

$$\begin{aligned}& \begin{aligned} &\mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta ) q\bigr)\\ &\quad \supseteq h_{1}(\tau )h_{1}( \theta )\mathcal{F}(o,\rho )+h_{1}(\tau )h_{1}(1- \theta ) \mathcal{F}(o,q) \\ & \qquad {}+h_{1}(1-\tau )h_{1}(\theta )\mathcal{F}( \varsigma ,\rho )+h_{1}(1- \tau )h_{1}(1-\theta ) \mathcal{F}(\varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q\bigr)\\ &\quad \supseteq h_{1}(\tau )h_{1}(1-\theta ) \mathcal{F}(o,\rho )+h_{1}( \tau )h_{1}(\theta ) \mathcal{F}(o,q) \\ & \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta )\mathcal{F}( \varsigma ,\rho )+h_{1}(1- \tau )h_{1}(\theta )\mathcal{F}( \varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\\ &\quad \supseteq h_{1}(1-\tau )h_{1}(\theta ) \mathcal{F}(o,\rho )+h_{1}(1- \tau )h_{1}(1-\theta ) \mathcal{F}(o,q) \\ & \qquad {}+h_{1}(\tau )h_{1}(\theta )\mathcal{F}(\varsigma ,\rho )+h_{1}( \tau )h_{1}(1-\theta )\mathcal{F}(\varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho + \theta q\bigr)\\ &\quad \supseteq h_{1}(1-\tau )h_{1}(1-\theta ) \mathcal{F}(o,\rho )+h_{1}(1- \tau )h_{1}(\theta ) \mathcal{F}(o,q) \\ & \qquad {}+h_{1}(\tau )h_{1}(1-\theta )\mathcal{F}( \varsigma ,\rho )+h_{1}( \tau )h_{1}(\theta )\mathcal{F}( \varsigma ,q), \end{aligned} \end{aligned}$$

and

$$\begin{aligned}& \begin{aligned}& \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta ) q\bigr)\\ &\quad \supseteq h_{2}(\tau )h_{2}( \theta )\mathcal{G}(o,\rho )+h_{2}(\tau )h_{2}(1- \theta ) \mathcal{G}(o,q) \\ & \qquad {}+h_{2}(1-\tau )h_{2}(\theta )\mathcal{G}( \varsigma ,\rho )+h_{2}(1- \tau )h_{2}(1-\theta ) \mathcal{G}(\varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q\bigr)\\ &\quad \supseteq h_{2}(\tau )h_{2}(1-\theta ) \mathcal{G}(o,\rho )+h_{2}( \tau )h_{2}(\theta ) \mathcal{G}(o,q) \\ & \qquad {}+h_{2}(1-\tau )h_{2}(1-\theta )\mathcal{G}( \varsigma ,\rho )+h_{2}(1- \tau )h_{2}(\theta )\mathcal{G}( \varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{G}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\\ &\quad \supseteq h_{2}(1-\tau )h_{2}(\theta ) \mathcal{G}(o,\rho )+h_{2}(1- \tau )h_{2}(1-\theta ) \mathcal{G}(o,q) \\ & \qquad {}+h_{2}(\tau )h_{2}(\theta )\mathcal{G}(\varsigma ,\rho )+h_{2}( \tau )h_{2}(1-\theta )\mathcal{G}(\varsigma ,q), \end{aligned} \\& \begin{aligned} &\mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho + \theta q\bigr)\\ &\quad \supseteq h_{2}(1-\tau )h_{2}(1-\theta ) \mathcal{G}(o,\rho )+h_{2}(1- \tau )h_{2}(\theta ) \mathcal{G}(o,q) \\ & \qquad {}+h_{2}(\tau )h_{2}(1-\theta )\mathcal{G}( \varsigma ,\rho )+h_{2}( \tau )h_{2}(\theta )\mathcal{G}( \varsigma ,q). \end{aligned} \end{aligned}$$

Since \(\mathcal{F},\mathcal{G}\in \mathbb{R}_{\mathcal{I}}^{+}\), we have

$$\begin{aligned} &\mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta ) q\bigr) \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta ) q\bigr) \\ &\qquad {}+\mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho +\theta q \bigr) \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho +\theta q\bigr) \\ &\qquad {}+\mathcal{F}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1-\theta ) q\bigr) \mathcal{G}\bigl((1-\tau ) o+\tau \varsigma ,\theta \rho +(1-\theta ) q \bigr) \\ &\qquad {}+\mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho +\theta q \bigr) \mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho +\theta q\bigr) \\ &\quad \supseteq \mathcal{M}(o,\varsigma ,\rho ,q) \\ &\qquad {}\times \bigl[h_{1}(1-\tau )h_{1}(1- \theta )h_{2}(1-\tau )h_{2}(1-\theta )+h_{1}(1-\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(\theta ) \\ &\qquad {}+h_{1}(\tau )h_{1}(1-\theta )h_{2}(\tau )h_{2}(1-\theta )+h_{1}( \tau )h_{1}(\theta )h_{2}(\tau )h_{2}(\theta ) \bigr] \\ &\qquad + \mathcal{N}(o,\varsigma ,\rho ,q) \bigl[h_{1}(1-\tau )h_{1}( \theta )h_{2}(1-\tau )h_{2}(1-\theta ){+}h_{1}(1-\tau )h_{1}(1-\theta )h_{2}(1- \tau )h_{2}(\theta ) \\ &\qquad {}+h_{1}(\tau )h_{1}(1-\theta )h_{2}(\tau )h_{2}(\theta )+h_{1}( \tau )h_{1}(\theta )h_{2}(\tau )h_{2}(1-\theta ) \bigr] \\ &\qquad{} + \mathcal{P}(o,\varsigma ,\rho ,q) \bigl[h_{1}(\tau )h_{1}(1- \theta )h_{2}(1-\tau )h_{2}(1-\theta ){+}h_{1}(1-\tau )h_{1}(1-\theta )h_{2}( \tau )h_{2}(1-\theta ) \\ &\qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}(1-\tau )h_{2}(\theta )+h_{1}(1- \tau )h_{1}(\theta )h_{2}(\tau )h_{2}(\theta ) \bigr] \\ &\qquad{} + \mathcal{Q}(o,\varsigma ,\rho ,q) \bigl[h_{1}(\tau )h_{1}( \theta )h_{2}(1-\tau )h_{2}(1-\theta )+h_{1}(\tau )h_{1}(1-\theta )h_{2}(1- \tau )h_{2}(\theta ) \\ &\qquad {}+h_{1}(1-\tau )h_{1}(\theta )h_{2}(\tau )h_{2}(1-\theta )+h_{1}( \tau )h_{1}(\theta )h_{2}(1-\tau )h_{2}(1-\theta ) \bigr]. \end{aligned}$$

Moreover, we have

$$\begin{aligned}& \begin{gathered} \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1- \theta ) q\bigr)\\ \qquad {}\times \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d \tau \,d\theta \\ \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q\bigr)\\ \qquad {}\times \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho +\theta q\bigr)\,d \tau \,d\theta \\ \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\\ \qquad {}\times \mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d \tau \,d\theta \\ \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho + \theta q\bigr)\\ \qquad {}\times \mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho +\theta q\bigr)\,d \tau \,d\theta \\ \quad \supseteq \mathcal{M}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(1-\tau )h_{1}(1- \theta )h_{2}(1-\tau )h_{2}(1-\theta ) \\ \qquad {}+h_{1}(1-\tau )h_{1}(\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(\tau )h_{1}(1- \theta )h_{2}(\tau )h_{2}(1-\theta )\\ \qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}( \tau )h_{2}(\theta ) \bigr]\,d\tau \,d\theta \\ \qquad{} + \mathcal{N}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(1-\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(\tau )h_{1}(1- \theta )h_{2}(\tau )h_{2}(\theta )\\ \qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}( \tau )h_{2}(1-\theta ) \bigr]\,d\tau \,d\theta \\ \qquad{} + \mathcal{P}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(1-\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta ) h_{2}(\tau )h_{2}(1-\theta )+h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(\theta )\\ \qquad {}+h_{1}(1-\tau )h_{1}(\theta )h_{2}(\tau )h_{2}( \theta ) \bigr]\,d\tau \,d\theta \\ \qquad{} + \mathcal{Q}(o,\varsigma ,\rho ,q) \int _{0}^{1} \int _{0}^{1} \tau ^{\alpha -1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \\ \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) h_{2}(1-\tau )h_{2}(\theta )+h_{1}(1-\tau )h_{1}( \theta )h_{2}(\tau )h_{2}(1-\theta )\\ \qquad {}+h_{1}(\tau )h_{1}(\theta )h_{2}(1- \tau )h_{2}(1-\theta ) \bigr]\,d\tau \,d\theta . \end{gathered} \end{aligned}$$
(3.14)

By Definition 2.8 we get

$$\begin{aligned}& \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1- \theta ) q\bigr) \\& \qquad {}\times \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d \tau \,d\theta \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q\bigr) \\& \qquad {}\times \mathcal{G}\bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho +\theta q\bigr)\,d \tau \,d\theta \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr) \\ & \\ & \qquad {}\times \mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta ) q\bigr)\,d \tau \,d\theta \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1}\tau ^{\alpha -1}\theta ^{\beta -1} \mathcal{F}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho + \theta q\bigr) \\& \qquad {}\times \mathcal{G}\bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho +\theta q\bigr)\,d \tau \,d\theta \\& \quad =\frac{\Gamma (\alpha )\Gamma (\beta )}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}^{\alpha ,\beta }_{\varsigma ^{-},\rho^{+}} \mathcal{F}(o,q) \mathcal{G}(o,q)+ {\mathfrak{J}}^{\alpha ,\beta }_{\varsigma ^{-},q^{-}} \mathcal{F}(o,\rho )\mathcal{G}(o,\rho ) \\& \qquad {}+\mathfrak{J}^{\alpha ,\beta }_{o^{+},\rho^{+}} \mathcal{F}( \varsigma ,q)\mathcal{G}(\varsigma ,q)+ {\mathfrak{J}}^{ \alpha ,\beta }_{o^{+},q^{-}} \mathcal{F}(\varsigma ,\rho )\mathcal{G}( \varsigma ,\rho ) \bigr]. \end{aligned}$$
(3.15)

From inequalities (3.14)–(3.15) we obtain inequalities (3.13). □

Remark 3.7

If \(\alpha =\beta =1\) and \(h(\theta )=\theta \), then we get Theorem 8 of [26]. If \(\underline{\mathcal{F}}=\overline{\mathcal{F}}\), \(h(\theta )=\theta \), and \(\alpha =\beta =1\), then we get Theorem 4 of [35].

Theorem 3.8

Let \(\mathcal{F},\mathcal{G}:[o,\varsigma ]\times [\rho ,q]\rightarrow \mathbb{R}_{\mathcal{I}}^{+}\) be such that \(\mathcal{F}=[\underline{\mathcal{F}},\overline{\mathcal{F}}]\), \(\mathcal{G}=[\underline{\mathcal{G}},\overline{\mathcal{G}}]\), and \(\mathcal{F}\mathcal{G}\in \mathcal{ID}_{(\triangle )}\), and let \(h:[0,1]\rightarrow \mathbb{R}^{+}\). If \(\mathcal{F}\in SX(ch_{1},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\) and \(\mathcal{G}\in SX(ch_{2},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), then

$$\begin{aligned}& \frac{1}{2\alpha \beta {h_{1}}^{2}(\frac{1}{2}){h_{2}}^{2}(\frac{1}{2})} \mathcal{F} \biggl(\frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \mathcal{G} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \\& \quad \supseteq \frac{\Gamma (\alpha )\Gamma (\beta )}{2(\varsigma -o)^{\alpha }(q-\rho )^{\beta }} \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)\mathcal{G}(\varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{ \alpha ,\beta } \mathcal{F}(\varsigma ,\rho )\mathcal{G}(\varsigma , \rho ) \\& \qquad {}+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{ \alpha ,\beta }\mathcal{F}(o,q) \mathcal{G}(o,q)+\mathfrak{J}_{ \varsigma ^{-},q^{-}}^{\alpha ,\beta }\mathcal{F}(o,\rho ) \mathcal{G}(o, \rho ) \bigr] \\& \qquad {}+\mathcal{M}(o,\varsigma ,\rho ,q) \int _{0}^{1}\tau ^{\alpha -1}\,d \tau \int _{0}^{1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}(1-\theta ) \\& \qquad {}+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(1- \tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(\tau )h_{2}(\theta )+h_{2}(1- \tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr] \bigr]\,d \theta \\& \qquad {}+\mathcal{N}(o,\varsigma ,\rho ,q) \int _{0}^{1}\tau ^{\alpha -1}\,d \tau \int _{0}^{1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}(\theta ) \\& \qquad {}+h_{2}(1-\tau )h_{2}(1-\theta )+h_{2}(1- \tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr] \bigr]\,d\theta \\& \qquad {}+\mathcal{P}(o,\varsigma ,\rho ,q) \int _{0}^{1}\tau ^{\alpha -1}\,d \tau \int _{0}^{1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(1- \tau )h_{2}(1-\theta ) \\& \qquad {}+h_{2}(\tau )h_{2}(\theta )+h_{2}( \tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(1-\tau )h_{2}( \theta )+h_{2}(\tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}(\theta ) \bigr] \bigr]\,d\theta \\& \qquad {}+\mathcal{Q}(o,\varsigma ,\rho ,q) \int _{0}^{1}\tau ^{\alpha -1}\,d \tau \int _{0}^{1}\theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(1- \tau )h_{2}(\theta ) \\& \qquad +h_{2}(\tau )h_{2}(1-\theta )+h_{2}( \tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr] \bigr]\,d\theta . \end{aligned}$$
(3.16)

Proof

Since \(\mathcal{F}\in SX(ch_{1},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\) and \(\mathcal{G}\in SX(ch_{2},\triangle ,\mathbb{R}_{\mathcal{I}}^{+})\), we have

$$\begin{aligned}& \mathcal{F} \biggl( \frac{o+\varsigma }{2},\frac{\rho +q}{2} \biggr) \mathcal{G} \biggl(\frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr) \\& \quad =\mathcal{F} \biggl(\frac{\tau o+(1-\tau )\varsigma }{2}+ \frac{(1-\tau )o+\tau \varsigma }{2}, \frac{\theta \rho +(1-\theta )q}{2}+ \frac{(1-\theta )\rho +\theta q}{2} \biggr) \\& \qquad {}\times \mathcal{G} \biggl(\frac{\tau o+(1-\tau )\varsigma }{2}+ \frac{(1-\tau )o+\tau \varsigma }{2}, \frac{\theta \rho +(1-\theta )q}{2}+ \frac{(1-\theta )\rho +\theta q}{2} \biggr) \\& \quad \supseteq {h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr)\\& \qquad {}\times \bigl[ \mathcal{F} \bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta )q \bigr)+ \mathcal{F} \bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta )q \bigr) \\& \qquad {}+\mathcal{F} \bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q \bigr)+\mathcal{F} \bigl((1-\tau )o+\tau \varsigma ,(1-\theta ) \rho + \theta q \bigr) \bigr] \\& \qquad {}\times \bigl[\mathcal{G} \bigl(\tau o+(1-\tau )\varsigma , \theta \rho +(1-\theta )q \bigr)+\mathcal{G} \bigl((1-\tau )o+\tau \varsigma , \theta \rho +(1-\theta )q \bigr) \\& \qquad {}+\mathcal{G} \bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q \bigr)+\mathcal{G} \bigl((1-\tau )o+\tau \varsigma ,(1-\theta ) \rho + \theta q \bigr) \bigr] \\& \quad \supseteq {h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr)\\& \qquad {}\times \bigl[ \mathcal{F} \bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1-\theta )q \bigr) \mathcal{G} \bigl(\tau o+(1-\tau )\varsigma ,\theta \rho +(1- \theta )q \bigr) \\& \qquad {}+\mathcal{F} \bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta )q \bigr)\mathcal{G} \bigl((1-\tau )o+\tau \varsigma ,\theta \rho +(1- \theta )q \bigr) \\& \qquad {}+\mathcal{F} \bigl(\tau o+(1-\tau )\varsigma ,(1-\theta )\rho + \theta q \bigr)\mathcal{G} \bigl(\tau o+(1-\tau )\varsigma ,(1-\theta ) \rho + \theta q \bigr) \\& \qquad {}+\mathcal{F} \bigl((1-\tau )o+\tau \varsigma ,(1-\theta )\rho + \theta q \bigr)\mathcal{G} \bigl((1-\tau )o+\tau \varsigma ,(1-\theta ) \rho + \theta q \bigr) \bigr] \\& \qquad {}+{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr)\\& \qquad {}\times \bigl[h_{1}(\tau )h_{1}( \theta ) \bigl[h_{2}( \tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}( \theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(\tau )h_{2}(\theta )+h_{2}(1- \tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(\theta ) \bigl[h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta ) \bigl[h_{2}(\tau )h_{2}( \theta )+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr]\mathcal{M}(o,\varsigma ,\rho ,q) \bigr] \\& \qquad {}+{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \bigl[h_{1}(\tau )h_{1}( \theta ) \bigl[h_{2}( \tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(\theta ) \bigl[h_{2}(1-\tau )h_{2}( \theta )+h_{2}(\tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta )\\& \qquad {}\times \bigl[h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr]\mathcal{N}(o,\varsigma ,\rho ,q) \bigr] \\& \qquad {}+{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr)\\& \qquad {}\times \bigl[h_{1}(\tau )h_{1}( \theta ) \bigl[h_{2}(1- \tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}( \theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(1-\tau )h_{2}( \theta )+h_{2}(\tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta )\\& \qquad {}\times \bigl[h_{2}(\tau )h_{2}( \theta )+h_{2}(1-\tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr]\mathcal{P}(o,\varsigma ,\rho ,q) \bigr] \\& \qquad {}+{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \bigl[h_{1}(\tau )h_{1}( \theta ) \bigl[h_{2}(1- \tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(\tau )h_{1}(1-\theta ) \bigl[h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}(\theta )+h_{2}(1- \tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr] \\& \qquad {}+h_{1}(1-\tau )h_{1}(1-\theta )\\& \qquad {}\times \bigl[h_{2}(\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr]\mathcal{Q}(o,\varsigma ,\rho ,q) \bigr]. \end{aligned}$$

Moreover, we have

$$\begin{aligned}& \frac{1}{\alpha \beta } \mathcal{F} \biggl(\frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr)\mathcal{G} \biggl( \frac{o+\varsigma }{2}, \frac{\rho +q}{2} \biggr) \\& \quad \supseteq \frac{\Gamma (\alpha )\Gamma (\beta ){h_{1}}^{2}(\frac{1}{2}){h_{2}}^{2}(\frac{1}{2})}{(\varsigma -o)^{\alpha }(q-\rho )^{\beta }}\\& \qquad {}\times \bigl[\mathfrak{J}_{o^{+},\rho ^{+}}^{\alpha ,\beta } \mathcal{F}( \varsigma ,q)+\mathfrak{J}_{o^{+},q^{-}}^{\alpha ,\beta }\mathcal{F}( \varsigma ,\rho )+\mathfrak{J}_{\varsigma ^{-},\rho ^{+}}^{\alpha , \beta }\mathcal{F}(o,q)+ \mathfrak{J}_{\varsigma ^{-},q^{-}}^{\alpha , \beta }\mathcal{F}(o,\rho ) \bigr] \\& \qquad {}+2{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \mathcal{M}(o, \varsigma ,\rho ,q) \\& \qquad {}\times\int _{0}^{1}\tau ^{\alpha -1}\,d\tau \int _{0}^{1} \theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}(1- \theta ) \\& \qquad {}+h_{2}(1-\tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr]\\& \qquad {}+h_{1}(\tau )h_{1}(1- \theta ) \bigl[h_{2}( \tau )h_{2}(\theta )+h_{2}(1-\tau )h_{2}(1- \theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr] \bigr]\,d\theta \\& \qquad {}+2{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \mathcal{N}(o, \varsigma ,\rho ,q) \\& \qquad {}\times\int _{0}^{1}\tau ^{\alpha -1}\,d\tau \int _{0}^{1} \theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(\tau )h_{2}( \theta ) \\& \qquad {}+h_{2}(1-\tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}(\theta ) \bigr]\\& \qquad {}+h_{1}(\tau )h_{1}(1- \theta ) \bigl[h_{2}( \tau )h_{2}(1-\theta )+h_{2}(1-\tau )h_{2}( \theta )+h_{2}(1-\tau )h_{2}(1-\theta ) \bigr] \bigr]\,d \theta \\& \qquad {}+2{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \mathcal{P}(o, \varsigma ,\rho ,q) \\& \qquad {}\times\int _{0}^{1}\tau ^{\alpha -1}\,d\tau \int _{0}^{1} \theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(1- \tau )h_{2}(1-\theta ) \\& \qquad {}+h_{2}(\tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr]\\& \qquad {}+h_{1}(\tau )h_{1}(1- \theta ) \bigl[h_{2}(1- \tau )h_{2}(\theta )+h_{2}(\tau )h_{2}(1- \theta )+h_{2}(\tau )h_{2}(\theta ) \bigr] \bigr]\,d\theta \\& \qquad {}+2{h_{1}}^{2}\biggl(\frac{1}{2} \biggr){h_{2}}^{2}\biggl(\frac{1}{2}\biggr) \mathcal{Q}(o, \varsigma ,\rho ,q) \\& \qquad {}\times\int _{0}^{1}\tau ^{\alpha -1}\,d\tau \int _{0}^{1} \theta ^{\beta -1} \bigl[h_{1}(\tau )h_{1}(\theta ) \bigl[h_{2}(1- \tau )h_{2}(\theta ) \\& \qquad {}+h_{2}(\tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}(\theta ) \bigr]\\& \qquad {}+h_{1}(\tau )h_{1}(1- \theta ) \bigl[h_{2}(1- \tau )h_{2}(1-\theta )+h_{2}(\tau )h_{2}( \theta )+h_{2}(\tau )h_{2}(1-\theta ) \bigr] \bigr]\,d\theta , \end{aligned}$$

which rearranges to the required result. □

Remark 3.9

If \(\alpha =\beta =1\) and \(h(\theta )=\theta \), then we get Theorem 9 of [26]. If \(\underline{\mathcal{F}}=\overline{\mathcal{F}}\), \(h(\theta )=\theta \), and \(\alpha =\beta =1\), then we get Theorem 5 of [35].

4 Conclusion

In this paper, we proved some new Hermite–Hadamard-type inequalities for coordinated h-convex interval-valued functions via Riemann–Liouville-type fractional integrals. The results generalize the previous results given in [2527, 33, 35]. Moreover, in the future investigation, these results may be extended for different kinds of convexities and fractional integrals.

Availability of data and materials

Not applicable.

References

  1. Bombardelli, M., Varošanec, S.: Properties of h-convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 58, 1869–1877 (2009)

    Article  MathSciNet  Google Scholar 

  2. Noor, M.A., Noor, K.I., Awan, M.U., Costache, S.: Some integral inequalities for harmonically h-convex functions. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 77(1), 5–16 (2015)

    MathSciNet  Google Scholar 

  3. An, Y.R., Ye, G.J., Zhao, D.F., Liu, W.: Hermite–Hadamard type inequalities for interval \((h1, h2)\)-convex functions. Mathematics 7(5), 436 (2019)

    Article  Google Scholar 

  4. Flores-Franulič, A., Chalco-Cano, Y., Román-Flores, H.: An Ostrowski type inequality for interval-valued functions. In: IFSA World Congress and NAFIPS Annual Meeting IEEE, vol. 35, pp. 1459–1462 (2013)

    Google Scholar 

  5. Zhao, D.F., An, T.Q., Ye, G.J., Torres, D.F.M.: On Hermite–Hadamard type inequalities for harmonically h-convex interval-valued functions. Math. Inequal. Appl. 23(1), 95–105 (2020)

    MathSciNet  Google Scholar 

  6. Sarikaya, M.Z., Saglam, A., Yildirim, H.: On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2(3), 335–341 (2008)

    Article  MathSciNet  Google Scholar 

  7. Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

    Article  Google Scholar 

  8. Fernandez, A., Mohammed, P.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci., 1–18 (2020). https://doi.org/10.1002/mma.6188

    Article  Google Scholar 

  9. Mohammed, P.O., Abdeljawad, T.: Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020(1), 363 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kara, H., Ali, M.A., Budak, H.: Hermite–Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals. Math. Methods Appl. Sci., 44(1), 104–123 (2021). https://doi.org/10.1002/mma.6712

    Article  MathSciNet  Google Scholar 

  11. Mohammed, P.O., Abdeljawad, T., Kashuri, A.: Fractional Hermite–Hadamard–Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 12, 1503 (2020)

    Article  Google Scholar 

  12. Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12(4), 610 (2020)

    Article  Google Scholar 

  13. Mohammed, P.O., Abdeljawad, T., Zeng, S., Kashuri, A.: Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 12(9), 1485 (2020)

    Article  Google Scholar 

  14. Noor, M.A., Noor, K.I., Mihai, M.V., Awan, M.U.: Fractional Hermite–Hadamard inequalities for some classes of differentiable preinvex functions. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 78, 163–174 (2016)

    MathSciNet  Google Scholar 

  15. Mohammed, P.O.: Some new Hermite–Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ., Sci. 30(2), 258–262 (2018)

    Article  Google Scholar 

  16. Budak, H., Tunc, T., Sarikaya, M.Z.: Fractional Hermite–Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc. 148(2), 705–718 (2020)

    Article  MathSciNet  Google Scholar 

  17. Işcan, İ., Wu, S.H.: Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 238, 237–244 (2014)

    MathSciNet  Google Scholar 

  18. Liu, X.L., Ye, G.J., Zhao, D.F., Liu, W.: Fractional Hermite–Hadamard type inequalities for interval-valued functions. J. Inequal. Appl. 2019(1), 266 (2019)

    Article  MathSciNet  Google Scholar 

  19. Chen, F.: Extensions of the Hermite–Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 268, 121–128 (2015)

    MathSciNet  Google Scholar 

  20. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  21. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  22. Aubin, J.P., Franskowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    Google Scholar 

  23. Chalco-Cano, Y., Lodwick, W.A., Condori-Equice, W.: Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 31(3), 457–472 (2012)

    MathSciNet  Google Scholar 

  24. Román-Flores, H., Chalco-Cano, Y., Lodwick, W.A.: Some integral inequalities for interval-valued functions. Comput. Appl. Math. 35, 1–13 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhao, D.F., An, T.Q., Ye, G.J., Liu, W.: On Hermite–Hadamard type inequalities for coordinated h-convex interval-valued functions. Rev. R. Acad. Cienc. Exactas (2020) under review

  26. Zhao, D.F., Ali, M.A., Murtaza, G.: On the Hermite–Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 570 (2020). https://doi.org/10.1186/s13662-020-03028-7

    Article  MathSciNet  Google Scholar 

  27. Budak, H., Kara, H., Ali, M.A., Khan, S.: Fractional Hermite–Hadamard type inequalities for interval-valued co-ordinated convex functions (2020) Submitted

  28. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  Google Scholar 

  29. Zhao, D.F., An, T.Q., Ye, G.J., Liu, W.: New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 302 (2018)

    Article  MathSciNet  Google Scholar 

  30. Markov, S.: Calculus for interval functions of a real variable. Computing 22, 325–337 (1979)

    Article  MathSciNet  Google Scholar 

  31. Zhao, D.F., An, T.Q., Ye, G.J., Liu, W.: Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 396, 82–101 (2020)

    Article  MathSciNet  Google Scholar 

  32. Shi, F.F., Ye, G.J., Zhao, D.F., Liu, W.: Some fractional Hermite–Hadamard type inequalities for interval-valued functions. Mathematics 8, 534 (2020)

    Article  Google Scholar 

  33. Sarikaya, M.Z.: On the Hermite–Hadamard-type inequalities for co-ordinated convex function via fractional integrals. Integral Transforms Spec. Funct. 25(2), 134–147 (2013)

    Article  MathSciNet  Google Scholar 

  34. Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5, 775–788 (2001)

    Article  MathSciNet  Google Scholar 

  35. Latif, M.A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4(45–48), 2327–2338 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for invaluable comments and insightful suggestions, which improved the presentation of this manuscript.

Funding

This work was supported in part by the National Key Research and Development Program of China (2018YFC1508100), Key Projects of Educational Commission of Hubei Province of China (D20192501)and the Natural Science Foundation of Jiangsu Province (BK20180500).

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Guoju Ye.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, F., Ye, G., Zhao, D. et al. Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions. Adv Differ Equ 2021, 32 (2021). https://doi.org/10.1186/s13662-020-03200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-03200-z

MSC

Keywords