- Research
- Open access
- Published:
Generalizations of some contractions in b-metric-like spaces and applications to boundary value problems
Advances in Difference Equations volume 2021, Article number: 262 (2021)
Abstract
This paper provides two wide classes of contractions, which are obtained by using notions of \(\alpha _{s^{p}} \)-admissibility and the rich set of C-class functions in the setting of a complete b-metric-like space under more general contractive conditions. An application is provided and many known results in the literature can be derived.
1 Introduction and preliminaries
Fixed point theory is still a central topic with a broad focus on applications of fixed point models not only in mathematical analysis, but also in other branches of natural sciences. The Banach contraction theorem continues to be generalized in other metric settings. For more related results, see [1–23].
Following the generalizations made by Matthews [24], Hitzler and Seda [25], and Amini-Harandi [26], Alghamdi et al. [27] introduced the concept of b-metric-like spaces. Many authors have obtained interesting results in these areas associated with many more applications in the field of nonlinear analysis and main areas of interdisciplinary research.
In our work, we use the notions of α-admissible functions, \(( \alpha ,\psi ,\varphi ) \)-contractive mappings, F-contractions, and Kannan type contractions. In this paper, we introduce \(\alpha _{s^{p}} - F\) contractive mappings by means of \(\alpha _{s^{p}} \)-admissible functions and auxiliary functions, named as C-class functions. We also provide two wide classes of contractions selected among b-metric and b-metric-like settings, giving knew extensions of \(\alpha _{s^{p}} - F\) contractions and Kannan type contractions. These new generalized classes not only generalize the known ones, but also include and unify a huge number of existing ones selected in the corresponding literature, and the corresponding results are supported by an application on boundary value problems.
Let T be a nonempty set and \(s \ge 1\) be a given real number. Let \(\sigma _{b}:T \times T \to [ 0,\infty )\) be a mapping satisfying the following conditions for each \(h,k,z \in T \):
-
I.
\(\sigma _{b} ( h,k ) = 0\) if and only if \(h = k\);
-
II.
\(\sigma _{b} ( h,k ) = 0\) implies \(h = k\);
-
III.
\(\sigma _{b} ( h,k ) = \sigma _{b} ( k,h )\);
-
IV.
\(\sigma _{b} ( h,k ) \le \sigma _{b} ( h,z ) + \sigma _{b} ( z,k )\);
-
V.
\(\sigma _{b} ( h,k ) \le s [ \sigma _{b} ( h,z ) + \sigma _{b} ( z,k ) ]\).
Definition 1.1
([28])
A pair \(( T,\sigma _{b} )\) satisfying axioms I, III, and V is called a b-metric space with parameter s.
Definition 1.2
([26])
A pair \(( T,\sigma _{b} )\) satisfying axioms II, III, and IV is called a metric-like space.
Definition 1.3
([27])
A pair \(( T,\sigma _{b} )\) satisfying axioms II, III, and V is called a b-metric-like space with parameter s.
It is true that if \(h,k \in T\) and \(\sigma _{b} ( h,k ) = 0\), then \(h = k\); however, the converse need not be true, and \(\sigma _{b} ( h,h )\) may be positive for \(h \in T\).
Example 1.4
Let \(T =\mathbb{R}\) and \(\sigma _{b}:T^{2} \to [ 0,\infty )\) be a given function as \(\sigma _{b}(h,k) = ( \vert h \vert + \vert k \vert )^{2}\) for all \(h,k \in T\). Then \(( T,\sigma _{b} )\) is a b-metric-like space with parameter \(s =2\).
Definition 1.5
([27])
Let \(( T,\sigma _{b} )\) be a b-metric-like space.
-
(a)
A sequence \(\{ h_{n} \} \) in T is called convergent to a point \(h \in T\) if \(\lim_{n \to \infty } \sigma _{b} ( h_{n},h ) = \sigma _{b} ( h,h ) \);
-
(b)
A sequence \(\{ h_{n} \} \) in T is called Cauchy if \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n},h_{m} )\) exists and is finite;
-
(c)
The b-metric-like space \(( T,\sigma _{b} )\) is called complete if, for every Cauchy sequence \(\{ h_{n} \}\) in T, there exists \(h \in T\) such that \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n},h_{m} ) = \lim_{n \to \infty } \sigma _{b} ( h_{n},h ) = \sigma _{b} ( h,h )\).
In 2012, the introduction of α-admissible functions by Samet et al. in [29] leads to an extensive development of many notions and properties related to fixed point theory and its applications.
Definition 1.6
Let T be a nonempty set. Let \(f:T \to T\) and \(\alpha :T\times T\rightarrow \mathbb{R}^{+}\) be given functions. We say that f is an α-admissible mapping if \(\alpha ( h,k ) \ge 1\) implies that \(\alpha ( fh,fk ) \ge 1\) for all \(h,k \in T\).
Further, Aydi [30] extended this definition to a pair of mappings.
Definition 1.7
For a nonempty set T, let \(f,g:T \to T\) and \(\alpha :T\times T\rightarrow \mathbb{R}^{+}\) be mappings. We say that \(( f,g )\) is an α-admissible pair if, for all \(h,k \in T\) we have
We here summarize the most important lemmas and results very useful in the main section of the paper.
Lemma 1.8
([21])
Let \(( T,\sigma _{b} )\) be a b-metric-like space with parameter \(s \ge 1\). If a given mapping \(f:T \to T\) is continuous at \(h^{*} \in T\), then we have
The following is a short revised version of the lemma in [22].
Lemma 1.9
Let \(( T,\sigma _{b} )\) be a b-metric-like space with parameter \(s \ge 1\), and suppose that \(\{ h_{n} \}\) is \(\sigma _{b}\)-convergent to h with \(\sigma _{b} ( h,h ) = 0\). Then, for each \(j \in T\), we have
Lemma 1.10
([21])
In a b-metric-like space \(( T,\sigma _{b} )\) with parameter \(s \ge 1\), for \(h,k \in T\) and \(\{ h_{n} \} \subset T\), we have:
-
(a)
\(\sigma _{b}(h,k) = 0 \Rightarrow \sigma _{b}(h,h) = \sigma _{b}(k,k) = 0\);
-
(b)
If \(\lim_{n \to \infty } \sigma _{b}(h_{n},h_{n + 1}) = 0\), then \(\lim_{n \to \infty } \sigma _{b}(h_{n},h_{n}) = \lim_{n \to \infty } \sigma _{b}(h_{n + 1},h_{n + 1}) = 0 \);
-
(c)
\(h \ne k \Rightarrow \sigma _{b}(h,k) > 0\).
Lemma 1.11
([22])
Let \(( T,\sigma _{b} )\) be a complete b-metric-like space and \(\{ h_{n} \} \) be a sequence such that
If, for such a sequence \(\{ h_{n} \} \), \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n},h_{m} ) \ne 0\), then there are \(\varepsilon > 0\) and subsequences of positive integers \(\{ m ( i ) \} \); \(\{ n ( i ) \} \) with \(n_{i} > m_{i} > i\) such that
Lemma 1.12
([22])
Let \(\{ h_{n} \} \) be a sequence in a b-metric-like space \(( T,\sigma _{b} )\) with parameter \(s \ge 1\) such that \(\sigma _{b} ( h_{n},h_{n + 1} ) \le \lambda \sigma _{b} ( h_{n - 1},h_{n} )\) for all \(n > 0\), for some λ, where \(0 \le \lambda < 1 / s\). Then:
-
1.
\(\lim_{n \to \infty } \sigma _{b} ( h_{n},h_{n + 1} ) = 0\),
-
2.
\(\{ h_{n} \} \) is a Cauchy sequence in \(( T,\sigma _{b} )\) and \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n},h_{m} ) = 0\).
Definition 1.13
([22])
Let \(( T,\sigma _{b} )\) be a b-metric-like space, \(f,g:T \to T \) and \(\alpha :T\times T\rightarrow \mathbb{R}^{+}\) be given mappings, and let \(p \ge 1\) be an arbitrary constant. We say that \(( f,g )\) is an \(\alpha _{s^{p}}\)-admissible pair if \(\alpha ( h,k ) \ge s^{p}\) implies \(\min \{ \alpha ( fh,gk ),\alpha ( gk,fh ) \} \ge s^{p}\) for all \(h,k \in T\).
Examples 2 and 3 in [22] illustrate Definition 1.13.
Definition 1.14
([22])
Let \(( T,\sigma _{b} )\) be a b-metric-like space, \(f:T \to T\) and \(\alpha :T\times T\rightarrow \mathbb{R}^{+}\) be given mappings, and let \(p \ge 1\) be an arbitrary constant. We say that f is an \(\alpha _{s^{p}} \)-admissible mapping if \(\alpha ( h,k ) \ge s^{p}\) implies \(\min \{ \alpha ( fh,fk ),\alpha ( fk,fh ) \} \ge s^{p}\) for all \(h,k \in T\).
Also, in the sequel, we recall additional properties given in [22].
(\(H_{s^{p}}\)): If \(\{ h_{n} \} \) is a sequence in T such that \(h_{n} \to h \in T\) as \(n \to \infty \) and \(\alpha ( h_{n},h_{n + 1} ) \ge s^{p}\) and \(\alpha ( h_{n + 1},h_{n} ) \ge s^{p}\), then there exists a subsequence \(\{ h_{n_{i}} \} \) of \(\{ h_{n} \} \) with \(\alpha ( h_{n_{i}},h ) \ge s^{p}\) and \(\alpha ( h,h_{n_{i}} ) \ge s^{p}\) for all \(i\in \mathbb{N}\).
(\(U_{s^{p}}\)): For all \(h,k \in CF ( f,g )\), we have \(\alpha ( h,k ) \ge s^{p}\), where \(CF ( f,g )\) denotes the set of common fixed points of f and g (also \(\operatorname{Fix} ( f )\) is the set of fixed points of f).
Definition 1.15
([31])
A mapping \(F: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}\) is called a C-class function if
-
1)
\(F(m,n) \le m\) for all \(m,n \ge 0\);
-
2)
\(F(m,n) = m\) implies that either \(m = 0\) or \(n = 0\) for all \(m,n \ge 0\);
-
3)
\(F(m,n)\) is continuous on its variables \(m,n \ge 0\).
2 Main results
In this section we present two main theorems. The first is a general result in a larger ambient of spaces that extends and unifies a number of well-known corresponding results related to fixed point theory. The second is an extension of the outstanding classical result of Kannan contraction to the setting of b-metric-like spaces.
Let \(f:T \to T\) be a mapping. We denote
and the following sets of functions:
Definition 2.1
Let \(( T,\sigma _{b} )\) be a b-metric-like space with parameter \(s \ge 1\). A mapping \(f:T \to T\) is said to be an \(\alpha _{s^{p}} - ( C,N,\Theta )\) contraction if f is an \(\alpha _{s^{p}} \)-admissible mapping (\(p > 1\)) and it satisfies
for all \(h,k \in T\), where \(F \in C\), \(\theta \in \Theta \) and \(N ( h,k )\) is defined by (1).
We now state the following general result.
Theorem 2.2
Let \(( T,\sigma _{b} )\) be a complete b-metric-like space with parameter \(s > 1\), and \(f:T \to T\) be an \(\alpha _{s^{p}} - ( C,N,\Theta )\) contraction. Suppose that the following conditions hold:
-
(i)
there exists \(h_{0} \in T\) such that \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(ii)
the properties \(H_{s^{p}}\) and \(U_{s^{p}}\) are satisfied.
Then f has a unique fixed point \(h \in T\).
Proof
From assumption (i) there exists \(h_{0} \in T\) such that \(\alpha ( h_{0},fh_{0} ) \ge s^{p}\). We construct a sequence \(\{ h_{n} \} \) in T by \(h_{n} = f^{n}h_{0} = f ( h_{n - 1} )\) for all \(n\in \mathbb{N}\). If we suppose that \(\sigma _{b} ( h_{n},h_{n + 1} ) = 0\) for some n, then \(h_{n + 1} = h_{n}\), and so f has a fixed point. Consequently, throughout the proof, we assume that
By the \(\alpha _{s^{p}} \)-type admissibility of f, we observe that
Then, inductively,
By (1) and condition (2), we have
where
If we have
then, from inequality (6), we get
Using (5), we obtain
Hence \(\sigma _{b} ( h_{n},h_{n + 1} ) = 0\), that is a contradiction.
Thus, for all \(n\in \mathbb{N}\), \(\sigma _{b} ( h_{n},h_{n + 1} ) \le \sigma _{b} ( h_{n - 1},h_{n} )\) and by (5), we can establish that
As a result, the above inequality can be written as
where \(\lambda = 1 / s^{p} \in [ 0,1 / s )\). By Lemma 1.12 and using (8), we claim
and the sequence \(\{ h_{n} \} \) is Cauchy. \(( T,\sigma _{b} )\) is complete, so there is some \(h \in T\) such that \(\{ h_{n} \} \) converges to h. That is,
The self-map f is not continuous, then from (4) and property \(H_{s^{p}}\), there exists a subsequence \(\{ h_{n_{i}} \} \) of \(\{ h_{n} \} \) such that \(\alpha ( h_{n_{i}},h ) \ge s^{p}\) for all \(i\in \mathbb{N}\). Applying contractive condition (2) to \(h_{n_{i}}\) and h, we obtain
where
By the upper limit in (12) and due to Lemma 1.9, Lemma 1.10, and Eq. (10), we derive
Letting \(i \to \infty \) in (11), and in view of (13) and Lemma 1.9, it follows that
From (14) we get \(\sigma _{b} ( h,fh ) = 0\), which implies that \(fh = h\). Hence h is a fixed point of f.
If \(h,z \in \operatorname{Fix} ( f )\), by the hypothesis \(U_{s^{p}}\), \(\alpha ( h,z ) \ge s^{p}\), and applying (2), we have
where
Since \(s > 1\), the inequality above implies \(\sigma _{b} ( h,h ) = 0\) (similarly, \(\sigma _{b} ( z,z ) = 0\)).
Again by condition (2), we have
where
Inequality (18) implies that \(\sigma _{b} ( h,z ) = 0\). Therefore, \(h = z\) and the fixed point is unique. □
Remark 2.3
-
(i)
The proof of Theorem 2.2 is simply constructive somewhat shorter, and avoid the use of Lemma 1.11.
-
(ii)
The above result reduces to other settings of spaces for the choice of parameters s and p.
-
(iii)
Many applications of Theorem 2.2 are attributed to the variety of class C that makes it to contain many known theorems as special cases.
In the sequel, we provide an illustrative example of Theorem 2.2.
Example 2.4
In \(T = [ 0, + \infty )\), we take \(\sigma _{b} ( h,k ) = ( h + k )^{2}\) for all \(h,k \in T\). Clearly, \(( T,\sigma _{b} )\) is a b-metric-like space with coefficient \(s = 2\). Let us define the mappings \(f:T \to T\) and \(\alpha :T \times T \to [ 0, + \infty [\) by
Let \(h,k \in T\), if \(\alpha ( h,k ) \ge 4 = s^{2}\), then \(h,k \in [ 0,2 )\), and also we have \(fh,fk \in [ 0,1 / 5 )\) and \(\alpha ( fh,fk ) \ge s^{2}\). Thus we have shown that f is an \(\alpha _{s^{p}} \)-admissible mapping. Choosing \(F \in C\) as \(\mathrm{F}(m,n) = m - n\), we discuss the following cases:
Let \(h,k \in [ 0,1 )\), then we get
Let \(h,k \in [ 1,2 )\), then we get
Let \(h \in [ 0,1 )\), \(k \in [ 1,2 )\), then we get
The other case \(k \in [ 0,1 )\), \(h \in [ 1,2 )\) is the same as the previous case.
Obviously, the other assumptions of Theorem 2.2 can be verified and f has \(h = 0\) as a unique fixed point.
On the other hand, if we refer to the metric space with the standard metric \(d ( h,k ) = \vert h - k \vert \) for points \(h = 0\), \(k = 2\) in case \(N ( 0,2 ) = d ( 0,2 )\), we see that
that is, there exists no function \(F \in C\) that satisfies the inequality (and also the Banach contraction principle).
Theorem 2.5
Let \(( T,\sigma _{b} )\) be a complete b-metric-like space with parameter \(s > 1\) and \(f:T \to T\) be a mapping satisfying
for all \(h,k \in T\), where \(\theta \in \Theta \), \(F \in C\), \(p > 1\) and \(N ( h,k )\) is defined by (1). Then f has a fixed point in T.
Proof
It is obtained from Theorem 2.2 by setting \(\alpha ( h,k ) = s^{p}\) (\(p > 1\)). □
Some applications of Theorem 2.2 are the following results by choosing the function \(F \in C\), based on Example 2.13 (see [31]).
Corollary 2.6
Let \(f:T \to T\) be an \(\alpha _{s^{p}} \)-admissible mapping on a complete b-metric-like space \(( T,\sigma _{b} )\) with parameter \(s > 1\). Suppose that the following assertions hold:
-
(i)
There exists a function \(\beta : [ 0,\infty ) \to [ 0,1 )\) satisfying the condition: \(\beta ( h_{n} ) \to 1\) as \(n \to \infty \) implies that \(h_{n} \to 0\) as \(n \to \infty \) such that
$$ \alpha ( h,k )\sigma _{b}(fh,fk) \le \beta \bigl( N(h,k) \bigr) \bigl( N(h,k) \bigr) $$for all \(h,k \in T\);where \(N ( h,k )\) is defined by (1);
-
(ii)
There exists \(h_{0} \in T\) with \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(iii)
Properties \(H_{s^{p}}\); \(U_{s^{p}}\) are satisfied.
Then f has a unique fixed point \(h \in T\).
Proof
It follows from Theorem 2.2 by setting the function \(F \in C\) as \(F ( m,n ) = \beta ( m )m\). □
Corollary 2.7
Let \(f:T \to T\) be an \(\alpha _{s^{p}} \)-admissible mapping on a complete b-metric-like space \(( T,\sigma _{b} )\) with parameter \(s > 1\). Suppose that the following conditions are satisfied:
-
(i)
There exists a continuous function \(\varphi : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\) such that \(\varphi ( t ) < t\) for all \(t > 0\), satisfying
$$ \alpha ( h,k )\sigma _{b}(fh,fk) \le \varphi \bigl( N(h,k) \bigr) $$for all \(h,k \in T\), where \(N ( h,k )\) is defined by (1);
-
(ii)
There exists \(h_{0} \in T\) with \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(iii)
Properties \(H_{s^{p}}\); \(U_{s^{p}}\) are satisfied.
Then f has a unique fixed point \(h \in T\).
Proof
It is derived from Theorem 2.2 by setting \(F ( m,n ) = \varphi ( m )\) where \(\varphi : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\) is continuous such that \(\varphi ( m ) < m\) for all \(m > 0\). □
The next theorem is a new extension of Kannan type contraction and is concerned with common fixed points for a pair of self-mappings. It uses the following definitions.
Definition 2.8
Let \(( T,\sigma _{b} )\) be a complete b-metric-like space with parameter \(s \ge 1\), and \(f,g:T \to T\), \(\alpha :T\times T\rightarrow \mathbb{R}^{+}\) be given mappings. The pair \(( f,g )\) is called a generalized \(\alpha _{s^{p}} - ( I,\Theta ,\Gamma )\)-Kannan contraction pair if there exist \(\psi \in I\), \(\theta \in \Theta \), \(\beta ,\gamma ,\delta \in \Gamma \) satisfying
for all \(h,k \in T\) with \(\alpha ( h,k ) \ge s^{p}(p > 1)\) and \(\theta ( m ) < \psi ( m )\) for all \(m > 0\).
Remark 2.9
If we put \(g = f\), then Definition 2.8 can be stated as generalized \(\alpha _{s^{p}} - ( I,\Theta ,\Gamma )\) Kannan contraction for one mapping.
Theorem 2.10
Let \(( f,g )\) be a pair of self-mappings on a complete b-metric-like space \(( T,\sigma _{b} )\) with coefficient \(s \ge 1\). If \(( f,g )\) is a generalized \(\alpha _{s^{p}} - ( I,\Theta ,\Gamma )\) Kannan contraction pair, and the following conditions hold:
-
(i)
There exists \(h_{0} \in T\) with \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(ii)
\(( f,g )\) is an \(\alpha _{s^{p}} \)-admissible pair;
-
(iii)
Properties \(H_{s^{p}};U_{s^{p}}\) are satisfied.
Then f and g have a unique common fixed point \(h \in T\).
Proof
Since condition (i) holds, there exists \(h_{0} \in T\) with \(\alpha ( h_{0},fh_{0} ) \ge s^{p}\) and \(\alpha ( fh_{0},h_{0} ) \ge s^{p}\). Take \(h_{1} = fh_{0}\) and \(h_{2} = gh_{1}\). By induction, we construct an iterative sequence \(\{ h_{n} \} \) in T such that \(h_{2n + 1} = fh_{2n}\) and \(h_{2n + 2} = gh_{2n + 1}\) for all \(n \ge 0\). Then \(\alpha ( h_{0},h_{1} ) \ge s^{p}\) and \(\alpha ( h_{1},h_{0} ) \ge s^{p}\), by condition (ii) \(( f,g )\) is an \(\alpha _{s^{p}} \)-admissible pair, so we obtain that
Also, we have
Proceeding inductively, we obtain
If, for some \(n \in N\), \(\sigma _{b} ( h_{2n + 1},h_{2n} ) = 0\), then by (19) we have
By properties of ψ, θ, we get \(\sigma _{b} ( h_{2n + 1},h_{2n + 2} ) = 0\), that is, \(h_{2n + 1} = h_{2n + 2}\). Furthermore, that is \(h_{2n} = h_{2n + 1} = fh_{2n}\) and \(h_{2n} = h_{2n + 2} = gh_{2n + 1} = gfh_{2n} = gh_{2n}\). Hence, the proof is concluded. Now, we assume that \(\sigma _{b} ( h_{n},h_{n + 1} ) > 0\) for all \(n \ge 0\). By (20), applying condition (19), we have
If we suppose that \(\theta [ \sigma _{b} ( h_{2n - 1},h_{2n} ) ] \leq \theta [ \sigma _{b} ( h_{2n},h_{2n + 1} ) ]\) for some \(n \in \mathbb{N}\), then inequality (21) takes the form
that is, a contradiction. Hence
By (22) and the properties of ψ, θ, we get
Inequality (23) implies \(\sigma _{b} ( h_{2n},h_{2n + 1} ) \le \sigma _{b} ( h_{2n - 1},h_{2n} )\) for all \(n \in \mathbb{N}\).
That is, the sequence \(\{ \sigma _{b} ( h_{2n + 1},h_{2n} ) \} \) is decreasing. Thus, it is convergent to \(\inf \{ \sigma _{b} ( h_{2n + 1}, h_{2n} ) \} = r \ge 0\). That is, \(\lim_{n \to \infty } \sigma _{b} ( h_{n},h_{n + 1} ) = r\), and also \(\lim_{n \to \infty } \sigma _{b} ( h_{2n},h_{2n + 1} ) = \lim_{n \to \infty } \sigma _{b} ( h_{2n - 1},h_{2n} ) = r\).
If we suppose \(r > 0\), then we consider
and, letting \(n \to \infty \) in (24), we obtain \(\psi ( r ) \le \theta ( r )\), which implies that \(r = 0\), that is,
Now, we prove that \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n}, h_{m} ) = 0\). It is sufficient to show that \(\lim_{n,m \to \infty } \sigma _{b} ( h_{2n}, h_{2m} ) = 0\). If we assume \(\lim_{n,m \to \infty } \sigma _{b} ( h_{2n},h_{2m} ) \ne 0\) then, using Lemma 1.11, there exists \(\varepsilon > 0\), and we can find subsequences \(\{ m_{i} \} \) and \(\{ n_{i} \} \) of positive integers, with \(n_{i} > m_{i} > i\), such that
Since \(\alpha ( h_{2m_{i}},h_{2n_{i} - 1} ) \ge s^{p}\) from (19), we have
Hence, by (26), (27), and (25), we obtain
which implies \(\varepsilon = 0\), a contradiction. Thus, \(\lim_{n,m \to \infty } \sigma _{b} ( h_{n},h_{m} ) = 0\), and the sequence \(\{ h_{n} \} \) is Cauchy. \(( T,\sigma _{b} )\) is complete, so there exists \(h \in T\) such that \(\{ h_{n} \} \) is convergent to h, that is,
By property \(H_{s^{p}}\), there exists a subsequence \(\{ h_{n_{i}} \} \) of \(\{ h_{n} \} \) with \(\alpha ( h_{n_{i}},h ) \ge s^{p}\) and \(\alpha ( h,h_{n_{i}} ) \ge s^{p}\) for all \(i\in \mathbb{N}\). Then, from condition (19), we have
Considering limit superior as \(i \to \infty \) in (29), and due to (25), (28), and Lemma 1.9, we obtain
Inequality (30) yields that \(\sigma _{b} ( h,gh ) = 0\), so \(gh = h\). Similarly, \(fh = h\).
If \(h,j \in C ( f,g )\) with \(h \ne j\), then, by hypothesis \(U_{s^{p}}\) and applying (19), we obtain
that implies \(\sigma _{b} ( h,h ) = 0\) (also \(\sigma _{b} ( j,j ) = 0\)).
Again from (19), we have
a contradiction. Hence, \(h = j\). □
Corollary 2.11
Let \(( f,g )\) be an \(\alpha _{s^{p}} \)-admissible pair of self-mappings on a complete b-metric-like space \(( T,\sigma _{b} )\) with coefficient \(s \ge 1\). If there exist \(\psi \in I\), \(\theta \in \Theta \) and \(c_{1,} c_{2}, c_{3} \in \mathbb{R}^{+}\) with \(c_{1} + c_{2} + c_{3} < 1\) such that
for all \(h,k \in T\); furthermore, the following conditions hold:
-
(i)
there exists \(h_{0} \in T\) such that \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(ii)
properties \(H_{s^{p}}\); \(U_{s^{p}}\) are satisfied,
then f and g have a unique common fixed point \(h \in T\).
Proof
Take in Theorem 2.10, \(\beta ( m ) = c_{1}\), \(\gamma ( m ) = c_{2}\), \(\delta ( m ) = c_{3}\), \(m\ge 0\). □
Corollary 2.12
Let f be an \(\alpha _{s^{p}} \)-admissible self-mapping on a b-metric-like space \(( T,\sigma _{b} )\) with coefficient \(s \ge 1\). If f is a generalized \(\alpha _{s^{p}} - ( I \times \Theta \times \Gamma )\)-Kannan contraction, and the following assertions hold:
-
(i)
there exists \(h_{0} \in T\) such that \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(ii)
conditions \(H_{s^{p}}\); \(U_{s^{p}}\) are satisfied,
then f has a unique fixed point \(h \in T\).
Proof
The proof follows from Theorem 2.10 if we take \(g = f\). □
Corollary 2.13
Let \(( f,g )\) be an \(\alpha _{s^{p}} \)-admissible pair of self-mappings on a complete b-metric-like space \(( T,\sigma _{b} )\) with coefficient \(s \ge 1\). If there exist \(\psi \in I\), \(\theta \in \Theta \), and \(\beta \in \Gamma \) such that
for all \(h,k \in T\) and \(\theta ( m ) < \psi ( m )\) for all \(m > 0\); and the following assertions hold:
-
(i)
there exists \(h_{0} \in T\) such that \(\min \{ \alpha ( h_{0},fh_{0} ),\alpha ( fh_{0},h_{0} ) \} \ge s^{p}\);
-
(ii)
conditions \(H_{s^{p}}\); \(U_{s^{p}}\) are satisfied,
then f and g have a unique common fixed point \(h \in T\).
Proof
By taking \(\gamma ( m ) = \delta ( m ) = \beta ( m )\). □
Remark 2.14
It is evident that we can generate a variety of other corollaries as special cases by putting \(\alpha ( h,k ) = s^{p}\) (\(p > 1\)), or \(g = f\) or \(\psi ( m ) = m\), or defining \(\beta ,\gamma ,\delta \in \Gamma \) as constant functions.
3 Applications
In this section, we discuss an application that attributes the solvability of boundary value problems of second order ordinary differential equations:
for given continuous functions \(M_{1};M_{2}: [ 0,1 ] \times \mathbb{R}\rightarrow \mathbb{R}\).
Let \(T=\complement ( [ 0,1 ],\mathbb{R} )\) be the set of real continuous functions defined on \([ 0,1 ]\), endowed with the b-metric-like
It is evident that \(( T,\sigma _{b} )\) is a complete b-metric-like space with parameter \(s = 2^{n - 1}\) where \(n > 1\).
The equivalent system of integral equations corresponding to boundary value problems (31) is the following:
and \(G ( u,\rho )\) is the Green function given as
Consider the mappings \(f,g:T \to T\) by
and let \(\zeta \mathbb{:R\times R\rightarrow R}\) be a given function.
Theorem 3.1
Consider the system of integral Eqs. (32) and suppose that the following assertions hold:
-
(i)
There exists \(h_{0} \in T\) such that \(\zeta ( h_{0} ( u ),fh_{0} ( u ) ) \ge 0\) for all \(u \in [ 0,1 ]\);
-
(ii)
For all \(u \in [ 0,1 ]\) and \(h,k \in T\),
$$ \zeta \bigl( h ( u ),k ( u ) \bigr) \ge 0\quad \textit{implies that } \zeta \bigl( fh ( u ),gk ( u ) \bigr) \ge 0; $$ -
(iii)
Properties \(H_{s^{p}}\) and \(U_{s^{p}}\) are satisfied;
-
(iv)
There exist \(n > 1\), \(p > 1\), \(\lambda \in ( 0,1 )\) and a continuous function \(\theta : \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\) such that
$$\bigl( \bigl\vert M_{1} \bigl( \rho ,h ( \rho ) \bigr) \bigr\vert + \bigl\vert M_{2} \bigl( \rho ,h ( \rho ) \bigr) \bigr\vert \bigr) \le \sqrt[n]{L2^{p}\theta \bigl[ \bigl( \bigl\vert h ( \rho ) \bigr\vert + \bigl\vert k ( \rho ) \bigr\vert \bigr)^{n} \bigr]} $$for all \(\rho \in [ 0,1 ]\), \(h,k \in T\);
-
(v)
For all \(\rho \in [ 0,1 ]\), \(\sup_{u \in [ 0,1 ]}\int _{0}^{1} G ( u,\rho ) \,d\rho \le \frac{1}{2}\).
Then the system of integral Eqs. (32) (or equivalently, (31)) has a unique solution in T.
Proof
We define a function \(\alpha :T \times T \to [ 0,\infty )\) by
It is clear that \(( f,g )\) is an \(\alpha _{s^{p}}\)-admissible pair.
Let \(h,k\in T=\complement ( [ 0,1 ] \mathbb{,R} )\) be such that \(\alpha ( h ( u ),k ( u ) ) \ge s^{p}\), i.e., \(\zeta ( fh ( u ),gk ( u ) ) \ge 0\), then from the assertions above, for all \(u \in [ 0,1 ]\), we might observe that
Since \(G ( u,\rho ) = \frac{u}{2} - \frac{u^{2}}{2}\) and \(\sup_{u \in [ 0,1 ]}\int _{0}^{1} G ( u,\rho ) \,d\rho \le \frac{1}{8}\) (in that case, the coefficient \(p = 3 > 1\)), then inequality (33) can be written
Hence,
and we convert the result to
Thus, taking \(\psi ( x ) = x\), and \(\beta ,\gamma ,\delta \in \Gamma \) as \(\beta ( x ) = \lambda \), \(\gamma ( x ) = 0\), \(\delta ( x ) = 0\), where \(\lambda \in ( 0,1 )\), from inequality (34) we deduce
Therefore, Theorem 2.10 can be applied to obtain a solution of the system of boundary value problems (31). □
Availability of data and materials
Please contact the authors for data request.
References
Younis, M., Singh, D., Asadi, M., Joshi, V.: Results on contractions of Reich type in graphical b-metric spaces with applications. Filomat 33(17), 5723–5735 (2019)
Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T.: Controlled metric type spaces and the related contraction principle. Mathematics 6(10), 194 (2018)
Aydi, H., Chen, C.M., Karapinar, E.: Interpolative Ciric-Reich-Rus type contractions via the Branciari distance. Mathematics 7(1), 84 (2019)
Alghamdi, M., Ozyurt, S.G., Karapinar, E.: A note on extended Z-contraction. Mathematics 8(2), 195 (2020)
Marasi, H.R., Aydi, H.: Existence and uniqueness results for two-term nonlinear fractional differential equations via a fixed point technique. J. Math. 2021, Article ID 6670176 (2021)
Karapinar, E., Chifu, C.: Results in wt-distance over b-metric spaces. Mathematics 8, 195 (2020)
Ameer, E., Aydi, H., Arshad, M., De la Sen, M.: Hybrid Ćirić type graphic \((\Upsilon, \Lambda)\)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 12(3), 467 (2020)
Karapinar, E., Fulga, A., Petrusel, P.: On Isatratscu type contractions in b-metric spaces. Mathematics 8, 388 (2020)
Patle, P., Patel, D., Aydi, H., Radenovic, S.: On \(H^{+}\)-type multivalued contractions and applications in symmetric and probabilistic spaces. Mathematics 7(2), 144 (2019)
Karapinar, E., Chifu, C.: Admissible hybrid Z-contractions in b-metric spaces. Axioms 9, 2 (2020)
Parvaneh, V., Haddadi, M.R., Aydi, H.: On best proximity point results for some type of mappings. J. Funct. Spaces 2020, Article ID 6298138 (2020)
Eshraghisamani, M., Vaezpour, M.S., Asadi, M.: New fixed point results with \(\alpha _{qs^{p}} \)-admissible contractions on b-Branciari metric spaces. J. Inequal. Spec. Funct. 9(4), 38–46 (2018)
Zoto, K., Radenovic, S., Dine, J., Vardhami, I.: Fixed points of generalized (ψ, s, α)-contractive mappings in dislocated and b-dislocated metric spaces. Commun. Optim. Theory 2017, 1 (2017)
Zoto, K., Vardhami, I.: Common fixed point results for generalized \(\alpha _{sp}\)-contractive mappings and applications. J. Funct. Spaces 2018, Article ID 1282414 (2018)
Zoto, K., Rhoades, B.E., Radenovic, S.: Common fixed point theorems for a class of \(( s,q ) \)-contractive mappings in b-metric-like spaces and applications to integral equations. Math. Slovaca 69(1), 1–15 (2019)
Zoto, K., Radenovic, S., Ansari, A.H.: On some fixed point results for \(( s,p,\alpha )\)-contractive mappings in b-metric-like spaces and applications to integral equations. Open Math. 16, 235–249 (2018)
Afshari, H., Aydi, H., Karapınar, E.: On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 27, 9–21 (2020)
Karapinar, E., Czerwik, S., Aydi, H.: (\(\alpha,\psi\))-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, Article ID 3264620 (2018)
Eshraghisamani, M., Vaezpour, M.S., Asadi, M.: New fixed point results on Branciari metric spaces. J. Math. Anal. 8(6), 132–141 (2017)
Aydi, H., Lakzian, H., Mitrovic, Z.D., Radenovic, S.: Best proximity points of MF-cyclic contractions with property UC. Numer. Funct. Anal. Optim. 41(7), 871–882 (2020)
Zoto, K., Rhoades, B.E., Radenovic, S.: Some generalizations for \(( \alpha - \psi ,\varphi )\) contractions in b-metric-like spaces and an application. Fixed Point Theory Appl. 2017, 26 (2017)
Hussain, N., Radenovic, S., Zoto, K.: Common fixed point results of (\(\alpha - \psi , \varphi \))-contractions for a pair of mappings and applications. Mathematics 6, 182 (2018)
Zoto, K., Mlaiki, N., Aydi, H.: Related fixed point theorems via general approach of simulations functions. J. Math. 2020, Article ID 4820191 (2020)
Matthews, S.G.: Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., vol. 728, pp. 183–197 (1994)
Hitzler, P., Seda, A.K.: Dislocated topologies. J. Electr. Eng. 51(12), 3–7 (2000)
Amini-Harandi, A.: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 204 (2012)
Alghamdi, M.A., Hussain, N., Salimi, P.: Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 402 (2013)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)
Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha - \psi \)-contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)
Aydi, H.: α-Implicit contractive pair of mappings on quasi b-metric spaces and an application to integral equations. J. Nonlinear Convex Anal. 17(12), 2417–2433 (2016)
Hoxha, E., Ansari, A.H., Zoto, K.: Some common fixed point results through generalized altering distances on dislocated metric spaces. In: Proceedings of EIIC, September 1–5, pp. 403–409 (2014)
Acknowledgements
The authors extend their appreciation to the Deanship of Post Graduate and Scientific Research at Dar Al Uloom University for funding this work.
Funding
No funding sources to be declared.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zoto, K., Aydi, H. & Alsamir, H. Generalizations of some contractions in b-metric-like spaces and applications to boundary value problems. Adv Differ Equ 2021, 262 (2021). https://doi.org/10.1186/s13662-021-03412-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03412-x