In this section, we assume that the set \(S_{*}\) of all solutions of problem (1.1) is nonempty. We propose new algorithms by combining a new linesearch technique and prove weak convergence theorems. We assume that
-
(1)
\(f , g : H \rightarrow \mathbb{R}\cup \{+\infty \}\) are proper lower semicontinuous convex functions, f is differentiable on H and
-
(2)
the gradient ∇f is uniformly continuous and bounded on bounded subsets of H.
Note that the latter condition holds if ∇f is Lipschitz continuous on H.
Algorithm 3.1
Given \(\sigma >0\), \(\theta \in (0,1)\), \(\gamma \in (0,2)\), and \(\delta \in (0,\frac{1}{6})\). Let \(x^{0}\in H\).
Step 1. Calculate
$$ y^{k}=\mathrm{prox}_{\alpha _{k}g} \bigl(x^{k}-\alpha _{k}\nabla f\bigl(x^{k} \bigr)\bigr) $$
and
$$ z^{k}=\mathrm{prox}_{\alpha _{k}g} \bigl(y^{k}-\alpha _{k}\nabla f\bigl(y^{k} \bigr)\bigr), $$
where \(\alpha _{k}=\sigma \theta ^{m_{k}}\) with \(m_{k}\) the smallest nonnegative integer such that
$$ \alpha _{k}\cdot \max \bigl\{ \bigl\Vert \nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr) \bigr\Vert , \bigl\Vert \nabla f\bigl(z^{k}\bigr)- \nabla f\bigl(y^{k} \bigr) \bigr\Vert \bigr\} \leq \delta \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr). $$
(3.1)
Step 2. Calculate
$$ x^{k+1}=x^{k}-\gamma \eta _{k}d_{k}, $$
where
$$ d_{k}=x^{k}-z^{k}- \alpha _{k}\bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(z^{k}\bigr)\bigr) \quad \mbox{and} \quad \eta _{k}= \frac{(\frac{1}{2}-3\delta )( \Vert x^{k}-y^{k} \Vert ^{2}+ \Vert z^{k}-y^{k} \Vert ^{2})}{ \Vert d_{k} \Vert ^{2}}. $$
Set \(k:=k+1\), and go to Step 1.
Remark 3.2
For variational inequality problem, this kind of method is firstly appeared in Noor [18, 19, 22]
Lemma 3.3
([14])
Linesearch (3.1) stops after finitely many steps.
Theorem 3.4
Let \((x^{k} )\) and \((\alpha _{k} )\) be generated by Algorithm 3.1. Assume that there is \(\alpha > 0\) such that \(\alpha _{k}\geq \alpha > 0\) for all \(k \in \mathbb{N}\). Then \((x^{k} )\) weakly converges to an element of \(S_{*}\).
Proof
Let \(x_{*}\) be a solution in \(S_{*}\). Then we obtain
$$\begin{aligned} \bigl\Vert x^{k+1}-x_{*} \bigr\Vert ^{2} =& \bigl\Vert x^{k}-\gamma \eta _{k}d_{k}-x_{*} \bigr\Vert ^{2} \\ =& \bigl\Vert x^{k}-x_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\bigl\langle x^{k}-x_{*},d_{k} \bigr\rangle +\gamma ^{2}\eta _{k}^{2} \Vert d_{k} \Vert ^{2}. \end{aligned}$$
(3.2)
Since \(y^{k}=\mathrm{prox}_{\alpha _{k}g}(x^{k}-\alpha _{k}\nabla f(x^{k}))\), we have \((\mathrm{Id}-\alpha _{k}\nabla f)(x^{k})\in (\mathrm{Id}+\alpha _{k}\partial g)(y^{k})\). Moreover, ∂g is maximal monotone, so there is \(u^{k}\in \partial g(y^{k})\) such that
$$ (\mathrm{Id}-\alpha _{k}\nabla f) \bigl(x^{k} \bigr)=y^{k}+\alpha _{k}u^{k}. $$
So we have
$$ u^{k}=\frac{1}{\alpha _{k}}\bigl(x^{k}-y^{k}- \alpha _{k}\nabla f\bigl(x^{k}\bigr)\bigr). $$
(3.3)
Note that \(0\in \nabla f(x_{*})+\partial g(x_{*})\subseteq \partial (f+g)(x_{*})\) and \(\nabla f(y^{k})+u^{k}\in \partial (f+g)y^{k}\). Therefore we obtain
$$ \bigl\langle \nabla f\bigl(y^{k} \bigr)+u^{k},y^{k}-x_{*}\bigr\rangle \geq 0. $$
(3.4)
Using (3.3) and (3.4), we have
$$ \frac{1}{\alpha _{k}}\bigl\langle x^{k}-y^{k}-\alpha _{k}\nabla f \bigl(x^{k}\bigr)+ \alpha _{k}\nabla f \bigl(y^{k}\bigr),y^{k}-x_{*}\bigr\rangle \geq 0. $$
It follows that
$$ \bigl\langle x^{k}-y^{k}-\alpha _{k}\bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr)\bigr),y^{k}-x_{*} \bigr\rangle \geq 0. $$
(3.5)
From \(z^{k}=\mathrm{prox}_{\alpha _{k}g}(y^{k}-\alpha _{k}\nabla f(y^{k}))\) we get \((\mathrm{Id}-\alpha _{k}\nabla f)(y^{k})\in (\mathrm{Id}+\alpha _{k}\partial g)(z^{k})\). Since ∂g is maximal monotone, there is \(v^{k}\in \partial g(z^{k})\) such that
$$ (\mathrm{Id}-\alpha _{k}\nabla f) \bigl(y^{k} \bigr)=z^{k}+\alpha _{k}v^{k}. $$
This shows that
$$ v^{k}=\frac{1}{\alpha _{k}}\bigl(y^{k}-z^{k}- \alpha _{k}\nabla f\bigl(y^{k}\bigr)\bigr). $$
(3.6)
Similarly to \(y^{k}\), we can show that
$$ \bigl\langle y^{k}-z^{k}-\alpha _{k}\bigl(\nabla f\bigl(y^{k}\bigr)-\nabla f \bigl(z^{k}\bigr)\bigr),z^{k}-x_{*} \bigr\rangle \geq 0. $$
(3.7)
Combining (3.5) and (3.7), we have
$$\begin{aligned} 0 \leq &\bigl\langle x^{k}-y^{k}-\alpha _{k}\bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr)\bigr),y^{k}-x_{*} \bigr\rangle +\bigl\langle y^{k}-z^{k}-\alpha _{k} \bigl(\nabla f\bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr),z^{k}-x_{*} \bigr\rangle \\ =&\bigl\langle x^{k}-y^{k}-\alpha _{k} \bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr) \bigr),y^{k}-z^{k} \bigr\rangle +\bigl\langle x^{k}-y^{k}-\alpha _{k}\bigl(\nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr) \bigr),z^{k}-x_{*} \bigr\rangle \\ &{}+\bigl\langle y^{k}-z^{k}-\alpha _{k} \bigl(\nabla f\bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr),z^{k}-x_{*} \bigr\rangle \\ =&\bigl\langle x^{k}-y^{k}-\alpha _{k} \bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr) \bigr),y^{k}-z^{k} \bigr\rangle \\ &{}+\bigl\langle x^{k}-z^{k}-\alpha _{k}\bigl(\nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr),z^{k}-x_{*} \bigr\rangle . \end{aligned}$$
(3.8)
We consider
$$\begin{aligned}& \bigl\langle x^{k}-y^{k}-\alpha _{k}\bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr)\bigr),y^{k}-z^{k} \bigr\rangle \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl\langle \nabla f\bigl(y^{k} \bigr)-\nabla f\bigl(x^{k}\bigr),y^{k}-z^{k} \bigr\rangle \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle +\bigl\langle \nabla f\bigl(z^{k}\bigr)- \nabla f \bigl(x^{k}\bigr),y^{k}-z^{k}\bigr\rangle \bigr] \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle \\& \qquad {}+\bigl\langle \nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle +\bigl\langle \nabla f\bigl(x^{k}\bigr),z^{k}-y^{k} \bigr\rangle \bigr] \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle +\bigl\langle \nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle \\& \qquad {} +\bigl\langle \nabla f\bigl(x^{k}\bigr),z^{k}-x^{k} \bigr\rangle +\bigl\langle \nabla f\bigl(x^{k}\bigr),x^{k}-y^{k} \bigr\rangle \bigr] \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle \\& \qquad {}+\bigl\langle \nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle +\bigl\langle \nabla f\bigl(x^{k}\bigr),z^{k}-x^{k} \bigr\rangle \\& \qquad {} +\bigl\langle \nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr),x^{k}-y^{k}\bigr\rangle + \bigl\langle \nabla f\bigl(y^{k}\bigr),x^{k}-y^{k} \bigr\rangle \bigr]. \end{aligned}$$
By the convexity of f we have
$$\begin{aligned}& \bigl\langle x^{k}-y^{k}-\alpha _{k}\bigl( \nabla f\bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr) \bigr),y^{k}-z^{k} \bigr\rangle \\& \quad \leq \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle +f\bigl(y^{k}\bigr)-f\bigl(z^{k}\bigr)+f \bigl(z^{k}\bigr)-f\bigl(x^{k}\bigr) \\& \qquad {} +\bigl\langle \nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr),x^{k}-y^{k}\bigr\rangle +f \bigl(x^{k}\bigr)-f\bigl(y^{k}\bigr)\bigr] \\& \quad = \bigl\langle x^{k}-y^{k},y^{k}-z^{k} \bigr\rangle +\alpha _{k}\bigl[\bigl\langle \nabla f \bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr),y^{k}-z^{k} \bigr\rangle \\& \qquad {}+\bigl\langle \nabla f\bigl(x^{k}\bigr)- \nabla f \bigl(y^{k}\bigr),x^{k}-y^{k}\bigr\rangle \bigr]. \end{aligned}$$
(3.9)
Using \(2\langle x^{k}-y^{k},y^{k}-z^{k}\rangle =\|x^{k}-z^{k}\|^{2}-\|x^{k}-y^{k} \|^{2}-\|y^{k}-z^{k}\|^{2}\), (3.1), (3.8), and (3.9), we see that
$$\begin{aligned}& -\bigl\langle x^{k}-z^{k}-\alpha _{k}\bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(z^{k}\bigr)\bigr),z^{k}-x_{*} \bigr\rangle \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr]+\alpha _{k}\bigl[\bigl\langle \nabla f\bigl(y^{k}\bigr)-\nabla f\bigl(z^{k} \bigr),y^{k}-z^{k} \bigr\rangle \\& \qquad {} +\bigl\langle \nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr),x^{k}-y^{k}\bigr\rangle \bigr] \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr]+\alpha _{k}\bigl[ \bigl\Vert \nabla f\bigl(y^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr\Vert \bigl\Vert y^{k}-z^{k} \bigr\Vert \\& \qquad {} + \bigl\Vert \nabla f\bigl(x^{k}\bigr)-\nabla f \bigl(y^{k}\bigr) \bigr\Vert \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigr] \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr]+\delta \bigl[\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr) \bigl\Vert y^{k}-z^{k} \bigr\Vert \\& \qquad {} +\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr) \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigr] \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr]+\delta \bigl[ \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigl\Vert y^{k}-z^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2} \\& \qquad {} + \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigr] \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr] \\& \qquad {}+\delta \bigl[2 \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigl\Vert y^{k}-z^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}\bigr] \\& \quad \leq \frac{1}{2}\bigl[ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}- \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr]+2\delta \bigl[ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}\bigr] \\& \quad \leq \frac{1}{2} \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}-\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}. \end{aligned}$$
So we have
$$ \bigl\langle d_{k},z^{k}-x_{*} \bigr\rangle \geq -\frac{1}{2} \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}. $$
(3.10)
Using the definition of \(d_{k}\) and Linesearch (3.1), we have
$$\begin{aligned}& \bigl\langle d_{k}, x^{k}-x_{*} \bigr\rangle \\& \quad = \bigl\langle x^{k}-z^{k}-\alpha _{k} \bigl(\nabla f\bigl(x^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr),x^{k}-z^{k} \bigr\rangle +\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad = \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\alpha _{k}\bigl\langle x^{k}-z^{k}, \nabla f\bigl(x^{k}\bigr)- \nabla f\bigl(z^{k}\bigr)\bigr\rangle +\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad = \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\alpha _{k}\bigl\langle x^{k}-z^{k}, \nabla f\bigl(x^{k}\bigr)- \nabla f\bigl(y^{k}\bigr)\bigr\rangle -\alpha _{k}\bigl\langle x^{k}-z^{k}, \nabla f\bigl(y^{k}\bigr)- \nabla f\bigl(z^{k}\bigr)\bigr\rangle \\& \qquad {}+\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad \geq \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\alpha _{k} \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert \nabla f\bigl(x^{k}\bigr)- \nabla f \bigl(y^{k}\bigr) \bigr\Vert -\alpha _{k} \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert \nabla f \bigl(y^{k}\bigr)- \nabla f\bigl(z^{k}\bigr) \bigr\Vert \\& \qquad {} +\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad \geq \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\delta \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr) \\& \qquad {}-\delta \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr) \\& \qquad {} +\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad = \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\delta \bigl( \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr) \\& \qquad {} -\delta \bigl( \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr)+\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad = \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\delta \bigl(2 \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert x^{k}-y^{k} \bigr\Vert +2 \bigl\Vert x^{k}-z^{k} \bigr\Vert \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr)+\bigl\langle d_{k},z^{k}-x_{*}\bigr\rangle \\& \quad \geq \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\delta \bigl( \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+ \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr)+\bigl\langle d_{k},z^{k}-x_{*} \bigr\rangle \\& \quad = (1-2\delta ) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\delta \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr)+\bigl\langle d_{k},z^{k}-x_{*} \bigr\rangle . \end{aligned}$$
(3.11)
From (3.10) and (3.11) we have
$$\begin{aligned} \bigl\langle d_{k}, x^{k}-x_{*} \bigr\rangle \geq &(1-2\delta ) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}- \delta \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr)-\frac{1}{2} \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2} \\ &{}+\biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2} \\ =& \biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+\biggl( \frac{1}{2}-3\delta \biggr) \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr). \end{aligned}$$
(3.12)
Since \(\eta _{k}= \frac{(\frac{1}{2}-3\delta )(\|x^{k}-y^{k}\|^{2}+\|z^{k}-y^{k}\|^{2})}{\|d_{k}\|^{2}}\), we have \(\eta _{k}\|d_{k}\|^{2}=(\frac{1}{2}-3\delta )(\|x^{k}-y^{k}\|^{2}+\|z^{k}-y^{k} \|^{2})\). So
$$ \bigl\langle d_{k}, x^{k}-x_{*} \bigr\rangle \geq \biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+\eta _{k} \Vert d_{k} \Vert ^{2}. $$
(3.13)
This gives
$$ -2\gamma \eta _{k}\bigl\langle d_{k}, x^{k}-x_{*}\bigr\rangle \leq -2\gamma \eta _{k}\biggl(\frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-2\gamma \eta _{k}^{2} \Vert d_{k} \Vert ^{2}. $$
(3.14)
Therefore from (3.2) and the above we obtain
$$\begin{aligned} \bigl\Vert x^{k+1}-x_{*} \bigr\Vert ^{2} \leq & \bigl\Vert x^{k}-x_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-2\gamma \eta _{k}^{2} \Vert d_{k} \Vert ^{2}+\gamma ^{2}\eta _{k}^{2} \Vert d_{k} \Vert ^{2} \\ =& \bigl\Vert x^{k}-x_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\biggl(\frac{1}{2}-2 \delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\frac{2-\gamma }{\gamma } \Vert \gamma \eta _{k}d_{k} \Vert ^{2}. \end{aligned}$$
(3.15)
By the monotonicity of ∇f we get
$$\begin{aligned} \Vert d_{k} \Vert ^{2} =& \bigl\Vert x^{k}-z^{k}-\alpha _{k}\bigl(\nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(z^{k}\bigr)\bigr) \bigr\Vert ^{2} \\ =& \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+\alpha _{k}^{2} \bigl\Vert \nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr\Vert ^{2}-2\alpha _{k}\bigl\langle x^{k}-z^{k}, \nabla f\bigl(x^{k}\bigr)-\nabla f\bigl(z^{k}\bigr) \bigr\rangle \\ \leq & \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+\alpha _{k}^{2} \bigl\Vert \nabla f \bigl(x^{k}\bigr)-\nabla f\bigl(y^{k}\bigr)+ \nabla f \bigl(y^{k}\bigr)\nabla -f\bigl(z^{k}\bigr) \bigr\Vert ^{2} \\ \leq & \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+2\alpha _{k}^{2}\bigl[ \bigl\Vert \nabla f\bigl(x^{k}\bigr)- \nabla f\bigl(y^{k}\bigr) \bigr\Vert ^{2}+ \bigl\Vert \nabla f\bigl(y^{k}\bigr) \nabla -f\bigl(z^{k}\bigr) \bigr\Vert ^{2}\bigr] \\ \leq & \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+2\alpha _{k}^{2}\bigl[\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr)^{2}+\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert \bigr)^{2}\bigr] \\ \leq & \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}+4\alpha _{k}^{2}\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+2 \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigl\Vert z^{k}-y^{k} \bigr\Vert + \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr) \\ \leq & \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+2 \bigl\Vert x^{k}-y^{k} \bigr\Vert \bigl\Vert y^{k}-z^{k} \bigr\Vert + \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}+8\alpha _{k}^{2}\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr) \\ \leq & 2\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr)+8\alpha _{k}^{2}\bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr) \\ =&\bigl(2+8\delta ^{2}\bigr) \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert y^{k}-z^{k} \bigr\Vert ^{2}\bigr) \end{aligned}$$
(3.16)
and, equivalently,
$$ \frac{1}{ \Vert d_{k} \Vert ^{2}} \geq \frac{1}{(2+8\delta ^{2})( \Vert x^{k}-y^{k} \Vert ^{2}+ \Vert y^{k}-z^{k} \Vert ^{2})}. $$
(3.17)
Therefore we have
$$ \eta _{k}= \frac{(\frac{1}{2}-3\delta )( \Vert x^{k}-y^{k} \Vert ^{2}+ \Vert z^{k}-y^{k} \Vert ^{2})}{ \Vert d_{k} \Vert ^{2}} \geq \frac{(\frac{1}{2}-3\delta )}{(2+8\delta ^{2})}>0. $$
On the other hand, we have
$$ \eta _{k} \Vert d_{k} \Vert ^{2}=\biggl(\frac{1}{2}-3\delta \biggr) \bigl( \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2}\bigr). $$
(3.18)
Thus it follows that
$$\begin{aligned} \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2} =&\frac{1}{(\frac{1}{2}-3\delta )} \eta _{k} \Vert d_{k} \Vert ^{2} \\ =&\frac{1}{(\frac{1}{2}-3\delta )(\gamma ^{2}\eta _{k})} \Vert \gamma \eta _{k}d_{k} \Vert ^{2}. \end{aligned}$$
(3.19)
From (3.18) and (3.19) we get
$$ \bigl\Vert x^{k}-y^{k} \bigr\Vert ^{2}+ \bigl\Vert z^{k}-y^{k} \bigr\Vert ^{2} \leq \frac{(2+8\delta ^{2})}{(\frac{1}{2}-3\delta )} \Vert \gamma \eta _{k}d_{k} \Vert ^{2}. $$
Since \(x^{k+1}=x^{k}-\gamma \eta _{k}d_{k}\), it follows that \(\gamma \eta _{k}d_{k}=x^{k}-x^{k+1}\). This implies that
$$ \bigl\Vert x^{k+1}-x_{*} \bigr\Vert ^{2} \leq \bigl\Vert x^{k}-x_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2}-\frac{2-\gamma }{\gamma } \bigl\Vert x^{k}-x^{k+1} \bigr\Vert ^{2}. $$
(3.20)
Thus \(\lim_{k\rightarrow \infty }\|x^{k}-x_{*}\|\) exists, and \((x^{k})\) is bounded. Note that by (3.20)
$$ \frac{2-\gamma }{\gamma } \bigl\Vert x^{k}-x^{k+1} \bigr\Vert ^{2}+2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert x^{k}-z^{k} \bigr\Vert ^{2} \leq \bigl\Vert x^{k}-x_{*} \bigr\Vert ^{2}- \bigl\Vert x^{k+1}-x_{*} \bigr\Vert ^{2}. $$
Hence \(\|x^{k}-z^{k}\|\rightarrow 0\) and \(\|x^{k+1}-x^{k}\|\rightarrow 0\) as \(k\rightarrow \infty \). It follows that \(\|x^{k}-y^{k}\|\rightarrow 0\) and \(\|y^{k}-z^{k}\|\rightarrow 0\) as \(k\rightarrow \infty \). By the boundedness of \((x^{k} )\) we know that the set of its weak limit points is nonempty. Let \(x^{\infty }\in \omega _{w}(x^{k})\). Then there is a subsequence \((x^{k_{n}})\) of \((x^{k})\) such that \(x^{k_{n}}\rightharpoonup x^{\infty }\). Next, we show that \(x^{\infty }\in S_{*}\). Let \((v,u)\in \operatorname{Gph}(\nabla f+\partial g)\), that is, \(u-\nabla f(v)\in \partial g(v)\). Since \(y^{k_{n}}=(\mathrm{Id}+\alpha _{k_{n}}\partial g)^{-1}(\mathrm{Id}-\alpha _{k_{n}} \nabla f)x^{k_{n}}\), we have
$$ (\mathrm{Id}-\alpha _{k_{n}}\nabla f)x^{k_{n}} \in (\mathrm{Id}+\alpha _{k_{n}}\partial g)y^{k_{n}}, $$
which gives
$$ \frac{1}{\alpha _{k_{n}}}\bigl(x^{k_{n}}-y^{k_{n}}- \alpha _{k_{n}}\nabla f\bigl(x^{k_{n}}\bigr)\bigr) \in \partial g \bigl(y^{k_{n}}\bigr). $$
Since ∂g is maximal monotone, it follows that
$$ \biggl\langle v-y^{k_{n}},u-\nabla f(v)-\frac{1}{\alpha _{k_{n}}} \bigl(x^{k_{n}}-y^{k_{n}}- \alpha _{k_{n}}\nabla f \bigl(x^{k_{n}}\bigr)\bigr)\biggr\rangle \geq 0. $$
This shows that
$$\begin{aligned} \bigl\langle v-y^{k_{n}},u\bigr\rangle \geq &\biggl\langle v-y^{k_{n}},\nabla f(v)+ \frac{1}{\alpha _{k_{n}}} \bigl(x^{k_{n}}-y^{k_{n}}-\alpha _{k_{n}}\nabla f \bigl(x^{k_{n}}\bigr)\bigr) \biggr\rangle \\ =&\bigl\langle v-y^{k_{n}},\nabla f(v)-\nabla f\bigl(x^{k_{n}} \bigr)\bigr\rangle + \biggl\langle v-y^{k_{n}},\frac{1}{\alpha _{k_{n}}} \bigl(x^{k_{n}}-y^{k_{n}}\bigr) \biggr\rangle \\ =&\bigl\langle v-y^{k_{n}},\nabla f(v)-\nabla f\bigl(y^{k_{n}} \bigr)\bigr\rangle + \bigl\langle v-y^{k_{n}},\nabla f \bigl(y^{k_{n}}\bigr)-\nabla f\bigl(x^{k_{n}}\bigr)\bigr\rangle \\ &{}+\biggl\langle v-y^{k_{n}},\frac{1}{\alpha _{k_{n}}}\bigl(x^{k_{n}}-y^{k_{n}} \bigr) \biggr\rangle \\ \geq &\bigl\langle v-y^{k_{n}},\nabla f\bigl(y^{k_{n}}\bigr)- \nabla f\bigl(x^{k_{n}}\bigr) \bigr\rangle +\biggl\langle v-y^{k_{n}},\frac{1}{\alpha _{k_{n}}}\bigl(x^{k_{n}}-y^{k_{n}} \bigr) \biggr\rangle . \end{aligned}$$
(3.21)
Since \(\lim_{k\rightarrow \infty }\|x^{k}-y^{k}\|=0\), by the assumption we have \(\lim_{k\rightarrow \infty }\|\nabla f(x^{k})-\nabla f(y^{k}) \|=0\). Taking the limit as \(n\to \infty \) in (3.21), we have
$$ \bigl\langle v-x^{\infty },u\bigr\rangle \geq 0. $$
Thus \(0\in (\nabla f+\partial g)x^{\infty }\), and consequently \(x^{\infty }\in S_{*}\). By Lemma 2.4 we conclude that \((x^{k})\) converges weakly to an element of \(S_{*}\). Thus we complete the proof. □
Remark 3.5
If ∇f is L-Lipschitz continuous, then the condition on \(\alpha _{k}\) in Theorem 3.4 can be removed since \(\alpha _{k}\geq \min \{\sigma ,\delta \theta /L\}>0\); see [3].
Next, we introduce a new projected forward–backward algorithm and the convergence analysis. We denote by \(\Omega \cap \operatorname{argmin}(f+g)\) the solution set of (1.5). Assume that this solution set is nonempty.
Algorithm 3.6
Given \(\sigma >0\), \(\theta \in (0,1)\), \(\gamma \in (0,2)\), and \(\delta \in (0,\frac{1}{6})\). Let \(w^{0}\in H\).
Step 1. Calculate
$$ x^{k}=\mathrm{prox}_{\alpha _{k}g} \bigl(w^{k}-\alpha _{k}\nabla f\bigl(w^{k} \bigr)\bigr) $$
and
$$ y^{k}=\mathrm{prox}_{\alpha _{k}g} \bigl(x^{k}-\alpha _{k}\nabla f\bigl(x^{k} \bigr)\bigr), $$
where \(\alpha _{k}=\sigma \theta ^{m_{k}}\) with \(m_{k}\) the smallest nonnegative integer such that
$$ \alpha _{k}\cdot \max \bigl\{ \bigl\Vert \nabla f \bigl(w^{k}\bigr)-\nabla f\bigl(x^{k}\bigr) \bigr\Vert , \bigl\Vert \nabla f\bigl(y^{k}\bigr)- \nabla f\bigl(x^{k} \bigr) \bigr\Vert \bigr\} \leq \delta \bigl( \bigl\Vert w^{k}-x^{k} \bigr\Vert + \bigl\Vert y^{k}-x^{k} \bigr\Vert \bigr). $$
(3.22)
Step 2. Calculate
$$ z^{k}=w^{k}-\gamma \eta _{k}d_{k}, $$
where
$$ d_{k}=w^{k}-y^{k}- \alpha _{k}\bigl(\nabla f\bigl(w^{k}\bigr)-\nabla f \bigl(y^{k}\bigr)\bigr) \quad \mbox{and} \quad \eta _{k}= \frac{(\frac{1}{2}-3\delta )( \Vert w^{k}-x^{k} \Vert ^{2}+ \Vert y^{k}-x^{k} \Vert ^{2})}{ \Vert d_{k} \Vert ^{2}}. $$
Step 3. Calculate
$$ w^{k+1}=P_{\Omega } \bigl(z^{k}\bigr). $$
Set \(k:=k+1\), and go to Step 1.
Theorem 3.7
Let \((x^{k} )\) and \((\alpha _{k} )\) be generated by Algorithm 3.6. Assume that there is \(\alpha > 0\) such that \(\alpha _{k}\geq \alpha > 0\) for all \(k \in \mathbb{N}\). Then \((x^{k} )\) weakly converges to an element of \(\Omega \cap \operatorname{argmin}(f+g)\).
Proof
Let \(w_{*}\) be a solution in \(\Omega \cap \operatorname{argmin}(f+g)\). Then using Lemma 2.1(ii), we have
$$\begin{aligned} \bigl\Vert w^{k+1}-w_{*} \bigr\Vert ^{2} =& \bigl\Vert P_{\Omega }\bigl(z^{k} \bigr)-w_{*} \bigr\Vert ^{2} \\ \leq & \bigl\Vert z^{k}-w_{*} \bigr\Vert ^{2}- \bigl\Vert P_{\Omega }\bigl(z^{k} \bigr)-z^{k} \bigr\Vert ^{2}. \end{aligned}$$
(3.23)
Since \(z^{k}=w^{k}-\gamma \eta _{k}d_{k}\), we have \(\gamma \eta _{k}d_{k}=w^{k}-z^{k}\). Similarly to Theorem 3.4, we can show that
$$ \bigl\Vert z^{k}-w_{*} \bigr\Vert ^{2} \leq \bigl\Vert w^{k}-w_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert w^{k}-y^{k} \bigr\Vert ^{2}-\frac{2-\gamma }{\gamma } \bigl\Vert w^{k}-z^{k} \bigr\Vert ^{2}. $$
(3.24)
From (3.23) and (3.24) we obtain
$$\begin{aligned} \bigl\Vert w^{k+1}-w_{*} \bigr\Vert ^{2} \leq & \bigl\Vert w^{k}-w_{*} \bigr\Vert ^{2}-2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert w^{k}-y^{k} \bigr\Vert ^{2}-\frac{2-\gamma }{\gamma } \bigl\Vert w^{k}-z^{k} \bigr\Vert ^{2} \\ &{}- \bigl\Vert P_{\Omega }\bigl(z^{k}\bigr)-z^{k} \bigr\Vert ^{2}. \end{aligned}$$
(3.25)
Thus \(\lim_{k\rightarrow \infty }\|w^{k}-w_{*}\|\) exists, and \((w^{k})\) is bounded. From (3.25) we see that
$$\begin{aligned}& 2\gamma \eta _{k}\biggl( \frac{1}{2}-2\delta \biggr) \bigl\Vert w^{k}-y^{k} \bigr\Vert ^{2}+ \frac{2-\gamma }{\gamma } \bigl\Vert w^{k}-z^{k} \bigr\Vert ^{2}+ \bigl\Vert P_{\Omega }\bigl(z^{k}\bigr)-z^{k} \bigr\Vert ^{2} \\& \quad \leq \bigl\Vert w^{k}-w_{*} \bigr\Vert ^{2}- \bigl\Vert w^{k+1}-w_{*} \bigr\Vert ^{2}. \end{aligned}$$
Thus \(\|w^{k}-y^{k}\|\rightarrow 0\), \(\|w^{k}-z^{k}\|\rightarrow 0\), and \(\|P_{\Omega }(z^{k})-z^{k}\|\rightarrow 0\) as \(k\rightarrow \infty \). Also, we can show that \(\|w^{k}-x^{k}\|\rightarrow 0\) and \(\|y^{k}-x^{k}\|\rightarrow 0\) as \(k\rightarrow \infty \). Let \(w^{\infty }\in \omega _{w}(w_{*})\). As in Theorem 3.7, we can show that \(w^{\infty }\in \operatorname{argmin}(f+g)\). On the other hand, since \(\lim_{k\rightarrow \infty }\|P_{\Omega }(z^{k})-z^{k}\|=0\) and \(z^{k}\rightharpoonup w^{\infty }\), by Lemma 2.3 we have \(w^{\infty }\in \Omega \). Therefore \(w^{\infty }\in \Omega \cap \operatorname{argmin}(f+g)\). Using Lemma 2.4, we can conclude that Theorem 3.7 holds. □