- Research
- Open Access
- Published:
A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions
Advances in Difference Equations volume 2021, Article number: 279 (2021)
Abstract
In the present paper, by using the concept of convolution and q-calculus, we define a certain q-derivative (or q-difference) operator for analytic and multivalent (or p-valent) functions. This presumably new q-derivative operator is an extension of the known q-analogue of the Ruscheweyh derivative operator. We also give some interesting applications of this q-derivative operator for multivalent functions by using the method of differential subordination. Relevant connections with a number of earlier works on this subject are also pointed out.
1 Introduction, definitions, and motivation
Let \(\mathcal{A}(p)\) denote the class of multivalent (or p-valent) functions of the form:
which are analytic in the open unit disk \(\mathbb{U}\) given by
We note that
Definition 1
The Hadamard product or convolution of the following two functions \(f_{j}(z)\in \mathcal{A}(p)\) \((j=1,2)\)
is given by
Definition 2
For two analytic functions \(f_{j}\) \((j=1,2)\) in \(\mathbb{U}\), the function \(f_{1}\) is said to be subordinate to the function \(f_{2}\), which is written as follows:
if we can find a Schwartz function w, analytic in \(\mathbb{U}\), with
such that
Further, if the function \(f_{2}\) is univalent in \(\mathbb{U}\), then the following equivalence relation holds true:
We denote by \(\mathcal{P}(\beta )\) the class of functions of the form
which are analytic in \(\mathbb{U}\) and satisfy the following inequalities:
It can be seen that
where \(\mathcal{P}\) is the well-known class of Carathéodory functions (see, for details, [6] and [49]).
We next define the function \(h(A,B;z)\) given by (see [3])
This function \(h(A,B;z)\) is known to be the conformal map of the unit disk \(\mathbb{U}\) to a circle which is symmetrical with respect to the real axis having the center at \(\frac{1-AB}{1-B^{2}}\) \((B\neq \pm 1)\) and the radius equal to \(\frac{A-B}{1-B^{2}}\) \((B\neq \pm 1)\).
In order to present some of the noteworthy and useful details of the definitions and principles of q-difference calculus, we assume throughout this article that
Definition 3
For \(f \in \mathcal{A}\), the q-difference (or the q-derivative) operator \(\mathfrak{D}_{q}\) in a given subset of the set \(\mathbb{C}\) of complex numbers is defined by \((\text{see [9] and [10]} )\)
provided that \(f^{\prime } (0 )\) exists.
It is readily observed from equation (1.2) that
for a differentiable function f in a given subset of the complex space \(\mathbb{C}\) (see also [37], [39] and [40] for some recent applications of the q-difference operators in the theory of q-series and q-polynomials).
Definition 4
Let \(q\in (0,1)\) and define the q-number \([\tau ]_{q}\) as follows:
It follows from Definition 4with \(\tau =n \) \((n\in \mathbb{N})\) that
Definition 5
The generalized q-Pochhammer symbol given by
is defined as follows:
Moreover, the q-gamma function \(\Gamma _{q}(z)\) satisfies the following recurrence relation:
where
The intensive applications of the q-calculus in exploring new directions in various diverse areas of mathematics and physics have fascinated a number of researchers to work in several distinctive areas of the mathematical and physical sciences. The q-derivative \((\mathfrak{D}_{q})\) operator’s versatile applications makes it significantly more important. Initially, in the year 1990, Ismail et al. [8] presented the idea of a q-extension of the class \(\mathcal{S}^{\ast }\) of starlike functions. However, historically speaking, in the article [32] published in 1989, Srivastava gave a firm footing of the usages of the q-calculus and the basic (or q-) hypergeometric functions:
in the study of geometric function theory (GFT) (see, for details, [32]). More recently, the state-of-the-art survey and applications of the operators of the q-calculus and the fractional q-calculus, such as the q-derivative operator and the fractional q-derivative operators in geometric function theory of complex analysis, were investigated in a survey-cum-expository review article by Srivastava [33]. In this same survey-cum-expository review article, Srivastava [33] revealed and exposed the triviality of the so-called \((p,q)\)-calculus associated with an obviously redundant and inconsequential additional parameter p (see, for details, [33, p. 340]).
The aforementioned works [8] and [33] have inspired a number of researchers to contribute significantly in geometric function theory of complex analysis. Several convolution and fractional q-operators, which have been already defined, were surveyed in the above-cited work [33]. For example, Kanas and Răducanu [11] introduced the q-analogue of Ruscheweyh’s derivative operator and, by using the concept of the Hadamard product (or convolution), Srivastava et al. [45] introduced a q-extension of Noor’s integral operator and studied some of its applications. Aldweby [2] and Sokól [21] studied some classes of analytic functions defined by means of the q-analogue of Ruscheweyh’s derivative operator. Many q-derivative and q-integral operators can be written in terms of the Hadamard product (or convolution). For details, we refer the reader to the earlier works [1, 7, 18, 21, 23]. Moreover, several authors (see, for example, [13, 19, 42, 47, 48]) have concentrated upon the classes of q-starlike functions related with the Janowski and other functions from several different viewpoints and the references cited therein. For some more recent investigations involving q-calculus, we may refer the interested reader to [4, 5, 12, 14–17, 20, 22, 26–28, 31, 34–36, 38, 43, 46].
In this paper, we first define an extended q-analogue of Ruscheweyh’s derivative operator for multivalent (or p-valent) functions. In order to define this extended q-analogue of Ruscheweyh’s derivative operator, we use the concepts of the Hadamard product (or convolution). We then give some interesting applications of this operator for multivalent functions by making use of the method of differential subordination. The extended q-analogue of Ruscheweyh’s derivative operator is defined below.
Definition 6
For \(f\in \mathcal{A}(p)\), the extended q-derivative operator \(\mathcal{R}_{q}^{\lambda +p-1}:\mathcal{A}(p)\rightarrow \mathcal{A}(p)\) for multivalent functions is defined as follows:
where
The following identity can easily be verified by using (1.3):
It can also be seen that, by putting \(p=1\) in (1.4), we have
which is the well-known relation studied by Kanas [11].
Remark 1
It is easily seen that, upon setting \(p=1\), the extended q-analogue of Ruscheweyh’s derivative operator \(\mathcal{R}_{q}^{\lambda +p-1}f(z)\) reduces to the q-Ruscheweyh derivative operator which was studied by Kanas [11]. For \(p=1\) and \(q\rightarrow 1-\), the extended q-analogue of Ruscheweyh’s derivative operator \(\mathcal{R}_{q}^{\lambda +p-1}f(z)\) reduces to the familiar derivative operator introduced by Ruscheweyh [30]. Moreover, if we put \(p=1\) and \(\lambda =0\), we have
2 A set of lemmas
To prove our main results, we need the following lemmas.
Lemma 1
(see [25])
Let \(\varphi _{j}\in \mathcal{P}(\beta _{j})\) be given by (1.1) for \((0\leqq \beta _{j}<1; j=1,2)\). Then
where
Lemma 2
(see [24])
Let the function φ, given by (1.4), be in the class \(\mathcal{P}(\beta )\). Then
Lemma 3
(see [29])
The function given by
is univalent in \(\mathbb{U}\) if and only if γ is either in the closed disk \(|\gamma -1|\leqq 1\) or in the closed disk \(|\gamma +1|\leqq 1\).
Lemma 4
(see [3])
Let the function \(h(z)\) be analytic and convex univalent in \(\mathbb{U}\) with \(h(0)=1\). Also, let the function \(g(z)\) given by
be analytic in \(\mathbb{U}\). If
then, for \(\Re (c)\geqq 0\), the following subordination relation holds true:
Lemma 5
(see [3])
Let the function \(u(z)\) be univalent in \(\mathbb{U}\), and let the functions \(\theta (w)\) and \(\varphi (w)\) be analytic in the domain \(\mathbb{D}\) containing \(u(\mathbb{U})\) with \(\varphi (w)\neq 0\) when \(w\in u(\mathbb{U})\). Set
and suppose that
(i) \(Q(z)\) is starlike univalent in \(\mathbb{U}\).
(ii) \(\Re (\frac{z\mathfrak{D}_{q}h(z)}{Q(z)} )=\Re ( \frac{z\mathfrak{D}_{q}\theta (u(z) )}{(\varphi (u(z) )} )+ (\frac{z\mathfrak{D}_{q}Q(z)}{Q(z)} )>0\).
If \(m(z)\) is analytic in \(\mathbb{U}\),
and
then
and \(u(z)\) is the best dominant.
3 Main results
Our first main result in this section is stated as Theorem 1.
Theorem 1
Let \(\lambda >0\), \(\alpha >0\), and \(-1\leqq B\leqq A<1\). If \(f\in \mathcal{A}(p)\) satisfies the following subordination relation:
then
The result is sharp.
Proof
Let
Then, for \(f\in \mathcal{A}(p)\), the function g given by
is analytic in \(\mathbb{U}\). By using the logarithmic q-differentiation on both sides of (3.2) and multiplying the resulting equation by z, we have
By making use of (1.4), we obtain
Taking into account that
we get
Also, from (1.4), (3.2), and (3.3), we have
Now, by applying Lemma 4, we find that
Also, by making use of the concept of subordination on (3.5), we have
It follows from (3.6), together with \(-1\leqq B< A\leqq 1\) and \(\lambda >0\), that
Since
by making use of concept (3.8), the inequality in (3.1) follows directly from (3.7).
In order to show the sharpness of (3.1), we define the function \(f\in \mathcal{A}(p)\) by
For this function f involved in (3.9), we find that
and
This completes the proof of Theorem 1. □
Remark 2
If we set \(p=1\) in Theorem 1, we are led to the results similar to those given by Aldweby and Darus [3].
We next state and prove Theorem 2.
Theorem 2
Let \(A=1-2\alpha \), \(B=-1\), \(\alpha ,\lambda >1\), \(n\geqq 1\), and \(0\leqq \beta <1\). If the function \(f\in \mathcal{A}(p)\) satisfies the following subordination condition:
then
Proof
Following the same steps as those in the proof of Theorem 1 and considering the function g given by
the differential subordination in (3.4) becomes
Therefore, we have
Our demonstration of Theorem 2 is now completed. □
Theorem 3
Let \(\lambda >0\) and \(0\leqq \rho <1\). Also, let the parameter \(\gamma \in \mathbb{C}\setminus \{0\}\) satisfy either
or
If \(f\in \mathcal{A}(p)\) satisfies the following inequality:
then
where \(u(z)\) is the best dominant.
Proof
Let
Then, by making use of (1.4), (3.10), and (3.11), we obtain
We now assume that
Then, by Lemma 3, \(u(z)\) is univalent in \(\mathbb{U}\). Further, it is easy to show that the functions \(u(z)\), \(\theta (w)\), and \(\varphi (w)\) satisfy the condition of Lemma 5. We note also that the functions given by
and
are univalent starlike in \(\mathbb{U}\). Hence, by finally combining (3.12) and Lemma 5, we get the assertion of Theorem 3. □
Remark 3
If we set \(p=1\) in Theorem 3, we are led to the results similar to those given by Aldweby and Darus [3].
Theorem 4
Let \(\lambda >0\), \(\alpha <1\), and \(-1\leqq B_{j}\leqq A_{j}<1\) \((j=1,2)\). If each of the functions \(f_{j}\in \mathcal{A}(p)\) \((j=1,2)\) satisfies the following subordination condition:
then
where
and
Proof
We define the functions \(h_{j}\) \((j=1,2)\) by
where \(f_{j}\in \mathcal{A}(p)\) \((j=1,2)\). We have \(h_{j}\in \mathcal{P}(\beta _{j})\) \((j=1,2)\), where
By making use of (1.4) and (3.14), we obtain
which, in light of (3.13), shows that
where, for convenience,
If we apply Lemma 1, we get \((h_{1}\ast h_{2} ) \in \mathcal{P}(\beta _{3})\), where
Now, with an application of Lemma 2, we have
which leads us to the desired assertion of Theorem 4. □
Remark 4
If we set \(p=1\) in Theorem 4, we are led to the results similar to those given by Aldweby and Darus [3].
4 Conclusion
In our present work, we are motivated by the well-established usage of the basic (or q-) calculus and fractional basic (or q-) calculus in geometric function theory of complex analysis as described by Srivastava’s survey-cum-expository review article [33]. The extended q-version of the q-Ruscheweyh type derivative operator for p-valent functions in \(\mathbb{U}\) has been introduced here. We have also derived several interesting results for this newly defined q-operator. The importance of the results demonstrated in this paper lies in the demonstrated fact that these results would generalize and extend various previously known results derived in many earlier works.
Basic (or q-) polynomials and basic (or q-) series, especially the basic (or q-) hypergeometric functions and basic (or q-) hypergeometric polynomials, are relevant specially in many areas (see, for example, [41, pp. 350–351]; see also [28, 44], and [16]). Moreover, as we remarked above and in the introductory Sect. 1, based upon the recently-published survey-cum-expository review article by Srivastava [33], the so-called \((p,q)\)-calculus is a relatively insignificant and inconsequential translation of the traditional q-calculus, the extra parameter p being redundant or superfluous (see, for details, [33, p. 340]). This observation by Srivastava [33] will indeed apply also to any attempt to produce the rather straightforward \((p,q)\)-variations of the results which we have presented in this paper.
Availability of data and materials
Not applicable.
References
Aldweby, H., Darus, M.: A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operatror. ISRN Math. Anal. 2013, Article ID 382312 (2013)
Aldweby, H., Darus, M.: On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, Article ID 164287 (2013)
Aldweby, H., Darus, M.: Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, Article ID 958563 (2014)
Arif, M., Ahmad, K., Liu, J.-L.: Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator. Turk. J. Math. 43, 1712–1720 (2019)
Arif, M., Srivastava, H.M., Umar, S.: Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 1211–1221 (2019)
Cho, N.E., Srivastava, H.M., Adegani, E.A., Motamednezhad, A.: Criteria for a certain class of the Carathéodory functions and their applications. J. Inequal. Appl. 2020, Article ID 85 (2020)
Hussain, S., Khan, S., Zaighum, M.A., Darus, M.: Applications of a q-Sălăgean type operator on multivalent function. J. Inequal. Appl. 2018, Article ID 301 (2018)
Ismail, M.E.-H., Merkes, E., Styer, D.: A generalization of starlike functions. Complex Var. Theory Appl. 14, 77–84 (1990)
Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
Jackson, F.H.: q-Difference equations. Am. J. Math. 32, 305–314 (1910)
Kanas, S., Răducanu, D.: Some class of analytic functions related to conic domains. Math. Slovaca 64, 1183–1196 (2014)
Khan, B., Liu, Z.-G., Srivastava, H.M., Khan, N., Darus, M., Tahir, M.: A study of some families of multivalent q-starlike functions involving higher-order q-derivatives. Mathematics 8, Article ID 1470 (2020)
Khan, B., Srivastava, H.M., Khan, N., Darus, M., Ahmad, Q.Z., Tahir, M.: Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions. Symmetry 13, Article ID 574 (2021)
Khan, B., Srivastava, H.M., Khan, N., Darus, M., Tahir, M., Ahmad, Q.Z.: Coefficient estimates for a subclass of analytic functions associated with a certain leaf-like domain. Mathematics 8, Article ID 1334 (2020)
Khan, B., Srivastava, H.M., Tahir, M., Darus, M., Ahmad, Q.Z., Khan, N.: Applications of a certain integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 6, 1024–1039 (2021)
Khan, N., Shafiq, M., Darus, M., Khan, B., Ahmad, Q.Z.: Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with lemniscate of Bernoulli. J. Math. Inequal. 14, 51–63 (2020)
Khan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., Rehman, S.U., Ahmad, B.: Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 7, Article ID 1178 (2019)
Khan, S., Hussain, S., Zaighum, M.A., Khan, M.M.: Some subclasses of analytic function in conical domain associated with Ruscheweyh q-differential operator. Int. J. Anal. Appl. 16, 239–253 (2018)
Mahmood, S., Ahmad, Q.Z., Srivastava, H.M., Khan, N., Khan, B., Tahir, M.: A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, Article ID 88 (2019)
Mahmood, S., Raza, N., Abujarad, E.S.A., Srivastava, G., Srivastava, H.M., Malik, S.N.: Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 11, Article ID 719 (2019)
Mahmood, S., Sokól, J.: New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 71, 1–13 (2017)
Mahmood, S., Srivastava, H.M., Khan, N., Ahmad, Q.Z., Khan, B., Ali, I.: Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 11, Article ID 347 (2019)
Mohammed, A., Darus, M.: A generalized operator involving the q-hypergeometric function. Mat. Vesn. 65, 454–465 (2013)
Pashkouleva, D.Z̆.: The starlikeness and spiral-convexity of certain subclasses of analytic functions. In: Srivastava, H.M., Owa, S. (eds.) Current Topics in Analytic Function Theory, pp. 266–273. World Scientific, Singapore (1992)
Ponnusamy, S., Singh, V.: Convolution properties of some classes of analytic functions. J. Math. Sci. 89, 1008–1020 (1998)
Raza, M., Srivastava, H.M., Arif, M., Ahmad, K.: Coefficient estimates for a certain family of analytic functions involving a q-derivative operator. Ramanujan J. 55, 53–71 (2021)
Rehman, M.S., Ahmad, Q.Z., Srivastava, H.M., Khan, B., Khan, N.: Partial sums of generalized q-Mittag-Leffler functions. AIMS Math. 5, 408–420 (2020)
Rehman, M.S., Ahmad, Q.Z., Srivastava, H.M., Khan, N., Darus, M., Khan, B.: Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 6, 1110–1125 (2021)
Robertson, M.S.: Certain classes of starlike functions. Mich. Math. J. 32, 135–140 (1985)
Ruscheweyh, S.: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109–115 (1975)
Shi, L., Khan, Q., Srivastava, G., Liu, J.-L., Arif, M.: A study of multivalent q-starlike functions connected with circular domain. Mathematics 7, Article ID 670 (2019)
Srivastava, H.M.: Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In: Srivastava, H.M., Owa, S. (eds.) Univalent Functions, Fractional Calculus, and Their Applications, pp. 329–354. Ellis Horwood, Chichester (1989)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A, Sci. 44, 327–344 (2020)
Srivastava, H.M., Ahmad, Q.Z., Khan, N., Khan, N., Khan, B.: Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 7, Article ID 181 (2019)
Srivastava, H.M., Aouf, M.K., Mostafa, A.O.: Some properties of analytic functions associated with fractional q-calculus operators. Miskolc Math. Notes 20, 1245–1260 (2019)
Srivastava, H.M., Arif, M., Raza, M.: Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 6, 5869–5885 (2021)
Srivastava, H.M., Arjika, S., Kelil, A.S.: Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set-Valued Anal. Optim. 1, 187–201 (2019)
Srivastava, H.M., Bansal, D.: Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 1, 61–69 (2017)
Srivastava, H.M., Cao, J., Arjika, S.: A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 12, Article ID 1816 (2020)
Srivastava, H.M., Arjika, S.: A general family of q-hypergeometric polynomials and associated generating functions. Mathematics 9, Article ID 1161 (2021)
Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Ellis Horwood, Chichester (1985)
Srivastava, H.M., Khan, B., Khan, N., Ahmad, Q.Z.: Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 48, 407–425 (2019)
Srivastava, H.M., Khan, B., Khan, N., Ahmad, Q.Z., Tahir, M.: A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mt. J. Math. 49, 2325–2346 (2019)
Srivastava, H.M., Khan, B., Khan, N., Tahir, M., Ahmad, S., Khan, N.: Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 167, Article ID 102942 (2021)
Srivastava, H.M., Khan, S., Ahmad, Q.Z., Khan, N., Hussain, S.: The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babeş–Bolyai, Math. 63, 419–436 (2018)
Srivastava, H.M., Raza, N., AbuJarad, E.S.A., Srivastava, G., AbuJarad, M.H.: Fekete-Szegö inequality for classes of \((p, q)\)-starlike and \((p, q)\)-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 3563–3584 (2019)
Srivastava, H.M., Tahir, M., Khan, B., Ahmad, Q.Z., Khan, N.: Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 11, Article ID 292 (2019)
Srivastava, H.M., Tahir, M., Khan, B., Ahmad, Q.Z., Khan, N.: Some general families of q-starlike functions associated with the Janowski functions. Filomat 33, 2613–2626 (2019)
Xu, Q.-H., Yang, T., Srivastava, H.M.: Sufficient conditions for a general class of Carathéodory functions. Filomat 30, 3615–3625 (2016)
Acknowledgements
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this manuscript and approved its final version.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Khan, B., Srivastava, H.M., Arjika, S. et al. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv Differ Equ 2021, 279 (2021). https://doi.org/10.1186/s13662-021-03441-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03441-6
MSC
- 30C45
- 30C50
- 30C80
- 11B65
- 47B38
Keywords
- Analytic functions
- Multivalent (or p-valent) functions
- Hadamard product (or convolution)
- q-Derivative (or q-Difference) operator
- q-Analogue of Ruscheweyh’s derivative operator
- Differential subordination