For the sake of convenience, we define the function g by
$$ g(x,y):=\beta x+2y. $$
Recall that we have defined \(\beta :=1-\alpha \) in the preceding section. We make the following hypotheses in this section.
(H1) \(f\in C([0,1]\times \mathbb{R}_{+}^{2}, \mathbb{R}_{+})\).
(H2) There are two constants \(a>\beta \) and \(c_{1}>0\) such that
$$ f(t,x,y)\geqslant ag(x,y)-c_{1},\quad \forall x\geqslant 0,y \geqslant 0, t \in [0,1]. $$
(H3) For every \(M>0\) there is a function \(\Phi_{M} \in C(\mathbb{R}_{+},\mathbb{R}_{+})\) such that
$$ f(t,x,y)\leqslant \Phi _{M}(y),\quad \forall t\in [0,1],x\in [0,M], y\in \mathbb{R}_{+} $$
and \(\int _{0}^{\infty }\frac{\xi \mathrm{d}\xi }{\Phi _{M}(\xi )+\delta }=\infty \) for every \(\delta >0\).
(H4) There are two constants \(r>0\), \(b\in ]0,\beta [\) such that
$$ f(t,x,y)\leqslant bg(x,y),\quad t\in [0,1], x\in [0,r], y\in [0,r]. $$
(H5) There are two constants \(r>0\), \(d>\beta \) such that
$$ f(t,x,y)\geqslant dg(x,y),\quad t\in [0,1], x\in [0,r], y\in [0,r]. $$
(H6) There are two constants \(c\in ]0,\beta [\), \(c_{2}>0\) such that
$$ f(t,x,y)\leqslant cg(x,y)+c_{2},\quad t\in [0,1], x\in \mathbb{R}_{+}, y\in \mathbb{R}_{+}. $$
(H7) \(f(t,x,y)\) is increasing in x, y and there is a constant \(\omega >0\) such that \(\int _{0}^{1}(1-\alpha (1-s)) f(s, \omega , \omega )\,\mathrm{d}s< \beta \omega \).
Remark 3.1
By saying that \(f(t,x,y)\) is increasing in x, y, we mean that, if \(x_{2}\geqslant x_{1}\geqslant 0\) and \(y_{2}\geqslant y_{1}\geqslant 0\), then the inequality \(f(t,x_{2},y_{2})\geqslant f(t,x_{1},y_{1})\) holds for all \(t\in [0,1]\).
Theorem 3.1
If (H1)–(H4) hold, then (1) has at least one positive solution.
Proof
Let
$$ \mathscr{M}_{1}:=\{u\in P: u=Au+\lambda \varphi , \text{ for some } \lambda \geqslant 0\}, $$
where \(\varphi (t):=te^{-\beta t}\). Clearly, if \(u\in \mathscr{M}_{1}\), then u is increasing on \([0,1]\), and \(u(t)\geqslant (Au)(t), t\in [0,1]\). We shall prove that \(\mathscr{M}_{1}\) is bounded. We first establish the a priori bound of \(\|u\|_{0}:=\max \{u(t): 0\leqslant t\leqslant 1\}=u(1)\) for \(\mathscr{M}_{1}\). If \(u\in \mathscr{M}_{1}\), then \(Au\in C^{2}[0,1]\) (whence \(u\in C^{2}[0,1]\)) and there is \(\lambda \geqslant 0\) such that \(u=Au+\lambda \varphi \), and equivalently, \(-u''(t)=f(t,u(t),u'(t))+\lambda (2-\beta t)e^{-\beta t}\). Therefore, u is concave on \([0,1]\) and \(-u''(t)\geqslant f(t,u(t),u'(t))\). By (H2), we have
$$ -u''(t)\geqslant ag\bigl(u(t),u'(t) \bigr)-c_{1}=a \bigl(\beta u(t)+2u'(t) \bigr)-c_{1}. $$
Multiply the preceding inequalities by \(\psi (t):=te^{\beta t}\) and integrate over \([0,1]\) and invoke Lemma 2.3 to obtain
$$ \beta \int _{0}^{1} \bigl(\beta u(t)+2u'(t) \bigr)\psi (t)\,\mathrm{d}t \geqslant a \int _{0}^{1} \bigl(\beta u(t)+2u'(t) \bigr)\psi (t)\,\mathrm{d}t- \frac{c_{1}(1-\alpha e^{\beta })}{\beta ^{2}} $$
and whence
$$ \int _{0}^{1} \bigl(\beta u(t)+2u'(t) \bigr)\psi (t)\,\mathrm{d}t\leqslant \frac{c_{1}(1-\alpha e^{\beta })}{(a-\beta )\beta ^{2}},\quad \forall u\in \mathscr{M}_{1}. $$
Invoking Lemma 2.4 yields
$$ \Vert u \Vert _{0}=u(1)\leqslant \frac{c_{1}}{(a-\beta )\beta }:=M,\quad \forall u \in \mathscr{M}_{1}, $$
thereby establishing the a priori bound of \(\|u\|_{0}\) for \(\mathscr{M}_{1}\). Now we turn to establish the a priori bound of \(\|u'\|_{0}\) for \(\mathscr{M}_{1}\). Indeed, if \(u \in \mathscr{M}_{1}\),then \(u\in C^{2}[0,1]\) (as explained previously) and there is a constant \(\lambda \geqslant 0\) such that \(u=Au+\lambda \psi \), which can be equivalently rewritten as
$$ -u''(t)=f\bigl(t,u(t),u'(t)\bigr)+ \lambda \beta (2-\beta t)e^{-\beta t}. $$
Let
$$ \mu :=\sup \{\lambda \geqslant 0: u=Au+\lambda \varphi \text{ for some } u \in P\}. $$
Then \(\mu < \infty \) and, for every \(u\in \mathscr{M}_{1}\), we have
$$ -u''(t)\leqslant f\bigl(t,u(t),u'(t) \bigr)+\mu \beta (2-\beta t)e^{-\beta t} \leqslant f\bigl(t,u,u' \bigr)+2\mu \beta . $$
By (H3), there is a function \(\Phi _{M}\in C(\mathbb{R}_{+},\mathbb{R}_{+})\) such that
$$ -u''(t)\leqslant \Phi _{M} \bigl(u'(t)\bigr)+2\mu \beta . $$
This implies that
$$\begin{aligned} \int _{0}^{1} - \frac{u''(t)u'(t)\,\mathrm{d}t}{\Phi _{M}(u'(t))+2\mu \beta }&= \int _{u'(1)}^{u'(0)} \frac{\xi \,\mathrm{d}\xi }{\Phi _{M}(\xi )+2\mu \beta } = \int _{ \alpha u(1)}^{u'(0)} \frac{\xi \,\mathrm{d}\xi }{\Phi _{M}(\xi )+2\mu \beta } \\ &\leqslant \int _{0}^{1} u'(t)\, \mathrm{d}t=u(1). \end{aligned}$$
Noticing \(u(1)\leqslant M,\forall u\in \mathscr{M}_{1}\), we obtain
$$ \int _{\alpha M}^{u'(0)} \frac{\xi \,\mathrm{d}\xi }{\Phi _{M}(\xi )+2\mu \beta }\leqslant \int _{ \alpha u(1)}^{u'(0)} \frac{\xi \,\mathrm{d}\xi }{\Phi _{M}(\xi )+2\mu \beta }\leqslant u(1) \leqslant M,\quad \forall u\in \mathscr{M}_{1}. $$
Now (H3) means that there is a constant \(M_{1}>0\) such that
$$ \bigl\Vert u' \bigr\Vert _{0}=u'(0) \leqslant M_{1},\quad \forall u\in \mathscr{M}_{1}, $$
thereby establishing the a priori bound of \(u'\) for \(\mathscr{M}_{1}\). This, together with \(\|u\|_{0}\leqslant M\), implies that the \(\mathscr{M}_{1}\) is bounded. Taking \(R>\sup \{\|u\|: u\in \mathscr{M}_{1}\}\), we have
$$ u\neq Au+\lambda \varphi ,\quad \forall u\in \partial B_{R}\cap P, \lambda \geqslant 0, $$
where \(B_{R}: =\{u\in E: \|u\|< R\}\). Invoking Lemma 2.1 gives
$$ i(A, B_{R}\cap P,P)=0.$$
(5)
On the other hand, let
$$ \mathscr{M}_{2}:=\bigl\{ u\in \overline{B}_{r}\cap P: u= \lambda Au \ \mathrm{for\ some}\ \lambda \in [0,1]\bigr\} , $$
where \(r>0\) is specified by (H4). We are in a position to prove that \(\mathscr{M}_{2}=\{0\}\). Indeed, if \(u\in \mathscr{M}_{2}\),then \(Au\in C^{2}[0,1]\) (whence \(u\in C^{2}[0,1]\)) and there is \(\lambda \in [0,1]\) such that \(u=\lambda Au\), which is equivalent to \(-u''(t)=\lambda f(t,u(t),u'(t))\). By (H4), we have
$$ -u''(t)\leqslant f\bigl(t,u(t),u'(t) \bigr)\leqslant b\bigl(\beta u(t)+2u'(t)\bigr), \quad \forall u\in \overline{B}_{r}\cap P. $$
Multiply the preceding inequalities by \(\psi (t):=te^{\beta t}\) and integrate over \([0,1]\) and use Lemma 2.3 to obtain
$$ \beta \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t \leqslant b \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t, $$
whence \(u=0\), and, in turn, \(\mathscr{M}_{2}=\{0\}\), as desired. As a result of this, we have
$$ u\neq \lambda Au,\quad \forall u\in \partial B_{r}\cap P,\lambda \in [0.1]. $$
Then invoking Lemma 2.2 yields
$$ i(A, B_{r}\cap P,P)=1.$$
(6)
Obviously, we may assume \(R>r\) in (5) and (6). Therefore, combining (5) and (6), we arrive at
$$ i\bigl(A, (B_{R}\setminus \overline{B}_{r})\cap P,P \bigr)=i(A, B_{R}\cap P,P)-i(A, B_{r}\cap P,P)=0-1=-1. $$
Consequently, the operator A has at least one fixed point on \((B_{R}\setminus \overline{B}_{r})\cap P\). Equivalently, (1) has at least one positive solution u. This completes the proof. □
Theorem 3.2
If (H1), (H5) and (H6) hold, then (1) has at least one positive solution.
Proof
Let
$$ \mathscr{M}_{3}:=\bigl\{ u\in P: u=\lambda Au\text{ for some } \lambda \in [0,1]\bigr\} . $$
We are going to prove that \(\mathscr{M}_{3}\) is bounded. Indeed, if \(u\in \mathscr{M}_{3}\), then \(Au\in C^{2}[0,1]\) (whence \(u\in C^{2}[0,1]\)) and there is \(\lambda \in [0,1]\) such that \(u=\lambda Au\), which is equivalent to \(-u''(t)=\lambda f(t,u(t),u'(t))\). By (H6), we have
$$ -u''(t)\leqslant f\bigl(t,u(t),u'(t) \bigr)\leqslant c\bigl(\beta u(t)+2u'(t)\bigr)+c_{2}. $$
Multiply the preceding inequalities by \(\psi (t):=te^{\beta t}\) and integrate over \([0,1]\) and use Lemma 2.3 to obtain
$$ \beta \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t \leqslant c \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t+ \frac{c_{2}(1-\alpha e^{\beta })}{\beta ^{2}} $$
whence
$$ \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t\leqslant \frac{c_{2}(1-\alpha e^{\beta })}{(\beta -c)\beta ^{2}},\quad \forall u\in \mathscr{M}_{3}. $$
Now Lemma 2.4 implies
$$ \Vert u \Vert _{0}=u(1)\leqslant \frac{c_{2}}{(\beta -c)\beta }:=M_{2},\quad \forall u \in \mathscr{M}_{3}. $$
By (H6) again, we have
$$ -u''(t)\leqslant 2cu'(t)+M_{2}+c_{2},\quad \forall u\in \mathscr{M}_{3}. $$
Some basic calculations, along with the boundary value condition \(u'(1)=\alpha u(1)\), imply
$$ u'(0)\leqslant \alpha e^{2c}u(1)+ \frac{M_{2}(e^{2c}-1)}{2c}\leqslant \alpha e^{2c}M_{2}+ \frac{M_{2}(e^{2c}-1)}{2c}:=M_{3},\quad \forall u\in \mathscr{M}_{3}. $$
This establishes the a priori bound of \(\|u'\|_{0}\) for \(\mathscr{M}_{3}\), which, together with the a priori bound of \(\|u\|_{0}\), implies the boundedness of \(\mathscr{M}_{3}\). Taking \(R>\sup \{\|u\|: u\in \mathscr{M}_{3}\}\), we have
$$ u\neq \lambda Au,\quad \forall u\in \partial B_{R}\cap P,\lambda \in [0,1]. $$
Invoking Lemma 2.2 yields
$$ i(A,B_{R}\cap P,P)=1.$$
(7)
On the other hand, let
$$ \mathscr{M}_{4}:=\{u\in \overline{B}_{r}\cap P: u=Au+ \lambda \varphi \ \mathrm{for\ some}\ \lambda \ \geqslant 0\}, $$
where \(r>0\) is specified in (H5). We shall prove that \(\mathscr{M}_{4}\subset \{0\}\). Indeed, if \(u\in \mathscr{M}_{4}\), then \(Au\in C^{2}[0,1]\) (whence \(u\in C^{2}[0,1]\)) and there is \(\lambda \geqslant 0\) such that \(u=Au+\lambda \varphi \), which is equivalent to \(-u''(t)=f(t,u(t),u'(t))+\lambda \beta (2+(1-\lambda )t)e^{\beta t} \). By (H5), we have
$$ -u''(t)\geqslant f\bigl(t,u(t),u'(t) \bigr)\geqslant d\bigl(\beta u(t)+2u'(t)\bigr) . $$
Multiply the preceding inequalities by \(\psi (t):=te^{\beta t}\) and integrate over \([0,1]\) and use Lemma 2.3 to obtain
$$ \beta \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t \geqslant d \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t, $$
whence
$$ \int _{0}^{1} \bigl(2u'(t)+\beta u(t)\bigr)te^{\beta t}\,\mathrm{d}t=0. $$
Therefore \(u=0\),and, in turn, \(\mathscr{M}_{4}\subset \{0\}\), as desired, and this implies
$$ u\neq Au+\lambda \varphi , \quad \forall u\in \partial B_{r}\cap P, \lambda \geqslant 0. $$
Now invoking Lemma 2.1 gives
$$ i(A,B_{r}\cap P,P)=0.$$
(8)
Combining (7) and (8), we arrive at
$$ i\bigl(A,(B_{R}\setminus \overline{B}_{r}) \cap P,P \bigr)=i(A,B_{R}\cap P,P)-i(A,B_{r} \cap P,P)=1-0=1.$$
(9)
Consequently, the operator A has at least one fixed point on \((B_{R}\setminus \overline{B}_{r})\cap P\). Equivalently, (1) has at least one positive solution u. This completes the proof. □
Theorem 3.3
If (H1)–(H3), (H5) and (H7) hold, then (1) has at least two positive solutions.
Proof
(H1)–(H3) and (H5) imply that (5) and (8) hold(see the proofs of Theorems 3.1 and 3.2). On the other hand, by (H7), we have
$$ \begin{aligned} \Vert Au \Vert _{0}&=(Au) (1)= \int _{0}^{1} k(1,s)f\bigl(s,u(s),u'(s) \bigr)\,\mathrm{d}s \\ &\leqslant \frac{1}{\beta } \int _{0}^{1}s f(s,\omega ,\omega )\, \mathrm{d}s \\ &\leqslant \frac{1}{\beta } \int _{0}^{1} \bigl(1-\alpha (1-s)\bigr)f(s, \omega , \omega )\,\mathrm{d}s \\ &< \omega ,\forall u\in \partial B_{\omega }\cap P\end{aligned} $$
and
$$ \begin{aligned} \bigl\Vert (Au)' \bigr\Vert _{0}&=(Au)'(0)=\frac{1}{\beta } \int _{0}^{1} \bigl(1-\alpha (1-s)\bigr)k(1,s)f \bigl(s,u(s),u'(s)\bigr) \,\mathrm{d}s \\ &\leqslant \frac{1}{\beta } \int _{0}^{1} \bigl(1-\alpha (1-s)\bigr)f(s, \omega , \omega )\,\mathrm{d}s \\ &< \omega ,\quad \forall u\in \partial B_{\omega }\cap P,\end{aligned} $$
whence
$$ \Vert Au \Vert < \Vert u \Vert =\omega ,\quad \forall u\in \partial B_{\omega }\cap P. $$
This implies
$$ u\neq \lambda Au,\quad \forall u\in \partial B_{\omega }\cap P,\lambda \in [0,1]. $$
Invoking Lemma 2.2 yields
$$ i(A,B_{\omega }\cap P,P)=1.$$
(10)
This, along with (5) and (8), leads to
$$ i\bigl(A, (B_{R}\setminus \overline{B}_{\omega })\cap P,P \bigr)=0-1=-1 $$
and
$$ i\bigl(A, (B_{\omega }\setminus \overline{B}_{r})\cap P,P \bigr)=1-0=1. $$
Therefore, A has at least two positive fixed points, one on \((B_{R}\setminus \overline{B}_{\omega })\cap P\) and the other on \((B_{\omega }\setminus \overline{B}_{r})\cap P\). This implies (1) has at least two positive solutions, which completes the proof. □
An example of multiple positive solutions
Let
$$ f(t,x,y):=\lambda \bigl(x^{p_{1}}+y^{q_{1}}+x^{p_{2}}+y^{q_{2}} \bigr), $$
where \(p_{1}>1\), \(2\geqslant q_{1}>1\), \(1>p_{2}\), \(q_{2}>0\), \(\frac{1-\alpha }{4-2\alpha }>\lambda >0\). Then (H1)–(H3), (H5) and (H7) hold. By Theorem 3.3, (1), with f being defined as above, has two positive solutions.
Now we present some extra results paralell with Theorems 3.1–3.3.
Let \(\lambda _{1}\) be the minimal positive solution of the transcendental equation
$$ \sqrt{\lambda }=\alpha \tan \sqrt{\lambda }. $$
Then \(\lambda _{1}\) is the first characteristic value of
$$ \textstyle\begin{cases} -u''=\lambda u, \\ \ u(0)=u'(1)-\alpha u(1)=0.\end{cases} $$
And \(\varphi _{1}(t):=\sin \sqrt{\lambda _{1}} t\) is a characteristic function thereof.
It is worthwhile to point out that (H2) and (H4)–(H6) all are described in terms of the function \(g(x,y):=\beta x+2y\). We replace (H2) and (H5) with the conditions below described in terms of \(\lambda _{1}\):
(H2)′ There are two constants \(a>\lambda _{1}\) and \(c_{1}>0\) such that
$$ f(t,x,y)\geqslant ax-c_{1},\quad \forall x\geqslant 0,y\geqslant 0, t\in [0,1]. $$
(H5)′ There are two constants \(r>0\), \(d>\lambda _{1}\) such that
$$ f(t,x,y)\geqslant dx,\quad t\in [0,1], x\in [0,r], y\in [0,r]. $$
What follows is a result obtained by elementary calculus.
Lemma 3.1
If \(u\in P\) is concave on \([0,1]\) with \(u(0)=0\), then
$$ u(1)\leqslant \frac{\alpha ^{2} }{\beta }\sin \sqrt{\lambda _{1}}\sec ^{2} \sqrt{\lambda _{1}} \int _{0}^{1} u(t)\sin \sqrt{\lambda _{1}}t\, \mathrm{d}t. $$
The following three results are paralell counterparts of Theorems 3.1–3.3, acquired by replacing (H2) and (H5) with (H2)′ and (H5)′, respectively.
Theorem 3.1′
If (H1), (H2)′, (H3) and (H4) hold, then (1) has at least one positive solution.
Proof
Recall that (H2) serves to establish the a priori bound of \(\|u\|_{0}\) (see the proof of Theorem 3.1 for more details). The obtaining of the a priori bound of \(\|u\|_{0}\) can proceed as that of the proof of Theorem 3.1 with replacing \(\psi (t):=te^{\beta t}\) with \(\varphi _{1}(t):=\sin \sqrt{\lambda _{1}} t\) and employing Lemma 3.1. Then we may keep the remainder of the proof of Theorem 3.1 unchanged. This completes the proof. □
Theorem 3.2′
If (H1), (H5)′ and (H6) hold, then (1) has at least one positive solution.
Theorem 3.3′
If (H1), (H2)′, (H3), (H5) and (H7) hold, then (1) has at least two positive solutions.