Skip to main content

Theory and Modern Applications

Correction to: Studies on the basic reproduction number in stochastic epidemic models with random perturbations

The Original Article was published on 12 June 2021

1 Correction

Following publication of the original article [1], some errors in the equations were found in the article due to the typesetting mistakes:

On page 7,

$$\begin{aligned} \mathcal{L} \bigl( W ( t ) \bigr) =f^{T} \frac{\partial V}{\partial x}+ \frac{406}{2}g^{T} \frac{\partial V}{\partial x}g\leq \lambda _{1}a(t)+\lambda _{2}b(t)+\lambda _{3}c(t) \end{aligned}$$

should be

$$\begin{aligned} \mathcal{L} \bigl( W ( t ) \bigr) =f^{T} \frac{\partial V}{\partial x}+ \frac{1}{2}g^{T} \frac{\partial V}{\partial x}g\leq \lambda _{1}a(t)+\lambda _{2}b(t)+\lambda _{3}c(t). \end{aligned}$$

On page 12,

$$\begin{aligned} \lim_{l\rightarrow +\infty } B ( l ) e^{- ( \mu +\gamma ) l}=B ( 0 ) - ( \mu +\gamma ) \int_{0}^{{+\infty } }B ( a ) e^{- ( \mu +\gamma ) a}\,da+ \int_{0}{^{+\infty } }e^{- ( \mu + \gamma ) a}\,dB ( a ) \end{aligned}$$

should be

$$\begin{aligned} \lim_{l\rightarrow +\infty } B ( l ) e^{- ( \mu +\gamma ) l}=B ( 0 ) - ( \mu +\gamma ) \int_{0}^{{+\infty } }B ( a ) e^{- ( \mu +\gamma ) a}\,da+ \int_{0}^{{+\infty } }e^{- ( \mu + \gamma ) a}\,dB ( a ). \end{aligned}$$

On page 15,

$$\begin{aligned} \frac{\sigma Z_{\alpha /2}+\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}{\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}< \frac{945}{R_{0}^{\mathrm{SIR}}}< \frac{\sigma Z_{1-\alpha /2}+\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}{\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }} \end{aligned}$$

should be

$$\begin{aligned} \frac{\sigma Z_{\alpha /2}+\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}{\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}< \frac{1 }{R_{0}^{\mathrm{SIR}}}< \frac{\sigma Z_{1-\alpha /2}+\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}{\bar{R}\sqrt{2n}\beta \sqrt{ ( \mu +\upsilon ) ( \mu +\gamma ) }}. \end{aligned}$$

On page 18,

$$\begin{aligned} \frac{}{ ( \mu +\upsilon ) ( \mu +\gamma )} \biggl( \frac{\eta N}{2 \mu } + \frac{1 }{\sigma g } \biggr) \leq E \bigl( R_{0,v}^{\mathrm{SEIRS}} \bigr) \leq \frac{}{ ( \mu +\upsilon ) ( \mu +\gamma )} \biggl( \frac{\eta N}{2 \mu } + \frac{1 }{\sigma l } \biggr) \end{aligned}$$
(4.4)

should be

$$\begin{aligned} \frac{\upsilon \beta }{ ( \mu +\upsilon ) ( \mu +\gamma )} \biggl( \frac{\eta N}{2 \mu } + \frac{1 }{\sigma g } \biggr) \leq E \bigl( R_{0,v}^{\mathrm{SEIRS}} \bigr) \leq \frac{\upsilon \beta }{ ( \mu +\upsilon ) ( \mu +\gamma )} \biggl( \frac{\eta N}{2 \mu } + \frac{1 }{\sigma l } \biggr). \end{aligned}$$
(4.4)

On page 21,

$$\begin{aligned} & \frac{\partial W}{\partial I ( t )}=\lambda _{2} \bigl( \upsilon E+ ( \mu +\upsilon ) I \bigr) y \frac{\partial W}{\partial R ( t )}= \lambda _{4}R \end{aligned}$$

should be

$$\begin{aligned} & \frac{\partial W}{\partial I ( t )}=\lambda _{2} \bigl( \upsilon E+ ( \mu +\upsilon ) I \bigr),\qquad \frac{\partial W}{\partial R ( t )}= \lambda _{4}R. \end{aligned}$$

On page 23,

$$\begin{aligned} V \bigl( S ( t ),I ( t ),R ( t ) \bigr):=\lambda _{1} \biggl( \frac{\eta }{\mu }N-S ( t ) \biggr) ^{2}+\lambda _{2} \frac{1 }{2}I^{2} ( t ) +\lambda _{3} \frac{1428}{2}R^{2} ( t ) \end{aligned}$$

should be

$$\begin{aligned} V \bigl( S ( t ),I ( t ),R ( t ) \bigr):=\lambda _{1} \biggl( \frac{\eta }{\mu }N-S ( t ) \biggr) ^{2}+\lambda _{2} \frac{1 }{2}I^{2} ( t ) +\lambda _{3} \frac{1}{2}R^{2} ( t ). \end{aligned}$$

The publisher apologizes for the errors caused. The original paper has been updated.

References

  1. Ríos-Gutiérrez, A., et al.: Studies on the basic reproduction number in stochastic epidemic models with random perturbations. Adv. Differ. Equ. 2021, 288 (2021). https://doi.org/10.1186/s13662-021-03445-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viswanathan Arunachalam.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos-Gutiérrez, A., Torres, S. & Arunachalam, V. Correction to: Studies on the basic reproduction number in stochastic epidemic models with random perturbations. Adv Differ Equ 2021, 393 (2021). https://doi.org/10.1186/s13662-021-03554-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03554-y