For computational convenience, we denote
$$\begin{aligned}& A=\max \biggl\{ \frac{(1/4)^{\rho _{1}(q_{1}-1)}}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{s\in I}\mathcal{G}_{1}(e,s)\frac{ds}{s}, \frac{(1/4)^{\rho _{2}(q_{2}-1)}}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{s\in I}\mathcal{G}_{2}(e,s)\frac{ds}{s}, \\& \hphantom{A=}{}\frac{(1/4)^{\rho _{3}(q_{3}-1)}}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{s\in I}\mathcal{G}_{3}(e,s)\frac{ds}{s} \biggr\} , \\& B=\min \biggl\{ \frac{1}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{1}^{e} \mathcal{G}_{1}(e,s) (\log s)^{\rho _{1}(q_{1}-1)}\frac{ds}{s}, \\& \hphantom{B=}{}\frac{1}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{1}^{e}\mathcal{G}_{2}(e,s) ( \log s)^{\rho _{2}(q_{2}-1)}\frac{ds}{s}, \\& \hphantom{B=}{}\frac{1}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{1}^{e}\mathcal{G}_{3}(e,s) ( \log s)^{\rho _{3}(q_{3}-1)}\frac{ds}{s} \biggr\} . \end{aligned}$$
Let us define two continuous functionals η and ξ on the cone \(\mathcal{W}\) by
$$\begin{aligned}& \eta (\ss ,\varpi ,\omega )=\min _{t\in I} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} \quad \text{and} \\& \xi (\ss ,\varpi ,\omega )=\max_{t\in [1,e]} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} = \bigl\Vert ( \ss ,\varpi ,\omega ) \bigr\Vert _{\mathcal{R}}. \end{aligned}$$
It is clear that \(\eta (\ss ,\varpi ,\omega )\leq \xi (\ss ,\varpi ,\omega )\) for all \((\ss ,\varpi ,\omega )\in \mathcal{W}\).
Theorem 4.1
Assume that \((H_{1})\)–\((H_{3})\) hold, suppose that there exist positive real numbers q and Q with \(q< m Q\) and \(0<\psi _{i}< \frac{q \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \leq \frac{Q \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \) such that \(f_{i}\), \(i=1,2,3\), satisfy the following conditions:
- \((F_{1})\):
-
\(f_{i}(t,\ss ,\varpi ,\omega )\geq \phi _{p_{i}} (\frac{q}{3mA} )\) for all \(t\in I\), \((\ss ,\varpi ,\omega )\in [q,Q]\),
- \((F_{2})\):
-
\(f_{i}(t,\ss ,\varpi ,\omega )\leq \phi _{p_{i}} ( \frac{Q}{\mho _{i}B} )\) for all \(t\in [1,e]\), \((\ss ,\varpi ,\omega )\in [1,Q]\).
Then the system of Hadamard fractional order boundary value problem (1)–(2) has at least one positive solution and nondecreasing solution \((\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\) satisfying \(q\leq \eta (\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\) with \(\xi (\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\leq Q\).
Proof
Let \(\Omega _{1}=\{(\ss ,\varpi ,\omega ): \eta (\ss ,\varpi ,\omega )< q \}\) and \(\Omega _{2}=\{(\ss ,\varpi ,\omega ): \xi (\ss ,\varpi ,\omega )< Q\}\). It is easy to see that \(0\in \Omega _{1}\) and \(\Omega _{1}\), \(\Omega _{2}\) are bounded open subsets of \(\mathcal{T}\). Let \((\ss ,\varpi ,\omega )\in \Omega _{1}\), we have
$$ q>\eta (\ss ,\varpi ,\omega )=\min_{t\in I} \bigl\{ \ss (t)+ \varpi (t)+ \omega (t) \bigr\} \geq m \bigl\{ \Vert \ss \Vert + \Vert \varpi \Vert + \Vert \omega \Vert \bigr\} =m \xi (\ss ,\varpi ,\omega ). $$
Thus \(Q>\frac{q}{m}>\xi (\ss ,\varpi ,\omega )\) i.e. \((\ss ,\varpi ,\omega )\in \Omega _{2}\), so \(\Omega _{1}\subseteq \Omega _{2}\).
Claim 1: If \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{1}\), then \(\eta (\mathcal{L}(\ss ,\varpi ,\omega ) )\geq \eta (\ss , \varpi ,\omega )\). To see this, let \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{1}\), then \(Q=\xi (\ss ,\varpi ,\omega )\geq (\ss (s)+\varpi (s)+\omega (s) )\geq \eta (\ss ,\varpi ,\omega )=q\) for \(s\in I\). It follows from \((F_{1})\) and Lemma 3.3 that
$$\begin{aligned}& \eta \bigl(\mathcal{L}(\ss ,\varpi ,\omega ) (t) \bigr) \\& \quad =\min_{t\in I} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq \sum_{i=1}^{3} \biggl[ \int _{s\in I}m\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad \geq \frac{1}{3}\frac{q}{m A} \int _{s\in I}m\mathcal{G}_{1}(e,s) \phi _{q_{1}} \biggl(\frac{(\log s)^{\rho _{1}}}{\Gamma {(\rho _{1}+1)}} \biggr)\frac{ds}{s} \\& \qquad {} + \frac{1}{3}\frac{q}{m A} \int _{s\in I}m \mathcal{G}_{2}(e,s)\phi _{q_{2}} \biggl( \frac{(\log s)^{\rho _{2}}}{\Gamma {(\rho _{2}+1)}} \biggr)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{q}{m A} \int _{s\in I}m \mathcal{G}_{3}(e,s)\phi _{q_{3}} \biggl( \frac{(\log s)^{\rho _{3}}}{\Gamma {(\rho _{3}+1)}} \biggr)\frac{ds}{s} \\& \quad \geq \frac{1}{3}\frac{q}{A} \frac{(1/4)^{\rho _{1}(q_{1}-1)}}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{s\in I}\mathcal{G}_{1}(e,s)\frac{ds}{s} + \frac{1}{3} \frac{q}{A} \frac{(1/4)^{\rho _{2}(q_{2}-1)}}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{s\in I}\mathcal{G}_{2}(e,s)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{q}{A} \frac{(1/4)^{\rho _{3}(q_{3}-1)}}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{s\in I}\mathcal{G}_{3}(e,s)\frac{ds}{s} \\& \quad =\frac{q}{3}+\frac{q}{3}+\frac{q}{3}=q=\eta (\ss ,\varpi , \omega ). \end{aligned}$$
Claim 2: If \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{2}\), then \(\xi (\mathcal{L}(\ss ,\varpi ,\omega ) )\leq \xi (\ss , \varpi ,\omega )\). To see this, let \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{2}\), then \((\ss (s)+\varpi (s)+\omega (s) )\geq \xi (\ss ,\varpi , \omega )=Q\) for \(s\in [1,e]\). It follows from \((F_{2})\) and Lemma 3.3 that
$$\begin{aligned}& \xi \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\max_{t\in [1,e]} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {}+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad \leq \frac{1}{\mho _{1}}\frac{Q}{B} \int _{1}^{e}\mathcal{G}_{1}(e,s) \phi _{q_{1}} \biggl(\frac{(\log s)^{\rho _{1}}}{\Gamma {(\rho _{1}+1)}} \biggr)\frac{ds}{s} + \frac{1}{\mho _{2}}\frac{Q}{B} \int _{1}^{e} \mathcal{G}_{2}(e,s)\phi _{q_{2}} \biggl( \frac{(\log s)^{\rho _{2}}}{\Gamma {(\rho _{2}+1)}} \biggr)\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{3}}\frac{Q}{B} \int _{1}^{e}\mathcal{G}_{3}(e,s) \phi _{q_{3}} \biggl(\frac{(\log s)^{\rho _{3}}}{\Gamma {(\rho _{3}+1)}} \biggr)\frac{ds}{s}+ \frac{Q}{\aleph _{1}}+\frac{Q}{\aleph _{2}}+ \frac{Q}{\aleph _{3}} \\& \quad \leq \frac{1}{\mho _{1}}\frac{Q}{B} \frac{1}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{1}^{e}\mathcal{G}_{1}(e,s) ( \log s)^{\rho _{1}(q_{1}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{2}}\frac{Q}{B} \frac{1}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{1}^{e}\mathcal{G}_{2}(e,s) ( \log s)^{\rho _{2}(q_{2}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{3}}\frac{Q}{B} \frac{1}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{1}^{e}\mathcal{G}_{3}(e,s) ( \log s)^{\rho _{3}(q_{3}-1)}\frac{ds}{s}+\frac{Q}{\aleph _{1}}+ \frac{Q}{\aleph _{2}}+ \frac{Q}{\aleph _{3}} \\& \quad =Q \biggl[\frac{1}{\mho _{1}}+\frac{1}{\mho _{2}}+\frac{1}{\mho _{3}}+ \frac{1}{\aleph _{1}}+\frac{1}{\aleph _{2}}+\frac{1}{\aleph _{3}} \biggr]\leq Q=\xi (\ss , \varpi ,\omega ). \end{aligned}$$
Clearly, η satisfies Property 2.1(iii) and ξ satisfies Property 2.2(i). Therefore condition (i) of Theorem 2.1 is satisfied and hence \(\mathcal{L}\) has at least one fixed point \((\ss ^{\star },\varpi ^{\star },\omega ^{\star })\in \mathcal{W}\cap (\overline{\Omega _{2}}\backslash \Omega _{1} )\) i.e. the system of Hadamard fractional order boundary value problems (1)–(2) has at least one positive solution and nondecreasing solution \((\ss ^{\star },\varpi ^{\star },\omega ^{\star })\) satisfying \(q\leq \eta (\ss ^{\star },\varpi ^{\star },\omega ^{\star })\) with \(\xi (\ss ^{\star },\varpi ^{\star },\omega ^{\star })\leq Q\). □
Theorem 4.2
Assume that \((H_{1})\)–\((H_{3})\) hold, suppose that there exist positive real numbers q and Q with \(q< Q\) and \(0<\psi _{i}< \frac{q \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \leq \frac{Q \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \) such that \(f_{i}\), \(i=1,2,3\), satisfy the following conditions:
- \((F_{3})\):
-
\(f_{i}(t,\ss ,\varpi ,\omega )\leq \phi _{p_{i}} ( \frac{q}{\mho _{i}B} )\) for all \(t\in [1,e]\), \((\ss ,\varpi ,\omega )\in [1,q]\),
- \((F_{4})\):
-
\(f_{i}(t,\ss ,\varpi ,\omega )\geq \phi _{p_{i}} (\frac{Q}{3mA} )\) for all \(t\in I\), \((\ss ,\varpi ,\omega )\in [q,\frac{Q}{m}]\).
Then the system of Hadamard fractional order boundary value problems (1)–(2) has at least one positive solution and nondecreasing solution \((\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\) satisfying \(q\leq \xi (\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\) with \(\eta (\ss ^{\star }, \varpi ^{\star }, \omega ^{\star })\leq Q\).
Proof
Let \(\Omega _{3}=\{(\ss ,\varpi ,\omega ): \xi (\ss ,\varpi ,\omega )< q\}\) and \(\Omega _{4}=\{(\ss ,\varpi ,\omega ): \eta (\ss ,\varpi ,\omega )< Q \}\). We have \(0\in \Omega _{3}\) and \(\Omega _{3}\subseteq \Omega _{4}\) with \(\Omega _{3}\) and \(\Omega _{4}\) are bounded open subsets of \(\mathcal{T}\).
Claim 1: If \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{3}\), then \(\xi (\mathcal{L}(\ss ,\varpi ,\omega ) )\leq \xi (\ss , \varpi ,\omega )\). To see this, let \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{3}\), then \((\ss (s)+\varpi (s)+\omega (s) )\leq \xi (\ss ,\varpi , \omega )=q\) for \(s\in [1,e]\). It follows from \((F_{3})\) and Lemma 3.3 that
$$\begin{aligned}& \xi \bigl(\mathcal{L}(\ss ,\varpi ,\omega ) (t) \bigr) \\& \quad =\max_{t\in [1,e]} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad \leq \frac{1}{\mho _{1}}\frac{q}{B} \frac{1}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{1}^{e}\mathcal{G}_{1}(e,s) ( \log s)^{\rho _{1}(q_{1}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{2}}\frac{q}{B} \frac{1}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{1}^{e}\mathcal{G}_{2}(e,s) ( \log s)^{\rho _{2}(q_{2}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{3}}\frac{q}{B} \frac{1}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{1}^{e}\mathcal{G}_{3}(e,s) ( \log s)^{\rho _{3}(q_{3}-1)}\frac{ds}{s}+\frac{q}{\aleph _{1}}+ \frac{q}{\aleph _{2}}+ \frac{q}{\aleph _{3}} \\& \quad =q \biggl[\frac{1}{\mho _{1}}+\frac{1}{\mho _{2}}+\frac{1}{\mho _{3}}+ \frac{1}{\aleph _{1}}+\frac{1}{\aleph _{2}}+\frac{1}{\aleph _{3}} \biggr]\leq q=\xi (\ss , \varpi ,\omega ). \end{aligned}$$
Claim 2: If \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{4}\), then \(\eta (\mathcal{L}(\ss ,\varpi ,\omega ) )\geq \eta (\ss , \varpi ,\omega )\). To see this, let \((\ss ,\varpi ,\omega )\in \mathcal{W}\cap \partial \Omega _{4}\), then \(\frac{Q}{m}=\frac{\eta (\ss ,\varpi ,\omega )}{m}\geq \xi (\ss , \varpi ,\omega )\geq (\ss (s)+\varpi (s)+\omega (s) )\geq \eta (\ss ,\varpi ,\omega )=Q\) for \(s\in I\). It follows from \((F_{4})\) and Lemma 3.3 that
$$\begin{aligned}& \eta \bigl(\mathcal{L}(\ss ,\varpi ,\omega ) (t) \bigr) \\& \quad =\min_{t\in I} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\ln t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq \sum_{i=1}^{3} \biggl[ \int _{s\in I}m\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}- \delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad \geq \frac{1}{3}\frac{Q}{m A} \int _{s\in I}m\mathcal{G}_{1}(e,s) \phi _{q_{1}} \biggl(\frac{(\log s)^{\rho _{1}}}{\Gamma {(\rho _{1}+1)}} \biggr)\frac{ds}{s} + \frac{1}{3}\frac{Q}{m A} \int _{s\in I}m \mathcal{G}_{2}(e,s)\phi _{q_{2}} \biggl( \frac{(\log s)^{\rho _{2}}}{\Gamma {(\rho _{2}+1)}} \biggr)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{Q}{m A} \int _{s\in I}m\mathcal{G}_{3}(e,s) \phi _{q_{3}} \biggl(\frac{(\log s)^{\rho _{3}}}{\Gamma {(\rho _{3}+1)}} \biggr)\frac{ds}{s} \\& \quad \geq \frac{1}{3}\frac{Q}{A} \frac{(1/4)^{\rho _{1}(q_{1}-1)}}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{s\in I} \mathcal{G}_{1}(e,s)\frac{ds}{s} + \frac{1}{3} \frac{Q}{A} \frac{(1/4)^{\rho _{2}(q_{2}-1)}}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{s\in I} \mathcal{G}_{2}(e,s)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{Q}{A} \frac{(1/4)^{\rho _{3}(q_{3}-1)}}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{s\in I} \mathcal{G}_{3}(e,s)\frac{ds}{s} \\& \quad =\frac{Q}{3}+\frac{Q}{3}+\frac{Q}{3}=Q=\eta (\ss ,\varpi , \omega ). \end{aligned}$$
Clearly, η satisfies Property 2.1(iii) and ξ satisfies Property 2.2(i). Therefore condition (ii) of Theorem 2.1 is satisfied, and hence \(\mathcal{L}\) has at least one fixed point \((\ss ^{\star },\varpi ^{\star },\omega ^{\star })\in \mathcal{W}\cap (\overline{\Omega _{4}}\backslash \Omega _{3} )\) i.e. the system of Hadamard fractional order boundary value problems (1)–(2) has at least one positive solution and nondecreasing solution \((\ss ^{\star },\varpi ^{\star },\omega ^{\star })\) satisfying \(q\leq \xi (\ss ^{\star },\varpi ^{\star },\omega ^{\star })\) with \(\eta (\ss ^{\star },\varpi ^{\star },\omega ^{\star })\leq Q\). □
Theorem 4.3
Assume that \((H_{1})\)–\((H_{3})\) hold, suppose that there exist nonnegative numbers a, b, and c such that \(0< a< b<\frac{b}{m}\leq c\) and \(0<\psi _{i}< \frac{a \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \leq \frac{c \Lambda _{i}}{\aleph _{i}\Gamma {(\sigma _{i}-\delta _{i})}} \) such that \(f_{i}\), \(i=1,2,3\), satisfy the following conditions:
- \((F_{5})\):
-
\(f_{i}(t,\ss , \varpi ,\omega )<\phi _{p_{i}} ( \frac{a }{\mho _{i}B} )\) for all \(t\in [1,e]\) and \((\ss , \varpi ,\omega )\in [ma, a]\),
- \((F_{6})\):
-
\(f_{i}(t,\ss , \varpi ,\omega )>\phi _{p_{i}} (\frac{b }{3 m A} )\) for all \(t\in I\) and \((\ss , \varpi ,\omega )\in [b, \frac{b}{m}]\),
- \((F_{7})\):
-
\(f_{i}(t,\ss , \varpi ,\omega )<\phi _{p_{i}} ( \frac{c }{\mho _{i}B} )\) for all \(t\in [1,e]\) and \((\ss , \varpi ,\omega )\in [0, c]\).
Then the Hadamard fractional order BVP (1)–(2) has at least three positive solutions \((\ss _{1}, \varpi _{1}, \omega _{1})\), \((\ss _{2}, \varpi _{2}, \omega _{2})\), and \((\ss _{3}, \varpi _{3}, \omega _{3})\) such that \(\varrho (\ss _{1}, \varpi _{1}, \omega _{1})< a\), \(b<\alpha (\ss _{2}, \varpi _{2}, \omega _{2})\) and \(a<\varrho (\ss _{3}, \varpi _{3}, \omega _{3})\) with \(\alpha (\ss _{3}, \varpi _{3}, \omega _{3})< b\).
Proof
Define the nonnegative continuous concave functionals α, β and the nonnegative continuous convex functionals ℘, ϱ, ς on \(\mathcal{W}\):
$$ \begin{aligned} &\alpha (\ss , \varpi ,\omega )=\min _{t\in I}\bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} ;\qquad \beta (\ss , \varpi ,\omega )=\min _{t \in I_{1}}\bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} ; \\ &\wp (\ss , \varpi ,\omega )=\max_{t\in [1,e]}\bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} ; \qquad \varrho (\ss , \varpi ,\omega )=\max_{t \in I_{1}}\bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} ; \\ &\varsigma (\ss , \varpi ,\omega )=\max_{t\in I}\bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} ;\quad \text{where } I_{1}= \bigl[e^{1/3}, e^{2/3} \bigr]. \end{aligned} $$
For any \((\ss , \varpi ,\omega )\in \mathcal{W}\), we have
$$ \begin{aligned} &\alpha (\ss , \varpi ,\omega )=\min _{t\in I} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} \leq \max_{t\in I_{1}} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} =\varrho (\ss , \varpi ,\omega ), \\ &\bigl\Vert (\ss , \varpi ,\omega ) \bigr\Vert _{\mathcal{R}}\leq \frac{1}{m}\min_{t\in I} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} \leq \frac{1}{m}\max _{t\in [1,e]} \bigl\{ \vert \ss \vert + \vert \varpi \vert + \vert \omega \vert \bigr\} =\frac{1}{m}\wp (\ss , \varpi ,\omega ). \end{aligned} $$
Thus, for each \((\ss , \varpi ,\omega )\in \mathcal{W}\), \(\alpha (\ss , \varpi , \omega )\leq \varrho (\ss , \varpi ,\omega )\) and \(\|(\ss , \varpi ,\omega )\|_{\mathcal{R}}\leq \frac{1}{m}\wp (\ss , \varpi ,\omega )\). We show that \(\mathcal{L}:\overline{\mathcal{W}(\wp ,c)}\rightarrow \overline{\mathcal{W}(\wp ,c)}\). Let \((\ss , \varpi ,\omega )\in \overline{\mathcal{W}(\wp ,c)}\), then \(0\leq |\ss |+|\varpi |+|\omega |\leq c\). From condition \((F_{7})\) we obtain
$$\begin{aligned}& \wp \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\max_{t\in [1,e]} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad < \frac{c }{\mho _{1} B}\frac{1}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{1}^{e}\mathcal{G}_{1}(e,s) (\log s)^{\rho _{1}(q_{1}-1)} \frac{ds}{s} \\& \qquad { }+\frac{c }{\mho _{2}B} \frac{1}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{1}^{e}\mathcal{G}_{2}(e,s) ( \log s)^{\rho _{2}(q_{2}-1)}\frac{ds}{s} \\& \qquad { }+\frac{c }{\mho _{3}B} \frac{1}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{1}^{e}\mathcal{G}_{3}(e,s) ( \log s)^{\rho _{3}(q_{3}-1)}\frac{ds}{s}+\frac{c}{\aleph _{1}}+ \frac{c}{\aleph _{2}}+ \frac{c}{\aleph _{3}} \\& \quad =c \biggl[\frac{1}{\mho _{1}}+\frac{1}{\mho _{2}}+\frac{1}{\mho _{3}}+ \frac{1}{\aleph _{1}}+\frac{1}{\aleph _{2}}+\frac{1}{\aleph _{3}} \biggr]\leq c. \end{aligned}$$
Therefore \(\mathcal{L}:\overline{\mathcal{W}(\wp ,c)}\rightarrow \overline{\mathcal{W}(\wp ,c)}\). Now conditions \((F_{5})\) and \((F_{6})\) of Theorem 2.2 are to be verified. It is obvious that
$$ \begin{aligned} &\frac{mb+b}{3m}\in \biggl\{ (\ss , \varpi ,\omega )\in \mathcal{W} \biggl( \wp , \varsigma , \alpha , b, \frac{b}{m}, c \biggr); \alpha (\ss , \varpi ,\omega )>b \biggr\} \neq \emptyset \quad \text{and} \\ &\frac{ma+a}{3}\in \bigl\{ (\ss , \varpi ,\omega )\in Q (\wp , \varrho , \alpha , \beta , ma,a,c ); \varrho (\ss , \varpi , \omega )< a \bigr\} \neq \emptyset .\end{aligned} $$
Next, let \((\ss , \varpi ,\omega )\in \mathcal{W} (\wp , \varsigma , \alpha , b, \frac{b}{m}, c )\) (or) \((\ss , \varpi ,\omega )\in Q (\wp , \varrho , \alpha , \beta , ma,a,c )\). Then \(b\leq |\ss (t)|+|\varpi (t)|+|\omega (t)|\leq \frac{b}{m}\) and \(ma\leq |\ss (t)|+|\varpi (t)|+|\omega (t)|\leq a\). Now, we apply condition \((F_{6})\) to get
$$\begin{aligned}& \alpha \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\min_{t\in I} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq \sum_{i=1}^{3} \biggl[ \int _{s\in I}m\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad >\frac{1}{3}\frac{b}{m A} \int _{s\in I}m\mathcal{G}_{1}(e,s) \phi _{q_{1}} \biggl(\frac{(\log s)^{\rho _{1}}}{\Gamma {(\rho _{1}+1)}} \biggr)\frac{ds}{s} + \frac{1}{3}\frac{b}{mA} \int _{s\in I}m \mathcal{G}_{2}(e,s)\phi _{q_{2}} \biggl( \frac{(\log s)^{\rho _{2}}}{\Gamma {(\rho _{2}+1)}} \biggr)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{b}{m A} \int _{s\in I}m \mathcal{G}_{3}(e,s)\phi _{q_{3}} \biggl( \frac{(\log s)^{\rho _{3}}}{\Gamma {(\rho _{3}+1)}} \biggr)\frac{ds}{s} \\& \quad =\frac{1}{3}\frac{b}{ A} \frac{(1/4)^{\rho _{1}(q_{1}-1)}}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{s\in I}\mathcal{G}_{1}(e,s)\frac{ds}{s} + \frac{1}{3} \frac{b}{A} \frac{(1/4)^{\rho _{2}(q_{2}-1)}}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{s\in I}\mathcal{G}_{2}(e,s)\frac{ds}{s} \\& \qquad { }+\frac{1}{3}\frac{b}{A} \frac{(1/4)^{\rho _{3}(q_{3}-1)}}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{s\in I}\mathcal{G}_{3}(e,s)\frac{ds}{s} \\& \quad =\frac{b}{3}+\frac{b}{3}+\frac{b}{3}=b. \end{aligned}$$
Clearly, by condition \((D1)\), we have
$$\begin{aligned}& \varrho \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\max_{t\in [1,e]} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad {} + \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}}{\Lambda _{i}} \biggr] \\& \quad < \frac{1}{\mho _{1}}\frac{a}{B} \frac{1}{(\Gamma {(\rho _{1}+1)})^{q_{1}-1}} \int _{1}^{e}\mathcal{G}_{1}(e,s) ( \log s)^{\rho _{1}(q_{1}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{2}}\frac{a}{B} \frac{1}{(\Gamma {(\rho _{2}+1)})^{q_{2}-1}} \int _{1}^{e}\mathcal{G}_{2}(e,s) ( \log s)^{\rho _{2}(q_{2}-1)}\frac{ds}{s} \\& \qquad { }+\frac{1}{\mho _{3}}\frac{a}{B} \frac{1}{(\Gamma {(\rho _{3}+1)})^{q_{3}-1}} \int _{1}^{e}\mathcal{G}_{3}(e,s) ( \log s)^{\rho _{3}(q_{3}-1)}\frac{ds}{s}+\frac{a}{\aleph _{1}}+ \frac{a}{\aleph _{2}}+ \frac{a}{\aleph _{3}} \\& \quad =a \biggl[\frac{1}{\mho _{1}}+\frac{1}{\mho _{2}}+\frac{1}{\mho _{3}}+ \frac{1}{\aleph _{1}}+\frac{1}{\aleph _{2}}+\frac{1}{\aleph _{3}} \biggr]\leq a. \end{aligned}$$
To see that \((D2)\) is satisfied, let \((\ss , \varpi ,\omega )\in \mathcal{W}(\wp , \alpha , b, c)\) with \(\varsigma (\mathcal{L}(\ss , \varpi ,\omega )(t) )> \frac{b}{m}\), we have
$$\begin{aligned}& \alpha \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\min_{t\in I} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq \sum_{i=1}^{3} \biggl[ \int _{1}^{e}m\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq m\max_{t\in [1,e]}\sum_{i=1}^{3} \biggl[ \int _{1}^{e} \mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \geq m\max_{t\in I}\sum_{i=1}^{3} \biggl[ \int _{1}^{e} \mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad =m \varsigma \bigl(\mathcal{L}(\ss , \varpi ,\omega )\bigr) (t)>b. \end{aligned}$$
Finally, it is shown that \((D4)\) holds. Let \((\ss , \varpi ,\omega )\in \mathcal{L}(\wp , \varrho ,a,c)\) with \(\beta (\mathcal{L}(\ss , \varpi ,\omega ))< m a\). Then we have
$$\begin{aligned}& \varrho \bigl(\mathcal{L}(\ss , \varpi ,\omega ) (t) \bigr) \\& \quad =\max_{t\in I_{1}} \sum_{i=1}^{3} \biggl[ \int _{1}^{e}\mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl( \kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr) \frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t) ^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \max_{t\in [1,e]}\sum _{i=1}^{3} \biggl[ \int _{1}^{e} \mathcal{G}_{i}(e,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad =\frac{1}{m}\sum_{i=1}^{3} \biggl[m \int _{1}^{e}\mathcal{G}_{i}(e,s) \phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{ \rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega ( \kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \frac{1}{m}\min_{t\in I}\sum _{i=1}^{3} \biggl[ \int _{1}^{e} \mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad \leq \frac{1}{m}\min_{t\in I_{1}}\sum _{i=1}^{3} \biggl[ \int _{1}^{e} \mathcal{G}_{i}(t,s)\phi _{q_{i}} \biggl( \int _{1}^{s}b_{i} \biggl(\log \frac{s}{\kappa } \biggr)^{\rho _{i}-1}f_{i}\bigl(\kappa , \ss ( \kappa ), \varpi (\kappa ),\omega (\kappa )\bigr)\frac{d\kappa }{\kappa } \biggr) \frac{ds}{s} \\& \qquad { }+ \frac{\psi _{i}\Gamma {(\sigma _{i}-\delta _{i})}(\log t)^{\sigma _{i}-1}}{\Lambda _{i}} \biggr] \\& \quad =\frac{1}{m}\beta \bigl(\mathcal{L}(\ss , \varpi ,\omega )\bigr) (t)< a. \end{aligned}$$
It has been proved that all the conditions of Theorem 2.2 are fulfilled. Therefore, the Hadamard fractional order BVP (1)–(2) has at least three positive solutions \((\ss _{1}, \varpi _{1}, \omega _{1})\), \((\ss _{2}, \varpi _{2}, \omega _{2})\), and \((\ss _{3}, \varpi _{3}, \omega _{3})\) such that \(\varrho (\ss _{1}, \varpi _{1}, \omega _{1})< a\), \(b<\alpha (\ss _{2}, \varpi _{2},\omega _{2})\) and \(a<\varrho (\ss _{3}, \varpi _{3}, \omega _{3})\) with \(\alpha (\ss _{3}, \varpi _{3}, \omega _{3})< b\). □