Bouaouid, M., Hilal, K., Melliani, S.: Sequential evolution conformable differential equations of second order with nonlocal condition. Adv. Differ. Equ. 2019, 21 (2019)
Article
MathSciNet
MATH
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P.: On group analysis of the time fractional extended \((2+1)\)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)
Article
MathSciNet
MATH
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y., Cui, P., Geng, L.L.: On integrability of the higher dimensional time fractional KdV-type equation. J. Geom. Phys. 160, 104000 (2021)
Article
MathSciNet
MATH
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y., Geng, L.L.: Fundamental results to the weighted Caputo-type differential operator. Appl. Math. Lett. 121, 107421 (2021)
Article
MathSciNet
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y., Iqbal, M.: Group analysis to the time fractional nonlinear wave equation. Int. J. Math. 31, 2050029 (2020)
Article
MathSciNet
MATH
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y., Zhang, H.Y.: Analysis of the time fractional nonlinear diffusion equation from diffusion process. J. Appl. Anal. Comput. 10, 1060–1072 (2020)
MathSciNet
MATH
Google Scholar
Liu, J.G., Yang, X.J., Feng, Y.Y.: Analytical solutions of some integral fractional differential-difference equations. Mod. Phys. Lett. B 34, 2050009 (2020)
Article
MathSciNet
Google Scholar
Liang, X., Gao, F., Zhou, C.B., Wang, Z., Yang, X.J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Differ. Equ. 2018, 25 (2018)
Article
MathSciNet
MATH
Google Scholar
Phuong, N.D., Hoan, L.V.C., Karapinar, E., Singh, J., Binh, H.D., Can, N.H.: Fractional order continuity of a time semi-linear fractional diffusion-wave system. Alex. Eng. J. 59, 4959–4968 (2020)
Article
Google Scholar
Phuong, N.D., Tuan, N.A., Kumar, D., Tuan, N.H.: Initial value problem for fractional Volterra integrodifferential pseudo-parabolic equations. Math. Model. Nat. Phenom. 16, 27 (2021)
Article
MathSciNet
MATH
Google Scholar
Rashid, S., Chu, Y.M., Singh, J., Kumar, D.: A unifying computational framework for novel estimates involving discrete fractional calculus approaches. Alex. Eng. J. 60, 2677–2685 (2021)
Article
Google Scholar
Can, N.H., Kumar, D., Vo Viet, T., Nguyen, A.T.: On time fractional pseudo-parabolic equations with non-local in time condition. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7196
Article
Google Scholar
Singh, J., Kumar, D., Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018, 231 (2018)
Article
MathSciNet
MATH
Google Scholar
Agarwal, R.P., Alsaedi, A., Alghamdi, N., Ntouyas, S.K., Ahmad, B.: Existence results for multi-term fractional differential equations with nonlocal multi-point and multi-strip boundary conditions. Adv. Differ. Equ. 2018, 342 (2018)
Article
MathSciNet
MATH
Google Scholar
Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, 247 (2017)
Article
MathSciNet
MATH
Google Scholar
Samadi, A., Ntouyas, S.K., Tariboon, J.: Nonlocal fractional hybrid boundary value problems involving mixed fractional derivatives and integrals via a generalization of Darbo’s theorem. J. Math. 2021, Article ID 6690049 (2021)
Article
MathSciNet
Google Scholar
Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T., Atangana, A.: Optimal control for cancer treatment mathematical model using Atangana–Baleanu–Caputo fractional derivative. Adv. Differ. Equ. 2020, 334 (2020)
Article
MathSciNet
Google Scholar
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)
MATH
Google Scholar
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
MATH
Google Scholar
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon & Breach, Amsterdam (1993)
MATH
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
MATH
Google Scholar
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amesterdam (2006)
MATH
Google Scholar
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
Article
MathSciNet
MATH
Google Scholar
Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. (2016). https://doi.org/10.2298/TSCI160111018A
Article
Google Scholar
Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Article
MathSciNet
MATH
Google Scholar
Chung, W.: Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 290, 150–158 (2015)
Article
MathSciNet
MATH
Google Scholar
Martínez, L., Rosales, J.J., Carreño, C.A., Lozano, J.M.: Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. 46, 1091–1100 (2018)
Article
Google Scholar
Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)
Article
MathSciNet
MATH
Google Scholar
Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54, 903–917 (2017)
Article
MathSciNet
MATH
Google Scholar
Bouaouid, M., Atraoui, M., Hilal, K., Melliani, S.: Fractional differential equations with nonlocal-delay condition. J. Adv. Math. Stud. 11, 214–225 (2018)
MathSciNet
MATH
Google Scholar
Bouaouid, M., Hilal, K., Melliani, S.: Nonlocal telegraph equation in frame of the conformable time-fractional derivative. Adv. Math. Phys. 2019, Article ID 7528937 (2019)
Article
MathSciNet
MATH
Google Scholar
Bouaouid, M., Hilal, K., Melliani, S.: Nonlocal conformable fractional Cauchy problem with sectorial operator. Indian J. Pure Appl. Math. 50, 999–1010 (2019)
Article
MathSciNet
MATH
Google Scholar
Bouaouid, M., Hannabou, M., Hilal, K.: Nonlocal conformable-fractional differential equations with a measure of noncompactness in Banach spaces. J. Math. 2020, Article ID 5615080 (2020)
Article
MathSciNet
MATH
Google Scholar
Bouaouid, M., Hilal, K., Melliani, S.: Existence of mild solutions for conformable-fractional differential equations with non local conditions. Rocky Mt. J. Math. 50, 871–879 (2020)
Article
MATH
Google Scholar
Bouaouid, M., Hilal, K., Hannabou, M.: Existence and uniqueness of integral solutions to impulsive conformable-fractional differential equations with nonlocal condition. J. Appl. Anal. 27 (2021)
Bouaouid, M.: Integral solution of a conformable fractional integro-differential equation with nonlocal condition. Mathematica (2021, to appear)
Yang, S., Wang, L., Zhan, S.: Conformable derivative: application to non-Darcian flow in low-permeability porous media. Appl. Math. Lett. 79, 105–110 (2018)
Article
MathSciNet
MATH
Google Scholar
Balci, E., Öztürk, I., Kartal, S.: Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative. Chaos Solitons Fractals 123, 43–51 (2019)
Article
MathSciNet
MATH
Google Scholar
Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018)
Article
MathSciNet
MATH
Google Scholar
Al-Refai, M., Abdeljawad, T.: Fundamental results of conformable Sturm–Liouville eigenvalue problems. Complexity 2017, Article ID 3720471 (2017)
Article
MathSciNet
MATH
Google Scholar
Lazo, M.J., Torres, D.F.: Variational calculus with conformable fractional derivatives. IEEE/CAA J. Autom. Sin. 4, 340–352 (2017)
Article
MathSciNet
Google Scholar
Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)
Article
MathSciNet
MATH
Google Scholar
Katugampola, U.N.: Correction to “What is a fractional derivative?” by Ortigueira and Machado [Journal of Computational Physics, Volume 293, 15 July 2015, pages 4–13. Special issue on Fractional PDEs]. J. Comput. Phys. 321, 1255–1257 (2016)
Article
MathSciNet
MATH
Google Scholar
Abdelhakim, A.A., Tenreiro Machado, J.A.: A critical analysis of the conformable derivative. Nonlinear Dyn. 95, 3063–3073 (2019)
Article
MATH
Google Scholar
Abdelhakim, A.A.: The flaw in the conformable calculus: it is conformable because it is not fractional. Fract. Calc. Appl. Anal. 22, 242–254 (2019)
Article
MathSciNet
MATH
Google Scholar
Tuan, N.H., Thach, T.N., Can, N.H., O’Regan, D.: Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data. Math. Methods Appl. Sci. 44, 2879–2891 (2021)
Article
MathSciNet
MATH
Google Scholar
Bhanotar, S.A., Kaabar, M.K.: Analytical solutions for the nonlinear partial differential equations using the conformable triple Laplace transform decomposition method. Int. J. Differ. Equ. 2021, Article ID 9988160 (2021)
MathSciNet
Google Scholar
Abbas, M.I.: Existence results and the Ulam stability for fractional differential equations with hybrid proportional-Caputo derivatives. J. Nonlinear Funct. Anal. 2020, Article ID 48 (2020)
Google Scholar
Abbas, M.I.: Ulam stability and existence results for fractional differential equations with hybrid proportional-Caputo derivatives. J. Interdiscip. Math. (2021). https://doi.org/10.1080/09720502.2021.1889156
Article
Google Scholar
Gao, F., Chi, C.: Improvement on conformable fractional derivative and its applications in fractional differential equations. J. Funct. Spaces 2020, Article ID 5852414 (2020)
MathSciNet
MATH
Google Scholar
Van Au, V., Zhou, Y., Can, N.H., Tuan, N.T.: Regularization of a terminal value nonlinear diffusion equation with conformable time derivative. J. Integral Equ. Appl. 32, 397–416 (2020)
Article
MathSciNet
MATH
Google Scholar
Meléndez-Vázquez, F., Fernández-Anaya, G., Hernández-Martínez, E.G.: General conformable estimators with finite-time stability. Adv. Differ. Equ. 2020, 551 (2020)
Article
MathSciNet
Google Scholar
Au, V.V., Baleanu, D., Zhou, Y., Can, N.H.: On a problem for the nonlinear diffusion equation with conformable time derivative. Appl. Anal. 100, 1–25 (2021)
Article
MathSciNet
Google Scholar
Eltayeb, H., Bachar, I., Gad-Allah, M.: Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method. Adv. Differ. Equ. 2019, 293 (2019)
Article
MathSciNet
Google Scholar
Travis, C.C., Webb, G.F.: Cosine family and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978)
Article
MATH
Google Scholar
Hernández, E.M.: Existence of solutions to a second order partial differential equation with nonlocal conditions. Electron. J. Differ. Equ. 2003, 51 (2003)
MathSciNet
MATH
Google Scholar
Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)
Article
MathSciNet
MATH
Google Scholar
Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)
Article
MathSciNet
MATH
Google Scholar
Olmstead, W.E., Roberts, C.A.: The one-dimensional heat equation with a nonlocal initial condition. Appl. Math. Lett. 10, 89–94 (1997)
Article
MathSciNet
MATH
Google Scholar
Zhu, L., Li, G.: Existence results of semilinear differential equations with nonlocal initial conditions in Banach spaces. Nonlinear Anal. 74, 5133–5140 (2011)
Article
MathSciNet
MATH
Google Scholar
Aizicovici, S., McKibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39, 649–668 (2000)
Article
MathSciNet
MATH
Google Scholar
Xue, X.: Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces. Nonlinear Anal. 70, 2593–2601 (2009)
Article
MathSciNet
MATH
Google Scholar
Banas̀, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics. Dekker, New York (1980)
Google Scholar
Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)
Book
MATH
Google Scholar
Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 63, 731–744 (2013)
Article
MathSciNet
MATH
Google Scholar
Li, Y.: Existence of solutions of initial value problems for abstract semilinear evolution equations. Acta Math. Sinica (Chin. Ser.) 48, 1089–1094 (2005)
MathSciNet
MATH
Google Scholar
Heinz, H.P.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7, 1351–1371 (1983)
Article
MathSciNet
MATH
Google Scholar
Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley, New York (1976)
Google Scholar