Theory and Modern Applications

# A fractional q-integral operator associated with a certain class of q-Bessel functions and q-generating series

## Abstract

This paper deals with Al-Salam fractional q-integral operator and its application to certain q-analogues of Bessel functions and power series. Al-Salam fractional q-integral operator has been applied to various types of q-Bessel functions and some power series of special type. It has been obtained for basic q-generating series, q-exponential and q-trigonometric functions as well. Various results and corollaries are provided as an application to this theory.

## 1 Introduction

The theory of q-calculus is an old subject centered on the idea of deriving q-analogous results without using limits. Jackson was the first to develop the q-calculus theory in systematic way . He defined the concept of the q-integral and the concept of the q-difference operator in a generic manner. In excellence, the theory of q-calculus allows to deal with sets of non-differentiable functions, different classes of orthogonal polynomials, integral operators, and various classes of special functions including q-hypergeometric functions, q-Bessel functions, q-gamma and q-beta functions, and many others, to mention but a few. It connects mathematics and physics and plays a significant role in various fields of physical sciences such as cosmic strings , conformal quantum mechanics , and nuclear physics of high energy . It, further, applies to topics in number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions, quantum theory, mechanics, and the theory of relativity.

The q-integrals from 0 to ξ and from 0 to ∞ are, resp., defined by Jackson as 

$$\int _{0}^{\xi }f ( t ) \,d_{q}t=\xi ( 1-q ) \sum_{j=0}^{\infty }q^{j}f \bigl( \xi q^{j} \bigr)$$
(1)

and

$$\int _{0}^{\infty /A}f ( t ) \,d_{q}t= ( 1-q ) \sum_{j\in \mathbb{Z} }\frac{q^{j}}{A}f \biggl( \frac{q^{j}}{A} \biggr) .$$
(2)

The q-analogue of the Bessel function

$$J_{\mu } ( \xi ) =\sum_{j=0}^{\infty } \frac{ ( -1 ) ^{j} ( \frac{\xi }{2} ) ^{\mu +2j}}{j!\Gamma ( \mu +j+1 ) }$$
(3)

of the first type, which was studied later by Hahn  and Ismail , is defined by  as

$$J_{\mu }^{ ( 1 ) } ( \xi ;q ) = \biggl( \frac{\xi }{2} \biggr) ^{\mu }\sum_{j=0}^{\infty } \frac{ ( \frac{-\xi }{4}^{2} ) ^{j}}{ ( q,q ) _{\mu +j} ( q;q ) _{j}}, \quad \vert \xi \vert < 2.$$
(4)

Jackson defines the q-analogue of the Bessel function of the second type as 

$$J_{\mu }^{ ( 2 ) } ( \xi ;q ) = \biggl( \frac{\xi }{2} \biggr) ^{\mu }\sum_{j=0}^{\infty } \frac{q^{j ( j+\mu ) } ( \frac{-\xi }{4}^{2} ) ^{j}}{ ( q;q ) _{\mu +j} ( q;q ) _{j}}, \quad \xi \in \mathbb{C} .$$
(5)

Hahn  and Exton  introduced the third type q-Bessel function (called Hahn–Exton q-Bessel function) as

$$J_{\mu }^{ ( 3 ) } ( \xi ;q ) =\xi ^{\mu }\sum _{j=0}^{ \infty } \frac{ ( -1 ) ^{j}q^{\frac{j ( j-1 ) }{2}} ( q\xi ^{2} ) ^{j}}{ ( q;q ) _{\mu +j} ( q;q ) _{j}}, \quad \xi \in \mathbb{C} .$$
(6)

The q-shifted factorials are defined, in literature, by fixing $$\xi \in \mathbb{C}$$ as

$$( \xi ;q ) _{0}=1; \quad\quad ( \xi ;q ) _{n}= \prod _{j=0}^{n-1} \bigl( 1-\xi q^{k} \bigr) , \quad n=1,2,\ldots; \quad\quad ( \xi ;q ) _{\infty }= \underset{n \rightarrow \infty }{\lim } ( \xi ;q ) _{n}.$$
(7)

This indeed gives

$$( \xi ;q ) _{x}= \frac{ ( \xi ;q ) _{\infty }}{ ( \xi q^{x};q ) _{\infty }}, \quad x\in \mathbb{R} .$$
(8)

For $$\xi \in \mathbb{C}$$, we mean

$$[ \xi ] _{q}=\frac{1-q^{\xi }}{1-q}.$$

Hence, for $$n\in \mathbb{N}$$, we obtain

$$\bigl( [ n ] _{q} \bigr) != \frac{ ( q;q ) _{n}}{ ( 1-q ) ^{n}}.$$

Due to [10, (1.5), (1.6)], we, resp., write

$$\begin{bmatrix} n \\ k\end{bmatrix} _{q}= \frac{ [ n ] _{q}!}{ [ k ] _{q}! [ n-k ] _{q}!}= \frac{ ( q;q ) _{n}}{ ( q;q ) _{k} ( q;q ) _{n-k}}$$
(9)

and

$$\begin{bmatrix} \alpha \\ k\end{bmatrix} _{q}= \frac{ ( q^{-\alpha };q ) _{k}}{ ( q;q ) _{k}} ( -1 ) ^{k}q^{\alpha k- \binom{ k}{ 2} }= \frac{\Gamma _{q} ( \alpha +1 ) }{\Gamma _{q} ( k+1 ) \Gamma _{q} ( \alpha -k ) }.$$
(10)

The q-analogue of the exponential function of the second type is given by

$$e_{q} ( \xi ) =\sum_{j=0}^{\infty } \frac{\xi ^{j}}{ ( q;q ) _{j}}=\frac{1}{ ( \xi ;q ) _{\infty }}, \quad \vert \xi \vert < 1,$$
(11)

whereas the q-analogue of the exponential function of the first type is given by

$$E_{q} ( \xi ) =\sum_{j=0}^{\infty } \frac{ ( -1 ) ^{j}q^{j\frac{ ( j-1 ) }{2}}\xi ^{j}}{ ( q;q ) _{j}}= ( \xi ;q ) _{\infty }, \quad \xi \in \mathbb{C} .$$

Consequently, the following formula holds:

$$\bigl( q^{\xi +m};q \bigr) _{\infty }= \frac{ ( q^{\xi };q ) _{\infty }}{ ( q^{\xi };q ) _{m}},\quad m\in \mathbb{N} .$$
(12)

For real arguments t, the q-analogues of the gamma function are given by 

$$\Gamma _{q} ( t ) = \int _{0}^{\frac{1}{1-q}}x^{t-1}E_{q} ( -qx ) \,d_{q}x\quad \text{and}\quad \hat{\Gamma }_{q} ( t ) = \int _{0}^{\infty }x^{t-1}e_{q} ( -x ) \,d_{q}x.$$
(13)

Henceforth, for $$t\in \mathbb{R}$$ and $$n\in \mathbb{N}$$, the following auxiliary results hold:

$$\Gamma _{q} ( t+1 ) = [ t ] _{q}\Gamma _{q} ( t ) , \quad\quad \Gamma _{q} ( n+1 ) = [ n ] _{q}!\quad \text{and}\quad \Gamma _{q} ( t+1 ) =\frac{1-q^{t}}{1-q}\Gamma _{q} ( t ) .$$
(14)

The theory of fractional calculus was born in early 1695 due to a very deep question raised in a letter of L’Hospital to Leibniz . During a long period of time (300 years), the fractional calculus has kept the attention of top level mathematicians. It has become a very useful tool for tackling dynamics of complex systems from various branches of science and engineering. The fractional q-calculus is the q-extension of the ordinary fractional calculus. Integral operators have attained their popularity due to their wide range of applications in various fields of science and engineering  and . In [35, 36] Al-Salam and Agarwal studied certain q-fractional integrals and derivatives. Recently, perhaps due to explosion in research within the fractional calculus setting, new developments in the theory of fractional q-difference calculus, specifically, the q-analogues of the integral and the differential fractional operator properties were made, see, e.g., . In [36, p. 966], Al-Salam defines a fractional q-integral operator in the form of the basic integral

$$K_{q}^{\eta }f ( x ) = \frac{q^{-\eta }x^{\eta }}{\Gamma _{q} ( \alpha ) } \int _{x}^{\infty } ( y-x ) _{ \alpha -1}y^{-\eta -\alpha }f \bigl( yq^{1-\alpha } \bigr) \,d ( y;q ) ,$$
(15)

provided $$\alpha \neq 0,-1,-2,\ldots$$ . With the aid of series definition (1), the above equation can be expressed as

$$K_{q}^{\eta }f ( x ) = ( 1-q ) ^{\alpha }\sum _{k=0}^{\alpha } ( -1 ) ^{k}q^{k ( \eta + \alpha ) +\frac{1}{2}k ( k+1 ) } \begin{bmatrix} -\alpha \\ k\end{bmatrix} f \bigl( xq^{-\alpha -k} \bigr) .$$
(16)

Consequently, by applying (9), (2) can be expressed as

$$K_{q}^{\eta ,\alpha }f ( x ) = ( 1-q ) ^{ \alpha }\sum _{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta + \alpha ) +\frac{1}{2}k ( k+1 ) } \biggl( \frac{ ( q;q ) _{-\alpha }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \biggr) f \bigl( xq^{-\alpha -k} \bigr) .$$

Therefore, it follows that

$$K_{q}^{\eta ,\alpha }f ( x ) = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}f \bigl( xq^{- \alpha -k} \bigr) .$$
(17)

In what follows, we discuss the Al-Salam fractional q-integral $$( 15 )$$ on some special functions. We apply it to various types of q-Bessel functions and some power series of special type. In Sect. 1, we already recalled some definitions and notations from the fractional q-calculus theory. In Sect. 2, we apply the Al-Salam fractional q-integral to a finite product of q-Bessel functions. In Sect. 3, we apply the Al-Salam fractional q-integral to a power series. We also include some new applications. In Sect. 4, we apply the Al-Salam q-integral operator to some q-generating series.

## 2 Main results

### Theorem 1

Let $$\{ J_{2\mu _{1}}^{ ( 1 ) } ( 2\sqrt{\delta _{1}t};q ) ,\ldots,J_{2\mu _{n}}^{ ( 1 ) } ( 2\sqrt{ \delta _{n}t};q ) \}$$ be a set of first kind q-Bessel functions and

$$f ( t ) =t^{\Delta -1}\prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 1 ) } ( 2\sqrt{\delta _{j}t};q ) .$$
(18)

Then, for some $$B=q^{-\alpha ( \Delta -1 ) } \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}$$, we have

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&B\prod_{j=1}^{n} \bigl( \delta _{j}xq^{-\alpha } \bigr) ^{\mu _{j}}\sum _{m=0}^{ \infty }\delta _{j}x^{m}q^{-\alpha m} \frac{ ( q^{2\mu _{j}+m+1};q ) _{\infty }}{\Gamma _{q} ( m+1 ) } \\ & {}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( -m+\eta +\alpha +\frac{1}{2}k+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}

### Proof

By employing (18), the fractional q-integral (17) reveals

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{k=0}^{\infty } ( -1 ) ^{k}\frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}f \bigl( xq^{- \alpha -k} \bigr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{k=0}^{\infty } \frac{ ( -1 ) ^{k}q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \bigl( xq^{{-\alpha -k}} \bigr) ^{ \Delta -1} \\ &{}\times \prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 1 ) } \bigl( 2 \sqrt{\delta _{j}xq^{-\alpha -k}};q \bigr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}\sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) - ( \alpha +k ) ( \Delta -1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \\ &{}\times \prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 1 ) } \bigl( 2 \sqrt{\delta _{j}xq^{-\alpha -k}};q \bigr) . \end{aligned}

By taking into account the definition of the Bessel function $$J_{v}^{ ( 1 ) }$$ given in (4), jointly with simple computations, the above equation reduces to yield

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&\frac{ ( q;q ) _{-\alpha }x^{\Delta -1}}{ ( 1-q ) ^{-\alpha }} \sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) - ( \alpha +k ) ( \Delta -1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \prod_{j=1}^{n} \bigl( a_{j}xq^{-\alpha -k} \bigr) ^{\mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } \frac{ ( \delta _{j}xq^{-\alpha -k} ) ^{m}}{ ( q,q ) _{2\mu _{j}+m} ( q,q ) _{m}} \\ =&q^{-\alpha ( \Delta -1 ) } \frac{ ( q;q ) _{-\alpha }x^{\Delta -1}}{ ( 1-q ) ^{-\alpha }} \prod_{j=1}^{n} \bigl( \delta _{j}xq^{-\alpha } \bigr) ^{ \mu _{j}}\sum _{m=0}^{\infty } \frac{ ( \delta _{j}xq^{-\alpha } ) ^{m}q^{-km}}{ ( q;q ) _{2\mu _{j}+m} ( q;q ) _{m}} \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{-km+k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) -k ( \Delta -1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}. \end{aligned}

Hence, by the fact [40, Equ. (8)]

$$( \zeta ;q ) _{x}= \frac{ ( \zeta ;q ) _{\infty }}{ ( \zeta q^{x};q ) _{\infty }},$$
(19)

we obtain

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&q^{-\alpha ( \Delta -1 ) } \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1} \prod_{j=1}^{n} \delta _{j}^{\mu _{j}} \mu _{j}xq^{\alpha \mu _{j}-\alpha }q^{\mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } \frac{\delta _{j}^{m}x^{m}q^{-\alpha m} ( q^{2\mu _{j}+m+1};q ) _{\infty }}{ ( q;q ) _{m}} \sum _{k=0}^{\infty } \frac{ ( -1 ) ^{k}q^{k ( -m+\eta +\alpha +\frac{1}{2}k+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}
(20)

This completes the proof of the theorem. □

Now the identity

$$( q;q ) _{\alpha }=\Gamma _{q} ( \alpha +1 )$$
(21)

leads to the following useful remark.

### Remark 2

Let $$\{ J_{2\mu _{1}}^{ ( 1 ) } ( 2\sqrt{\delta _{1}t};q ) ,\ldots,J_{2\mu _{n}}^{ ( 1 ) } ( 2\sqrt{ \delta _{n}t};q ) \}$$ be a set of first kind q-Bessel functions and $$f ( t ) =t^{\Delta -1}\prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 1 ) } ( 2\sqrt{\delta _{j}t};q )$$. Then, for some $$B=q^{-\alpha ( \Delta -1 ) } \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}$$, we have

\begin{aligned} K_{q}^{\eta ,\alpha }f(x) =&B\prod_{j=1}^{n} \bigl( \delta _{j}xq^{- \alpha } \bigr) ^{\mu _{j}}\sum _{m=0}^{\infty }\delta _{j}x^{m}q^{- \alpha m} \frac{ ( q^{2\mu _{j}+m+1};q ) _{\infty }}{\Gamma _{q} ( m+1 ) } \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( -m+\eta +\alpha +\frac{1}{2}k+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}

### Proof

Indeed, from Theorem 1 and (21), we have

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&\frac{q^{-\alpha ( \Delta -1 ) }x^{\Delta -1}}{ ( q;q ) _{\infty } ( 1-q ) ^{-\alpha }}\Gamma _{q} ( 1-\alpha ) \prod_{j=1}^{n} \bigl( \delta _{j}xq^{-\alpha \mu _{j}-\alpha } \bigr) ^{\mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } \frac{ ( \delta _{j}xq^{-\alpha } ) ^{m} ( q^{\mu _{j}+m+1};q ) _{\infty }}{\Gamma _{q} ( m+1 ) } \sum _{k=0}^{\infty } \frac{ ( -1 ) ^{k}q^{k ( -m+\eta +\alpha +\frac{1}{2}k+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( 1-\alpha -k ) } \\ =&B\prod_{j=1}^{n} \bigl( \delta _{j}xq^{-\alpha } \bigr) ^{ \mu _{j}}\sum _{m=0}^{\infty }\delta _{j}x^{m}q^{-\alpha m} \frac{ ( q^{2\mu _{j}+m+1};q ) _{\infty }}{\Gamma _{q} ( m+1 ) } \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( -m+\eta +\alpha +\frac{1}{2}k+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}

This completes the proof of the remark. □

### Theorem 3

Let $$J_{2\mu _{1}}^{ ( 2 ) } ( 2\sqrt{\delta _{1}t};q ) ,\ldots,J_{2\mu _{n}}^{ ( 2 ) } ( 2\sqrt{\delta _{n}t};q )$$ and $$f ( t ) =t^{\Delta -1}\prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 2 ) } ( 2\sqrt{\delta _{j}t};q )$$. Then, for some $$A= \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}q^{-\alpha ( \Delta -1 ) }$$, we have

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&A\prod_{j=1}^{n} \delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{-\alpha \mu _{j}}\sum _{m=0}^{ \infty }q^{m ( m+\mu _{j} ) } \frac{ ( -\delta _{j}xq^{-\alpha -k} ) ^{m} ( q^{\mu _{i}+m+1};q_{\infty } ) }{ ( q;q ) _{\infty }\Gamma _{q} ( m+k ) } \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +k+\mu _{j}+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( 1+k ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}

### Proof

Let the hypothesis of the theorem be satisfied. Then we have

$$K_{q}^{\eta ,\alpha }f ( x ) = ( 1-q ) ^{ \alpha }\sum _{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta + \alpha ) +\frac{1}{2}k ( k+1 ) } \begin{bmatrix} -\alpha \\ k\end{bmatrix} f \bigl( xq^{-\alpha -k} \bigr).$$

Therefore, in view of (18) and (3), we write

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =& ( 1-q ) ^{ \alpha }\sum _{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta + \alpha ) +\frac{1}{2}k ( k+1 ) } \frac{ ( q;q ) _{-\alpha }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}f \bigl( xq^{- \alpha -k} \bigr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \bigl( xq^{-\alpha -k} \bigr) ^{\Delta -1} \\ &{}\times \prod_{j=1}^{n}J_{2\mu _{j}}^{ ( 2 ) } \bigl( \sqrt{\delta _{j}xq^{-\alpha -k}};q \bigr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \bigl( xq^{-\alpha -k} \bigr) ^{\Delta -1} \\ &{}\times \prod_{j=1}^{n} \bigl( \delta _{j}xq^{-\alpha -k} \bigr) ^{ \mu _{j}} \sum _{m=0}^{\infty } \frac{q^{m ( m+\mu _{j} ) } ( -\delta _{j}xq^{-\alpha -k} ) ^{m}}{ ( q;q ) _{\mu _{j}+m} ( q;q ) _{m}} \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}q^{-\alpha ( \Delta -1 ) }\sum _{k=0}^{ \infty } ( -1 ) ^{q} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) -k ( \Delta -1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \\ &{}\times \prod_{j=1}^{n}\delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{- ( \alpha +k ) \mu _{j}}\sum _{m=0}^{\infty } \frac{q^{m ( m+\mu _{j} ) } ( -\delta _{j}xq^{-\alpha -k} ) ^{m}}{ ( q;q ) _{\mu _{j}+m} ( q,q ) _{m}}. \end{aligned}

Hence, it yields

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) = &\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}x^{\Delta -1}q^{-\alpha ( \Delta -1 ) } \prod_{j=1}^{n}a_{j}^{\mu _{j}}x^{\mu _{j}}q^{- ( \alpha +k ) \mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } \frac{q^{m ( m+\mu _{j} ) } ( -a_{j}xq^{-\alpha -k} ) ^{m}}{ ( q;q ) _{\mu _{j}+m} ( q;q ) _{m}} \sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) -k ( \Delta -1 ) +\mu _{j}k}}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}. \end{aligned}
(22)

By the fact $$( q;q ) _{k}=\Gamma _{q} ( 1+k )$$ and the identity

$$( \zeta ;q ) _{x}= \frac{ ( q;q ) _{\infty }}{ ( \zeta q^{x};q ) _{\infty }},$$
(23)

we write

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&A\prod_{j=1}^{n} \delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{-\alpha \mu _{j}}\sum _{m=0}^{ \infty } \frac{q^{m ( m+\mu _{j} ) } ( \delta _{j}xq^{-\alpha -k} ) ^{m}}{ ( q;q ) _{\infty } ( q;q ) _{m}} \bigl( q^{ \mu _{i}+m+1};q \bigr) _{\infty } \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) -k ( \Delta -1 ) +\mu _{j}k}}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \\ =&A\prod_{j=1}^{n}\delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{- \alpha \mu _{j}}\sum _{m=0}^{\infty }q^{m ( m+\mu _{j} ) } \frac{ ( -\delta _{j}xq^{-\alpha -k} ) ^{m} ( q^{\mu _{i}+m+1};q ) _{\infty }}{ ( q;q ) _{\infty }\Gamma _{q} ( m+k ) } \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +k+\mu _{j}+\frac{3}{2}-\Delta ) }}{\Gamma _{q} ( 1+k ) \Gamma _{q} ( 1-\alpha -k ) }. \end{aligned}

This completes the proof of the theorem. □

### Theorem 4

Let $$J_{2\mu _{1}}^{ ( 3 ) } ( 2\sqrt{q^{-1}\delta _{1}t};q ) ,\ldots,J_{2\mu _{n}}^{ ( 3 ) } ( 2\sqrt{q^{-1}\delta _{n}t};q )$$ be n q-Bessel functions and

$$f ( t ) =t^{\Delta -1}\prod_{j=1}^{n} \delta ^{ \mu _{j}}J_{2\mu _{j}}^{ ( 3 ) } \bigl( 2 \sqrt{q^{-1} \delta _{n}t};q \bigr).$$

Then we have

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&\frac{x^{\Delta -1}\Gamma _{q} ( 1-\alpha ) ( 1-q ) ^{\alpha }}{ ( q;q ) _{\infty }}\prod _{j=1}^{n}\delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{ ( -\alpha -k ) \mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } ( -1 ) ^{m} \frac{q^{m\frac{ ( m-1 ) }{2}+m ( -\alpha ) }x^{m}\delta _{j}^{m} ( q^{2\mu _{j}+m+1};q ) _{\infty }}{ ( q;q ) _{m}} \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) + ( \Delta -1 ) ( -\alpha -k ) -mk}}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( -\alpha -k ) }. \end{aligned}

### Proof

By (2) and (6), we obtain

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =& ( 1-q ) ^{ \alpha }\sum _{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta + \alpha ) +\frac{1}{2}k ( k+1 ) } \begin{bmatrix} -\alpha \\ k\end{bmatrix} f \bigl( xq^{-\alpha -k} \bigr) \\ =& ( 1-q ) ^{\alpha }\sum_{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) } \begin{bmatrix} -\alpha \\ k\end{bmatrix} \bigl( xq^{-\alpha -k} \bigr) ^{\Delta -1} \\ &{}\times \prod_{j=1}^{n}q^{\mu j}J_{2\mu _{j}}^{ ( 3 ) } \bigl( \sqrt{q^{-1}\delta _{j}xq^{-\alpha -k}};q \bigr) \\ =& ( 1-q ) ^{\alpha }\sum_{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) } \begin{bmatrix} -\alpha \\ k\end{bmatrix} \bigl( xq^{-\alpha -k} \bigr) ^{\Delta -1} \\ &{}\times \prod_{j=1}^{n}q^{\mu j} \bigl( q^{-1}\delta _{j}xq^{- \alpha -k} \bigr) ^{\mu j} \sum_{m=0}^{\infty } ( -1 ) ^{m} \frac{q^{m\frac{ ( m-1 ) }{2}} ( qq^{-1}\delta _{j}q^{-\alpha -k} ) ^{m}}{ ( q;q ) _{2\mu _{j}+m} ( q;q ) _{m}}. \end{aligned}

Equations (10), (21), and simple simplifications reveal

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x ) =&x^{\Delta -1} ( 1-q ) ^{\alpha }\sum_{k=0}^{\infty } ( -1 ) ^{k}q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) + ( \Delta -1 ) ( -\alpha -k ) } \frac{\Gamma _{q} ( 1-\alpha ) }{\Gamma _{q} ( k+1 ) \Gamma _{q} ( -\alpha -k ) } \\ &{}\times \prod_{j=1}^{n}\delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{ ( -\alpha -k ) \mu _{j}}\sum _{m=0}^{\infty } ( -1 ) ^{m} \frac{q^{m\frac{ ( m-1 ) }{2}+m ( -\alpha -k ) }x^{m}\delta _{j}^{m} ( q^{2\mu _{j}+m+1};q ) _{\infty }}{ ( q;q ) _{\infty } ( q;q ) _{m}} \\ =&\frac{x^{\Delta -1}\Gamma _{q} ( 1-\alpha ) ( 1-q ) ^{\alpha }}{ ( q;q ) _{\infty }}\prod_{j=1}^{n} \delta _{j}^{\mu _{j}}x^{\mu _{j}}q^{ ( -\alpha -k ) \mu _{j}} \\ &{}\times \sum_{m=0}^{\infty } ( -1 ) ^{m} \frac{q^{m\frac{ ( m-1 ) }{2}+m ( -\alpha ) }x^{m}\delta _{j}^{m} ( q^{2\mu _{j}+m+1};q ) _{\infty }}{ ( q;q ) _{m}} \\ &{}\times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) + ( \Delta -1 ) ( -\alpha -k ) -mk}}{\Gamma _{q} ( k+1 ) \Gamma _{q} ( -\alpha -k ) }. \end{aligned}

This completes the proof of the theorem. □

## 3 The fractional q-integral of the power series

This section is briefly devoted to the application of the fractional q-integral to functions of a power series form. Some corollaries associated with polynomials and unit functions are also deduced.

### Theorem 5

Let $$g ( x ) =\sum_{i=0}^{\infty }r_{i}x^{i}$$ be a power series and β be a positive real number. If $$f ( x ) = ( x^{\beta -1}g ) ( x )$$, then we have

$$K_{q}^{\eta ,\alpha }f ( x ) = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k+\frac{1}{2}-i}}{\Gamma _{q} ( k ) \Gamma _{q} ( -\alpha -k ) }.$$

### Proof

Let $$g ( x ) =\sum_{i=0}^{\infty }r_{i}x^{i}$$ be a power series and β be a positive real number. From (26) it follows

\begin{aligned} K_{q}^{\eta ,\alpha }f ( x )& = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{k=0}^{\infty } ( -1 ) ^{k}\frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}f \bigl( xq^{- \alpha -k} \bigr) \\ &= \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \bigl( xq^{-\alpha -k} \bigr) ^{\beta -1} \sum_{i=0}^{\infty }r_{i} \bigl( xq^{-\alpha -k} \bigr) ^{i}. \end{aligned}
(24)

Interchanging the order of summation in (24) leads to

$$K_{q}^{\eta ,\alpha }f ( x ) = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) -k_{i}}}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}}.$$

Employing (21) indeed gives

$$K_{q}^{\eta ,\alpha }f ( x ) = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k+\frac{1}{2}-i}}{\Gamma _{q} ( k ) \Gamma _{q} ( -\alpha -k ) }.$$

Hence, the proof of the theorem is completed. □

### Corollary 6

Let $$\beta >0$$ be a real number. Then we have

$$K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1} \bigr) = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1}}{ ( 1-q ) ^{-\alpha }} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( ( \eta +\alpha ) +\frac{1}{2}k+\frac{1}{2} ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( -\alpha -k ) }.$$

This result follows from setting $$r_{0}=1$$ and $$r_{i}=0$$ for $$i=1,2,3,\ldots$$ .

### Corollary 7

We have

$$K_{q}^{\eta ,\alpha } ( 1 ) = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2} ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( -\alpha -k ) }.$$
(25)

## 4 $$K_{q}^{\eta ,\alpha }$$ of q-generating Heines series

The basic q-generating series of the first type is defined by  as

$$_{r}\phi _{s} ( \delta _{1},\ldots,\delta _{r};b_{1},\ldots,b_{s},q, \zeta ) =\sum _{i\geq 0} \frac{ ( \delta _{1};q ) _{1},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( b_{1};q ) _{i},\ldots, ( b_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{1+s-r}\zeta ^{i},$$

where

$$\bigl( 2^{i} \bigr) =\frac{i ( i-1 ) }{2},\quad\quad r>s+1,\quad\quad q>0.$$
(26)

The basic q-generating series of the second type is given as

$$_{r}\psi _{s} ( \delta _{1},\ldots,\delta _{r};\grave{\delta }_{1},\ldots,\grave{\delta }_{s},q,\zeta ) =\sum_{i\geq 0}^{\infty } \frac{ ( \delta _{1};q ) _{1},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( \grave{\delta }_{1};q ) _{i},\ldots, ( \grave{\delta }_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{s-r}\zeta ^{i}.$$
(27)

The parameters $$b_{1},\ldots,b_{s}$$ are given so that the denominator factors in terms of the series are never zero, and the basic series terminates when one of its numerator parameters is of type $$q^{-n}$$, $$n=0,1,2,\ldots$$ .

### Theorem 8

Let β and γ be real numbers. Then, provided $$\beta >0$$, we have

\begin{aligned}& K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1} \bigr) _{r} \phi _{s} ( \delta _{1},\ldots,\delta _{r}; \grave{\delta }_{1},\ldots,\grave{\delta }_{s};q, \gamma x ) \\& \quad = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }} \\& \quad\quad {} \times \sum_{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{ \infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }. \end{aligned}

### Proof

Let β and γ be real numbers. Then, by (17), we write

\begin{aligned}& K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1} \bigr) _{r} \phi _{s} ( \delta _{1},\ldots,\delta _{r}; \grave{\delta }_{1},\ldots,\grave{\delta }_{s};q, \gamma x ) \\& \quad = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) +\frac{1}{2}k ( k+1 ) }}{ ( q;q ) _{k} ( q;q ) _{-\alpha -k}} \\& \quad\quad {}\times f \bigl( xq^{-\alpha -k} \bigr) \bigl( xq^{-\alpha -k} \bigr) _{{}}^{ \beta -1}{ }_{r}\phi _{s} \bigl( \delta _{1},\ldots,\delta _{r}; \grave{\delta }_{1},\ldots,\grave{\delta }_{s};q,\gamma xq^{-\alpha -k} \bigr) . \end{aligned}

On the other hand, we have

\begin{aligned}& _{r}\phi _{s} \bigl( \delta _{1},\ldots, \delta _{r};\grave{\delta }_{1},\ldots,\grave{ \delta }_{s};q,\gamma xq^{-\alpha -k} \bigr) \sum _{i \geq 0}^{\infty } \frac{ ( \delta _{1};q ) _{i},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( \grave{\delta }_{1};q ) _{i},\ldots, ( \grave{\delta }_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{s-r} \\& \quad {} \times \bigl( \gamma xq^{-\alpha -k} \bigr) ^{i}=\sum _{i \geq 0}^{\infty }r_{i}x^{i}, \end{aligned}

where

$$r_{i}= \frac{ ( \delta _{1};q ) _{i},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( \grave{\delta }_{1};q ) _{i},\ldots, ( \grave{\delta }_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{s-r}\gamma ^{i}q^{ ( -\alpha -k ) i}.$$
(28)

Therefore, by Theorem 5 we get

\begin{aligned} K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1} \bigr) _{r} \phi _{s} ( \delta _{1},\ldots,\delta _{r}; \grave{\delta }_{1},\ldots,\grave{\delta }_{s};q, \gamma x ) =& \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{ \infty }r_{i}q^{-\alpha i}x^{i} \\ &{} \times \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }. \end{aligned}
(29)

This completes the proof of the theorem. □

### Theorem 9

Let $$\beta >0$$ and r be real numbers. Then we have

\begin{aligned} K_{q}^{\eta ,\alpha } \bigl( x_{r}^{\beta -1}\psi _{s} ( \delta _{1},\ldots, \delta _{r}; \grave{\delta }_{1},\ldots,\grave{\delta }_{s};q,\gamma x ) \bigr) =&\frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \\ &{} \times \sum_{k=0}^{\infty } ( -1 ) ^{k}\frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }. \end{aligned}

### Proof

By taking into account (20), we write

\begin{aligned} K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1}{ }_{r}\psi _{s} \bigr) =& \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum _{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha ) + \frac{1}{2}k+\frac{1}{2}}}{ ( q;q ) _{k} ( q;q ) _{-\alpha ,k}}f \bigl( xq^{-\alpha -k} \bigr) _{{}}^{\beta -1} \\ &{} \times f \bigl( xq^{-\alpha -k} \bigr) _{{}}^{\beta -1}{ } _{r} \psi _{s} \bigl( \delta _{1},\ldots, \delta _{r};\grave{\delta }_{1},\ldots,\grave{ \delta }_{s};q^{-\alpha -k} \bigr) . \end{aligned}
(30)

However,

\begin{aligned} _{r}\psi _{s} \bigl( \delta _{1},\ldots, \delta _{r};\grave{\delta }_{1},\ldots,\grave{ \delta }_{s};q^{-\alpha -k} \bigr) =&\sum _{i\geq 0}^{ \infty }\frac{ ( \delta _{1};q ) _{i},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( \grave{\delta }_{1};q ) _{i},\ldots, ( \grave{\delta }_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{s-r} \\ & {} \times \bigl( \gamma xq^{-\alpha -k} \bigr) ^{i} \\ =&\sum_{i\geq 0}^{\infty }r_{i}x^{i}, \end{aligned}

where

$$r_{i}= \frac{ ( \delta _{1};q ) _{i},\ldots, ( \delta _{r};q ) _{i}}{ ( q;q ) _{i}, ( \grave{\delta }_{1};q ) _{i},\ldots, ( \grave{\delta }_{s};q ) _{i}} \bigl( ( -1 ) ^{i}q^{ ( 2^{i} ) } \bigr) ^{s-r}\gamma ^{i}q^{ ( -\alpha -k ) i}.$$
(31)

Hence, by Theorem 5 it follows

$$K_{q}^{\eta ,\alpha } \bigl( x^{\beta -1}{ }_{r}\psi _{s} \bigr) = \frac{q^{-\alpha \beta +\alpha }x^{\beta -1} ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }.$$

This completes the proof of the theorem. □

### Corollary 10

Let γ be a real number. Then we have

$$K_{q}^{\eta ,\alpha } \bigl( E_{q} ( \gamma x ) \bigr) = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{ \infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }.$$

### Proof

By setting $$\beta =0$$, $$r=0$$, and $$s=0$$, the result easily follows from Theorem 8. The proof is completed. □

### Corollary 11

Let γ be a real number. Then we have

$$\bigl( K_{q}^{\eta ,\alpha }e_{q} ( \gamma x ) \bigr) = \frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{\infty }r_{i}q^{-\alpha i}x^{i} \sum_{k=0}^{ \infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k+\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }.$$

### Proof

By setting $$\beta =1$$, $$r=0$$, and $$s=0$$, Theorem 8 completes the proof of the corollary. □

The proof of the following corollary is straightforward. Details are therefore deleted.

### Corollary 12

Let γ be a real number. Then we have

\begin{aligned} ( i ) K_{q}^{\eta ,\alpha } \bigl( \sinh _{q} ( \gamma x ) \bigr) =&K_{q}^{\eta ,\alpha } \biggl( \frac{E_{q} ( \gamma x ) -E_{q} ( -\gamma x ) }{2} \biggr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{\infty }r_{i}q^{-\alpha i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}k-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }x^{i} \frac{ ( 1+ ( -1 ) ^{i+1} ) }{2}. \end{aligned}
\begin{aligned} ( \mathit{ii} ) K_{q}^{\eta ,\alpha } \bigl( \cosh _{q} ( \gamma x ) \bigr) =&K_{q}^{\eta ,\alpha } \biggl( \frac{E_{q} ( \gamma x ) -E_{q} ( -\gamma x ) }{2} \biggr) \\ =&\frac{ ( q;q ) _{-\alpha }}{ ( 1-q ) ^{-\alpha }}\sum_{i=0}^{ \infty }r_{i}q^{-\alpha i} \sum_{k=0}^{\infty } ( -1 ) ^{k} \frac{q^{k ( \eta +\alpha +\frac{1}{2}-i ) }}{\Gamma _{q} ( k ) \Gamma _{q} ( _{-\alpha -k} ) }x^{i} \frac{ ( 1+ ( -1 ) ^{i} ) }{2}. \end{aligned}

## References

1. Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)

2. Strominger, A.: Information in black hole radiation. Phys. Rev. Lett. 71, 3743–3746 (1993)

3. Youm, D.: q-Deformed conformal quantum mechanics. Phys. Rev. D 62, 095009 (2000)

4. Lavagno, A., Swamy, P.N.: q-Deformed structures and nonextensive statistics: a comparative study. Physica A 305(1–2), 310–315 (2002)

5. Hahn, W.: Beitrage Zur Theorie Der Heineschen Reihen, die 24 Integrale der hypergeometrischen q-diferenzengleichung, das q-Analog on der Laplace transformation. Math. Nachr. 2, 340–379 (1949)

6. IsmailM, E.H.: The zeros of basic Bessel functions, the functions $$J_{v+ax}(x)$$, and associated orthogonal polynomials. J. Math. Anal. Appl. 86(1), 1–19 (1982)

7. Jackson, F.H.: The application of basic numbers to Bessel’s and Legendre’s functions. Proc. Lond. Math. Soc. 2(1), 192–220 (1905)

8. Hahn, W.: Die mechanische deutung einer geometrischen differenzengleichung. Z. Angew. Math. Mech. 33, 270–272 (1953)

9. Exton, H.: A basic analogue of the Bessel-Clifford equation. Jñānābha 8, 49–56 (1978)

10. Salem, A.: Some applications of fractional q-calculus. J. Fract. Calc. Appl. 2(4), 1–11 (2012)

11. Ucar, F.: q-Sumudu transforms of q-analogues of Bessel functions. Sci. World J. 2014, 327019 (2014)

12. Majeed, A., Kamran, M., Abbas, M., Singh, J.: An efficient numerical technique for solving time-fractional generalized Fisher’s equation. Front. Phys. 8, 293 (2020)

13. Akram, T., Abbas, M., Ali, A., Iqbal, A., Baleanu, D.: A numerical approach of a time fractional reaction–diffusion model with a non-singular kernel. Symmetry 12, 1653 (2020)

14. Akram, T., Muhammad, A., Azhar, I., Dumitru, B., Jihad, H.: Novel numerical approach based on modified extended cubic B-spline functions for solving non-linear time-fractional telegraph equation. Symmetry 12, 1154 (2020)

15. Akram, T., Abbas, M., Iqbal, A., Baleanu, D., Asad, J.: Numerical treatment of time-fractional Klein–Gordon equation using redefined extended cubic B-spline functions. Front. Phys. 8, 288 (2020)

16. Majeed, A., Kamran, M., Abbas, M., Md, M.: An efficient numerical scheme for the simulation of time-fractional nonhomogeneous Benjamin–Bona–Mahony–Burger model. Phys. Scr. 96(8), 084002 (2021)

17. Al-Omari, S.: Certain results related to the N-transform of certain class of functions and differential operators. Adv. Differ. Equ. 2018, 7 (2018)

18. Al-Omari, S.K.Q.: On the application of natural transforms. Int. J. Pure Appl. Math. 84, 729–744 (2013)

19. Al-Omari, S., Baleanu, D.: Quaternion Fourier integral operators for spaces of generalized quaternions. Math. Methods Appl. Sci. 41, 9477–9484 (2018)

20. Al-Omari, S., Kilicman, A.: An estimate of Sumudu transform for Boehmians. Adv. Differ. Equ. 2013, 77 (2013)

21. Al-Omari, S., Agarwal, P., Choi, J.: Real covering of the generalized Hankel-Clifford transform of fox kernel type of a class of Boehmians. Bull. Korean Math. Soc. 52(5), 1607–1619 (2015)

22. Al-Omari, S., Agarwal, P.: Some general properties of a fractional Sumudu transform in the class of Boehmians. Kuwait J. Sci. 43(2), 206–220 (2016)

23. Kac, V., Cheung, P.: Quantum Calculus. Springer, Berlin (2001)

24. Al-Omari, S.: The q-Sumudu transform and its certain properties in a generalized q-calculus theory. Adv. Differ. Equ. 2021, 10 (2021)

25. Salem, A., Ucar, F.: The q-analogue of the $$E_{(2;1)}$$ g-transform and its applications. Turk. J. Math. 40(1), 98–107 (2016)

26. Serkan, A., Ugur, D., Mehmet, A.: On weighted q-Daehee polynomials with their applications. Indag. Math. 30(2), 365–374 (2019)

27. Vyas, V., Al-Jarrah, A., Purohit, S., Araci, S., Nisar, K.: q-Laplace transform for product of general class of q-polynomials and q-analogue of L-function. J. Inequal. Spec. Funct. 11(3), 21–28 (2020)

28. Al-Omari, S.: q-Analogues and properties of the Laplace-type integral operator in the quantum calculus theory. J. Inequal. Appl. 2020, 203 (2020)

29. Al-Omari, S.K.: On q-analogues of the Mangontarum transform for certain q-Bessel functions and some application. J. King Saud Univ., Sci. 28(4), 375–379 (2016)

30. Al-Omari, S.K.Q., Baleanu, D., Purohit, S.D.: Some results for Laplace-type integral operator in quantum calculus. Adv. Differ. Equ. 2018, 124 (2018)

31. Chandak, S., Suthar, D.L., Al-Omari, S., Gulyaz-Ozyurt, S.: Estimates of classes of generalized special functions and their application in the fractional $$(k,s)$$-calculus theory. J. Funct. Spaces 2021 (2021, to appear)

32. Al-Omari, S.: Estimates and properties of certain q-Mellin transform on generalized q-calculus theory. Adv. Differ. Equ. 2021, 233 (2021)

33. Al-Omari, S.: On q-analogues of Mangontarum transform of some polynomials and certain class of H-functions. Nonlinear Stud. 23(1), 51–61 (2016)

34. Albayrak, D., Purohit, S.D., Ucar, F.: On q-Sumudu transforms of certain q-polynomials. Filomat 27(2), 413–429 (2013)

35. Al-Salam, W.A., Verma, A.: A fractional Leibniz q-formula. Pac. J. Math. 60, 1–9 (1975)

36. Al-Salam, W.A.: Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc. 15, 135–140 (1966)

37. Agrawal, R.P.: Certain fractional q-integrals and q-derivatives. Math. Proc. Camb. Philos. Soc. 66, 365–370 (1969)

38. Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14(3), 333–344 (2007)

39. Rajkovic, P.M., Marinkovi, S.D., Stankovi, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)

40. Al-Omari, S.K.Q.: On q-analogues of the natural transform of certain q-Bessel functions and some application. Filomat 31(9), 2587–2598 (2017)

41. Al-Omari, S.: On a q-Laplace–type integral operator and certain class of series expansion. Math. Methods Appl. Sci. 44(10), 8322–8332 (2021)

## Acknowledgements

Authors would like to thank Springer Nature for their support.

## Funding

No funding sources to be declared.

## Author information

Authors

### Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Shrideh Al-Omari.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Rights and permissions 