Theorem 4.1
Let \(f \in \mathbb{H}^{s} (\Omega )\) for \(s \ge p\). Let F be such that
$$\begin{aligned} \bigl\Vert F(\varphi )- F(\psi ) \bigr\Vert _{\mathbb{H}^{q} (\Omega )} \le K_{f} \Vert \varphi - \psi \Vert _{\mathbb{H}^{p} (\Omega )} \end{aligned}$$
(4.1)
for all \(\varphi , \psi \in \mathbb{H}^{p} (\Omega )\) and \(p< q< p+1\). Then for any \(\varepsilon >0\) and \(K_{f}\) small enough, problem (1.1)–(1.2) has a unique mild solution in \({\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))\), which satisfies
$$\begin{aligned} \begin{aligned}[b] u_{\varepsilon }(t) &= {\mathbf{Q}}_{\varepsilon }(t) f+ \int _{0}^{t} (t-r) { \mathbf{S}} (t-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr\\ &\quad {}- \varepsilon {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr, \end{aligned} \end{aligned}$$
(4.2)
where
$$ \max ( 0, p+1-s ) \le a < 1. $$
(4.3)
In addition,
$$\begin{aligned} \Vert u_{\varepsilon } \Vert _{ L^{\mu }(0,T;{\mathbb{H} }^{p}(\Omega ) ) } \le \frac{2 C_{T} T^{\frac{1}{\mu }+s-p-1}}{(1- a \mu )^{1/\mu } } \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \end{aligned}$$
(4.4)
for \(1<\mu < \frac{1}{a}\).
Proof
We look for the solution in the space \({\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))\). Let us define the function
$$\begin{aligned} \begin{aligned}[b] B_{\varepsilon } (\psi ) (t)&= {\mathbf{Q}}_{\varepsilon }(t) f+ \int _{0}^{t} (t-r) {\mathbf{S}} (t-r) F\bigl(\psi (r)\bigr) \,dr\\ &\quad {}- \varepsilon {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F\bigl(\psi (r)\bigr) \,dr. \end{aligned} \end{aligned}$$
(4.5)
If \(\psi =0\), then by the assumption \(F(0)=0\) we have that
$$\begin{aligned} t^{a} \bigl\Vert B_{\varepsilon } \psi (t) \bigr\Vert _{{\mathbb{H} }^{p}( \Omega )}= t^{a} \bigl\Vert {\mathbf{Q}}_{\varepsilon }(t) f \bigr\Vert _{{\mathbb{H} }^{p}( \Omega )} \le C_{T} t^{a-\nu } \Vert f \Vert _{\mathbb{H}^{p+1-\nu }( \Omega ) }. \end{aligned}$$
(4.6)
Since \(s < p+1\), we set \(\nu = p+1-s\). Then it follows from (4.6) that
$$\begin{aligned} t^{a} \bigl\Vert B_{\varepsilon } \psi (t) \bigr\Vert _{{\mathbb{H} }^{p}( \Omega )} \le C_{T} t^{s+a-p-1} \Vert f \Vert _{\mathbb{H}^{s}( \Omega ) }. \end{aligned}$$
(4.7)
Under the assumption \(p+1 \le s+a\), if \(\psi =0\), then we find that for any \(0\le t \le T\),
$$\begin{aligned} t^{a} \bigl\Vert B_{\varepsilon } \bigl(\psi (t)=0 \bigr) \bigr\Vert _{{ \mathbb{H} }^{p}(\Omega )} \le C_{T} T^{s+a-p-1} \Vert f \Vert _{ \mathbb{H}^{s}(\Omega ) }, \end{aligned}$$
(4.8)
which allows us to derive that \(B_{\varepsilon } \psi \) belongs to the space \({\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))\) if \(\psi =0\).
Let \(\varphi , \psi \in {\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))\). It is obvious that
$$\begin{aligned} B_{\varepsilon } (\psi ) (t)- B_{\varepsilon } (\varphi ) (t) &= \int _{0}^{t} (t-r) {\mathbf{S}} (t-r) \bigl( F \bigl(\psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr) \,dr \\ &\quad{}- \varepsilon {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) \bigl( F \bigl(\psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr) \,dr \\ &= J_{1}(t)+ J_{2}(t). \end{aligned}$$
(4.9)
By the second part of Lemma 3.1 the term \(J_{1}\) is bounded by
$$\begin{aligned} \bigl\Vert J_{1} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le \int _{0}^{t} (t-r) \bigl\Vert {\mathbf{S}} (t-r) \bigl( F\bigl(\psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr \\ &\le \int _{0}^{t} (t-r) (t-r)^{q-p} \bigl\Vert F\bigl(\psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr\Vert _{{\mathbb{H} }^{q}(\Omega )} \,dr, \end{aligned}$$
(4.10)
where we note that \(p >q\). Since F is globally Lipschitz as in (4.1), we infer that
$$\begin{aligned} \bigl\Vert J_{1} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le K_{f} \int _{0}^{t} (t-r)^{q-p+1} \bigl\Vert \psi (r) - \varphi (r) \bigr\Vert _{{\mathbb{H} }^{p}( \Omega )} \,dr \\ &\le K_{f} \biggl( \int _{0}^{t} (t-r)^{q-p+1} r^{-a} \,dr \biggr) \Bigl( \sup_{0\le t \le T} r^{a} \bigl\Vert \psi (r) - \varphi (r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \Bigr) \\ &= K_{f} B(2+q-p, 1-a) t^{2-a+q-p} \Vert \psi - \varphi \Vert _{{ \mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}, \end{aligned}$$
(4.11)
where we note that \(q+2>p\) and \(a<1\). This implies that
$$\begin{aligned} t^{a} \bigl\Vert J_{1} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le K_{f} B(2+q-p, 1-a) t^{2+q-p} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))} \\ &\le K_{f} B(2+q-p, 1-a) T^{2+q-p} \Vert \psi - \varphi \Vert _{{ \mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}. \end{aligned}$$
(4.12)
The right-hand side of this expression is independent of t, and we deduce that
$$\begin{aligned} \Vert J_{1} \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))} \le K_{f} B(2+q-p, 1-a) T^{2+q-p} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}. \end{aligned}$$
(4.13)
Since \(q < p+1\) and \(a>0\), we can choose a real number \(s'\) such that
$$ \max (p+1-a,q) \le s' < p+1. $$
Then we find that
$$\begin{aligned} & \biggl\Vert {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) \bigl( F \bigl(\psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{p}( \Omega )} \\ &\quad \le t^{s'-p-1} \biggl\Vert \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) \bigl( F \bigl( \psi (r)\bigr) - F\bigl(\varphi (r)\bigr) \bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{s}( \Omega )}. \end{aligned}$$
(4.14)
Since \(s'>q\), we get that
$$\begin{aligned} & \biggl\Vert \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) \bigl( F \bigl(\psi (r)\bigr) - F\bigl( \varphi (r)\bigr) \bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{s}(\Omega )} \\ &\quad\le \int _{0}^{T} (T-r)^{q-s'+1} \bigl\Vert \bigl( F\bigl(\psi (r)\bigr) - F\bigl( \varphi (r)\bigr) \bigr) \bigr\Vert _{{\mathbb{H} }^{q}(\Omega )} \,dr \\ &\quad\le K_{f} \int _{0}^{T} (T-r)^{q-s'+1} \bigl\Vert \psi (r) - \varphi (r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr \\ &\quad= K_{f} \int _{0}^{T} (T-r)^{q-s'+1} r^{-a} r^{a} \bigl\Vert \psi (r) - \varphi (r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr \\ &\quad\le K_{f} B\bigl(2+q-s', 1-a\bigr) T^{2+q-s'-a} \Vert \psi - \varphi \Vert _{{ \mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}. \end{aligned}$$
(4.15)
Combining (4.14) and (4.15) and noting that \(s'+a\ge p+1\), we obtain that
$$\begin{aligned} t^{a} \bigl\Vert J_{2} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le \varepsilon t^{a+ s'-p-1} K_{f} B\bigl(2+q-s', 1-a\bigr) T^{2+q-s'-a} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))} \\ &\le \varepsilon K_{f} B\bigl(2+q-s', 1-a\bigr) T^{q+1-p} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}. \end{aligned}$$
(4.16)
The condition \(q+1>p\) ensures that the right-hand side is defined. Therefore we can deduce that
$$\begin{aligned} \Vert J_{2} \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))} \le \varepsilon K_{f} B\bigl(2+q-s', 1-a\bigr) T^{q+1-p} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))}. \end{aligned}$$
(4.17)
Combining (4.9), (4.13), and (4.17), we arrive at
$$\begin{aligned} &\bigl\Vert B_{\varepsilon } (\psi ) - B_{\varepsilon }(\varphi ) \bigr\Vert _{{ \mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))} \\ &\quad \le \Vert J_{1} \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}+ \Vert J_{2} \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))} \\ &\quad\le K_{f} B(2+q-p, 1-a) T^{2+q-p} \Vert \psi - \varphi \Vert _{{ \mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))} \\ &\quad\quad{}+ \varepsilon K_{f} B\bigl(2+q-s', 1-a\bigr) T^{q+1-p} \Vert \psi - \varphi \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))}. \end{aligned}$$
(4.18)
Let \(K_{f}\) be small enough such that
$$ M_{T} = K_{f} B(2+q-p, 1-a) T^{2+q-p}+ \varepsilon K_{f} B\bigl(2+q-s', 1-a\bigr) T^{q+1-p}< 1/2. $$
It follows from (4.7) that
$$ B_{\varepsilon } ( {\mathbf{X}}^{a, \infty } \bigl(\bigl(0,T]; {\mathbb{H} }^{p}( \Omega )\bigr) \bigr) \subset {\mathbf{X}}^{a, \infty } ( \bigl(0,T]; {\mathbb{H} }^{p}( \Omega )\bigr), $$
and together with (4.18), we find that \(B_{\varepsilon } \) is a contraction mapping. By using the Banach fixed point theorem we deduce that roblem (1.1)–(1.2) has a unique solution \(u_{\varepsilon }\in {\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega )) \).
It follows from (4.8) that
$$\begin{aligned} \Vert u_{\varepsilon } \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))}&= \bigl\Vert B_{\varepsilon } (u_{\varepsilon }) \bigr\Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}(\Omega ))} \\ &\le M_{T} \Vert u_{\varepsilon } \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; { \mathbb{H} }^{p}(\Omega ))}+ C_{T} T^{s+a-p-1} \Vert f \Vert _{ \mathbb{H}^{s}(\Omega ) }. \end{aligned}$$
(4.19)
Therefore we get that
$$\begin{aligned} \Vert u_{\varepsilon } \Vert _{{\mathbf{X}}^{a, \infty } ((0,T]; {\mathbb{H} }^{p}( \Omega ))} \le \frac{ C_{T} T^{s+a-p-1} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) }}{ 1- M_{T}} \le 2 C_{T} T^{s+a-p-1} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) }. \end{aligned}$$
(4.20)
This estimate implies that
$$\begin{aligned} \bigl\Vert u_{\varepsilon }(t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \le 2 C_{T} T^{s+a-p-1} t^{-a} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) }. \end{aligned}$$
(4.21)
Since \(a<1\), we can find that \(0<\mu <\frac{1}{a}\). Thus we arrive at
$$\begin{aligned} \begin{aligned}[b] \Vert u_{\varepsilon } \Vert _{ L^{\mu }(0,T;{\mathbb{H} }^{p}(\Omega ) ) }&= \biggl( \int _{0}^{T} \bigl\Vert u_{\varepsilon }(t) \bigr\Vert ^{\mu }_{{\mathbb{H} }^{p}( \Omega )} \,dt \biggr)^{1/\mu } \\ &\le 2 C_{T} T^{s+a-p-1} \Vert f \Vert _{ \mathbb{H}^{s}(\Omega ) } \biggl( \int _{0}^{T} t^{-a \mu } \,dt \biggr)^{1/ \mu } , \end{aligned} \end{aligned}$$
(4.22)
which allows us to get that
$$\begin{aligned} \Vert u_{\varepsilon } \Vert _{ L^{\mu }(0,T;{\mathbb{H} }^{p}(\Omega ) ) } \le \frac{2 C_{T} T^{\frac{1}{\mu }+s-p-1}}{(1- a \mu )^{1/\mu } } \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) }. \end{aligned}$$
(4.23)
The proof is completed. □
Theorem 4.2
Let F be as in (4.1). Let \(f \in \mathbb{H}^{s} (\Omega )\) for \(p< s< p+1\). Let \(K_{f}\) be small enough such that \(K_{f} T^{q-p+2} \le \frac{1}{2}\). Then
$$\begin{aligned} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))} & \le 2C(p,s) \varepsilon \Vert f \Vert _{\mathbb{H}^{s-1}(\Omega ) } \biggl(\frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu } \\ &\quad{}+ 4\varepsilon K_{f} T^{q-p} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \biggl(\frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu }, \end{aligned}$$
(4.24)
where \(1< \mu < \frac{1}{p+1-s}\).
Proof
Let us recall that
$$\begin{aligned} u(t)&= {\overline{S}} (t) f+ \int _{0}^{t} (t-r) {\mathbf{S}} (t-r) F\bigl(u(r) \bigr) \,dr, \end{aligned}$$
(4.25)
where we recall that
$$ {\overline{S}} (t) f= \sum_{n=1}^{\infty }e^{-t \lambda _{n}} ( 1+ t \lambda _{n} ) \biggl( \int _{\Omega }f(x) \psi _{n}(x)\,dx \biggr) \psi _{n}(x). $$
By (4.2) we immediately have the result on the difference between \(u_{\varepsilon }(t)\) and \(u(t)\) which is split as the sum of three terms
$$\begin{aligned} u_{\varepsilon }(t)- u(t)& = {\mathbf{Q}}_{\varepsilon }(t) f- { \overline{S}} (t) f+ \int _{0}^{t} (t-r) {\mathbf{S}} (t-r) \bigl( F \bigl(u_{\varepsilon }(r)\bigr) - F\bigl(u(r)\bigr) \bigr) \,dr \\ &\quad{}- \varepsilon {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr \\ &= H_{1} (t)+ H_{2} (t)+ H_{3} (t). \end{aligned}$$
(4.26)
Let us first treat the first term \(H_{1} (t)\). By applying (3.24) we find that
$$\begin{aligned} \bigl\Vert ( {\mathbf{Q}}_{\varepsilon }- {\mathbf{S}} ) f \bigr\Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))} &\le C(p,s) \varepsilon \Vert f \Vert _{ \mathbb{H}^{s-1}(\Omega ) } \biggl( \int _{0}^{T} t^{(s-p-1) \mu } \,dt \biggr)^{1/\mu } \\ &= C(p,s) \varepsilon \Vert f \Vert _{\mathbb{H}^{s-1}(\Omega ) } \biggl( \frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu }, \end{aligned}$$
(4.27)
where we recall that \(p+1>s > p\) and \(1< \mu < \frac{1}{p+1-s}\).
The second term \(H_{2} (t)\) by the second part of Lemma 3.1 is bounded by
$$\begin{aligned} \bigl\Vert H_{2} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le \int _{0}^{t} (t-r) \bigl\Vert {\mathbf{S}} (t-r) \bigl( F\bigl(u_{\varepsilon }(r)\bigr) - F\bigl(u(r)\bigr) \bigr) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr \\ &\le \int _{0}^{t} (t-r) (t-r)^{q-p} \bigl\Vert F\bigl(u_{\varepsilon }(r)\bigr) - F\bigl(u(r)\bigr) \bigr\Vert _{{\mathbb{H} }^{q}(\Omega )} \,dr, \end{aligned}$$
(4.28)
where we note that \(p >q\). Since F is globally Lipschitz as in (4.1), we infer that
$$\begin{aligned} & \int _{0}^{t} (t-r) (t-r)^{q-p} \bigl\Vert F\bigl(u_{\varepsilon }(r)\bigr) - F\bigl(u(r)\bigr) \bigr\Vert _{{\mathbb{H} }^{q}(\Omega )} \,dr \\ &\quad \le K_{f} \int _{0}^{t} (t-r)^{q-p+1} \bigl\Vert u_{\varepsilon }(r) - u(r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr . \end{aligned}$$
This implies that
$$\begin{aligned} \bigl\Vert H_{2} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le K_{f} \int _{0}^{t} (t-r)^{q-p+1} \bigl\Vert u_{\varepsilon }(r) - u(r) \bigr\Vert _{{\mathbb{H} }^{p}( \Omega )} \,dr \\ &\le K_{f} T^{q-p+1} \int _{0}^{t} \bigl\Vert u_{\varepsilon }(r) - u(r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr \\ &\le K_{f} T^{q-p+2} \biggl( \int _{0}^{t} \bigl\Vert u_{\varepsilon }(r) - u(r) \bigr\Vert ^{\mu }_{{\mathbb{H} }^{p}(\Omega )} \,dr \biggr)^{1/\mu } \\ &\le K_{f} T^{q-p+2} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))}. \end{aligned}$$
(4.29)
Thus we obtain that
$$\begin{aligned} \Vert H_{2} \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))}&\le \biggl( \int _{0}^{T} \bigl( K_{f} T^{q-p+2} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))} \bigr)^{\mu } \biggr)^{1/\mu } \\ &= K_{f} T^{q-p+2+ \frac{1}{\mu }} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))}. \end{aligned}$$
(4.30)
For the third term \(H_{3} (t)\), we apply Lemma 3.1 (noting that \(s< p+1\)) to get that
$$\begin{aligned} \begin{aligned}[b] &\biggl\Vert {\mathbf{Q}}_{\varepsilon }(t) \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{p}(\Omega )} \\ &\quad \le t^{s-p-1} \biggl\Vert \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{s}(\Omega )}. \end{aligned} \end{aligned}$$
(4.31)
Since \(s>q\), it follows from this estimate that
$$\begin{aligned} \biggl\Vert \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{s}(\Omega )} &\le \int _{0}^{T} (T-r)^{q-s+1} \bigl\Vert F \bigl(u_{\varepsilon }(r)\bigr) \bigr\Vert _{{\mathbb{H} }^{q}(\Omega )} \,dr \\ &\le K_{f} \int _{0}^{T} (T-r)^{q-s+1} \bigl\Vert u_{\varepsilon }(r) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} \,dr, \end{aligned}$$
(4.32)
where in the last line, we have used that F is globally Lipschitz. Recalling (4.21), we find that the right-hand side of (4.32) is bounded by
$$\begin{aligned} &K_{f} \int _{0}^{T} (T-r)^{q-s+1} \bigl\Vert u_{\varepsilon }(r) \bigr\Vert _{{ \mathbb{H} }^{p}(\Omega )} \,dr \\ &\quad \le 2 K_{f} C_{T} T^{s+a-p-1} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \int _{0}^{T} (T-r)^{q-s+1} r^{-a} \,dr \\ &\quad = 2 K_{f} C_{T} T^{s+a-p-1} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } T^{q-s+1-a} B(q-s+2, 1-a)= 2K_{f} T^{q-p} \Vert f \Vert _{\mathbb{H}^{s}( \Omega ) }. \end{aligned}$$
(4.33)
Combining (4.31), (4.32), and (4.33), we arrive at
$$\begin{aligned} \begin{aligned}[b] \bigl\Vert H_{3} (t) \bigr\Vert _{{\mathbb{H} }^{p}(\Omega )} &\le \varepsilon \biggl\Vert \int _{0}^{T} (T-r) {\mathbf{S}} (T-r) F \bigl(u_{\varepsilon }(r)\bigr) \,dr \biggr\Vert _{{\mathbb{H} }^{s}(\Omega )} \\ &\le 2\varepsilon K_{f} T^{q-p} t^{s-p-1} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) }. \end{aligned} \end{aligned}$$
(4.34)
This leads to
$$\begin{aligned} \Vert H_{3} \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))} &\le 2 \varepsilon K_{f} T^{q-p} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \biggl( \int _{0}^{T} t^{(s-p-1) \mu } \,dt \biggr)^{1/\mu } \\ &= 2\varepsilon K_{f} T^{q-p} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \biggl(\frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu }, \end{aligned}$$
(4.35)
where we recall that \(p+1>s > p\) and \(1< \mu < \frac{1}{p+1-s}\). Combining (4.26), (4.27), (4.30), and (4.35), we deduce that
$$\begin{aligned} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))} & \le \sum _{j=1}^{3} \Vert H_{j} \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}( \Omega ))} \\ & \le C(p,s) \varepsilon \Vert f \Vert _{\mathbb{H}^{s-1}(\Omega ) } \biggl( \frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu } \\ &\quad{}+ 2\varepsilon K_{f} T^{q-p} \Vert f \Vert _{\mathbb{H}^{s}(\Omega ) } \biggl(\frac{T^{(s-p-1)\mu +1 }}{ (s-p-1)\mu +1 } \biggr)^{1/\mu } \\ &\quad{}+ K_{f} T^{q-p+2} \Vert u_{\varepsilon }- u \Vert _{L^{\mu }(0,T; \mathbb{H}^{p}(\Omega ))}. \end{aligned}$$
(4.36)
Let \(K_{f}\) be small enough such that \(K_{f} T^{q-p+2} \le \frac{1}{2}\). Then from (4.36) the desired result follows. The proof is completed. □