In this section, we take a spline function of the form: \(H_{3}=\operatorname{span}\{1,x,\sinh (\omega x),\cosh (\omega x)\}\), where ω is the frequency of the hyperbolic part of spline functions which will be used to raise the accuracy of the method.
Derivation of the numerical method
Consider \(x\in [a,b]\) and \(t\in [0,\tau ]\). Let \(a=x_{0}< x_{1}<\cdots<x_{N}<x_{N+1}=b\) and \(0=t_{0}< t_{1}<\cdots<t_{M}=\tau \) be the uniform meshes of the intervals \([a,b]\) and \([0,\tau ]\), where \(x_{i}=a+ih\), \(h=(b-a)/(N+1)\), and \(t_{n}=nk\), \(k=\tau /M\) for \(n=0,1,\ldots,M\) and \(i=0,1,\ldots,N+1\). Let \(U_{i}^{n}\) and \(V_{i}^{n}\) be an approximation to \(u(x_{i},t_{n})\) and \(v(x_{i},t_{n})\), respectively, obtained by the segment \(P_{i}(x,t_{n})\) of the mixed spline function passing through the points \((x_{i},U_{i}^{n})\) and \((x_{i+1},U_{i+1}^{n})\), \((x_{i},V_{i}^{n})\) and \((x_{i+1},V_{i+1}^{n})\). Each segment has the form [8, 42]
$$ P_{i}(x,t_{n})=a_{i}(t_{n}) \cosh \bigl(\omega (x-x_{i})\bigr)+b_{i}(t_{n}) \sinh \bigl(\omega (x-x_{i})\bigr)+c_{i}(t_{n}) (x-x_{i})+d_{i}(t_{n}) $$
(4)
for each \(i=0,1,\ldots,N\). To obtain expressions for the coefficients of Eq. (4) in terms of \(U_{i}^{n}\), \(U_{i+1}^{n}\), \(V_{i}^{n}\), \(V_{i+1}^{n}\), \(S_{i}^{n}\), and \(S_{i+1}^{n}\) which are as follows:
$$ U_{i}^{n}=P_{i}(x_{i},t_{n}),\qquad U_{i+1}^{n}=P_{i}(x_{i+1},t_{n}),\qquad S_{i}^{n}=P_{i}^{(2)}(x_{i},t_{n}),\qquad S_{i+1}^{n}=P_{i}^{(2)}(x_{i+1},t_{n}), $$
(5)
where \(P_{i}^{(2)}(x,t)=\frac{\partial ^{2}}{\partial x^{2}}P_{i}(x,t)\). Using Eqs. (4) and (5), we get
$$\begin{aligned}& a_{i}+d_{i}=U_{i}^{n} \\& a_{i}\cosh \theta +b_{i}\sinh \theta +c_{i}h+d_{i}=U_{i+1}^{n}, \\& a_{i}\omega ^{2}=S_{i}^{n}, \\& a_{i}\omega ^{2}\cosh \theta +\omega ^{2}b_{i}\sinh \theta =S_{i+1}^{n}, \end{aligned}$$
where \(a_{i}\equiv a_{i}(t_{n})\), \(b_{i}\equiv b_{i}(t_{n})\), \(c_{i}\equiv c_{i}(t_{n})\), \(d_{i}\equiv d_{i}(t_{n})\), and \(\theta =\omega h\).
Solving the last four equations, we obtain the following expressions:
$$\begin{aligned}& a_{i} =\frac{h^{2}}{\theta ^{2}}S_{i}^{n},\qquad b_{i} = \frac{h^{2} ( S_{i+1}^{n}-S_{i}^{n} \cosh \theta ) }{\theta ^{2}\sinh \theta }, \\& c_{i} =\frac{ ( U_{i+1}^{n}-U_{i}^{n} ) }{h}- \frac{h ( S_{i+1}^{n}-S_{i}^{n} ) }{\theta ^{2}},\qquad d_{i}=U_{i}^{n}- \frac{h^{2}}{\theta ^{2}} S_{i}^{n}. \end{aligned}$$
(6)
Using the continuity condition of the first derivative at \(x=x_{i}\), that is, \(P_{i}^{\prime }(x_{i},t_{n})=P_{i-1}^{\prime }(x_{i},t_{n})\), we get the following equation:
$$ b_{i}\omega +c_{i}=a_{i-1}\omega \sinh \theta +b_{i-1}\omega \cosh \theta +c_{i-1}. $$
(7)
Using Eq. (6), and after slight rearrangements, Eq. (7) becomes
$$ U_{i+1}^{n}-2U_{i}^{n}+U_{i-1}^{n}= \gamma S_{i+1}^{n}+\beta S_{i}^{n}+ \gamma S_{i-1}^{n} ,\quad i=1,2,\ldots,N. $$
(8)
Similarly, we get
$$ V_{i+1}^{n}-2V_{i}^{n}+V_{i-1}^{n}= \gamma \rho _{i+1}^{n}+\beta \rho _{i}^{n}+ \gamma \rho _{i-1}^{n} ,\quad i=1,2,\ldots,N, $$
(9)
where \(\gamma =\frac{h^{2}}{\theta ^{2} }-\frac{h^{2}}{\theta \sinh \theta }\), \(\beta = \frac{2h^{2}\cosh \theta }{\theta \sinh \theta }- \frac{2h^{2}}{\theta ^{2}}\), and \(\theta =\omega h \).
Remark 1
As \(\omega \longrightarrow 0\), that is, \(\theta \longrightarrow 0\), \(( \gamma ,\beta ) \longrightarrow ( \frac{h^{2}}{6},\frac{4h^{2}}{6} )\), and Eqs. (8) and (9) become as follows:
$$\begin{aligned}& U_{i+1}^{n}-2U_{i}^{n}+U_{i-1}^{n}= \frac{h^{2}}{6} \bigl( S_{i+1}^{n}+4S_{i}^{n}+S_{i-1}^{n} \bigr) ,\quad i=1,2,\ldots,N, \\& V_{i+1}^{n}-2V_{i}^{n}+V_{i-1}^{n}= \frac{h^{2}}{6} \bigl( \rho _{i+1}^{n} +4\rho _{i}^{n}+\rho _{i-1}^{n} \bigr) ,\quad i=1,2,\ldots,N. \end{aligned}$$
From Eqs. (1) and (2), we write \(S_{i}^{n}\) and \(\rho _{i}^{n}\) in the form
$$\begin{aligned}& S_{i}^{n} =\frac{\partial ^{2}U_{i}^{n}}{\partial x^{2}}= \frac{\partial ^{\alpha _{1}}U_{i}^{n}}{\partial t^{\alpha _{1}}}+ \bigl( V_{i}^{n}-2U_{i}^{n} \bigr) \frac{\partial U_{i}^{n}}{\partial x}+U_{i}^{n}\frac{\partial V_{i}^{n}}{\partial x}-f (x_{i},t_{n} ), \end{aligned}$$
(10)
$$\begin{aligned}& \rho _{i}^{n} =\frac{\partial ^{2}V_{i}^{n}}{\partial x^{2}}= \frac{\partial ^{\alpha _{2}}V_{i}^{n}}{\partial t^{\alpha _{2}}}+ \bigl( U_{i}^{n}-2V_{i}^{n} \bigr) \frac{\partial V_{i}^{n}}{\partial x}+V_{i} ^{n} \frac{\partial U_{i}^{n}}{\partial x}-g (x_{i},t_{n} ). \end{aligned}$$
(11)
The time-fractional partial derivatives of order \(\alpha _{1}\) and \(\alpha _{2}\) in Eq. (1) are considered in the Liouville–Caputo fractional derivatives, which can be approximated by the following lemma.
Lemma 1
([46])
Suppose \(0<\alpha <1\) and \(g(t)\in C^{2}[0,t_{n}]\), it holds that
$$\begin{aligned} &\Biggl\vert \frac{1}{\Gamma (1-\alpha )} \int _{0}^{t_{n}} \frac{g^{\prime }(t)}{(t_{n}-t)^{\alpha }}\,dt - \frac{k^{-\alpha }}{\Gamma (2-\alpha )} \\ &\qquad {} \times\Biggl[ g(t_{n})-\varphi _{n-1}g(t_{0})- \sum_{q=1}^{n-1}\bigl( \varphi _{n-q-1}^{\alpha }-\varphi _{n-q}^{\alpha } \bigr)g(t_{q}) \Biggr] \Biggr\vert \\ &\quad \leq \frac{1}{\Gamma (2-\alpha )} \biggl[ \frac{1-\alpha }{12}+ \frac{2^{2-\alpha }}{2-\alpha }- \bigl( 1+2^{-\alpha } \bigr) \biggr] \max _{0\leq t\leq t_{n}} \bigl\vert g^{\prime \prime }(t) \bigr\vert k^{2-\alpha }, \end{aligned}$$
(12)
where \(\varphi _{q}^{\alpha }=(q+1)^{1-\alpha }-q^{1-\alpha }\), \(q\geq 0\).
Lemma 2
([47])
Let \(0<\alpha <1\) and \(\varphi _{q}=(q+1)^{1-\alpha }-q^{1-\alpha }\), \(q= 0, 1, \ldots\) , then \(1=\varphi _{0}^{\alpha }>\varphi _{1}^{\alpha }>\cdots >\varphi _{q}^{\alpha }\rightarrow 0\), as \(q\rightarrow \infty \).
Using Lemma 1, the Liouville–Caputo fractional derivative can be approximated as follows:
$$\begin{aligned}& \frac{\partial ^{\alpha _{1}}U_{i}^{n}}{\partial t^{\alpha _{1}}} = \sigma _{1} \Biggl[ U_{i}^{n}- \varphi _{n-1}^{\alpha _{1}}U_{i}^{0}- \sum _{q=1}^{n-1} \bigl( \varphi _{n-q-1}^{\alpha _{1}}- \varphi _{n-q}^{\alpha _{1}} \bigr) U_{i}^{q} \Biggr] +O \bigl( k^{2- \alpha _{1}} \bigr), \end{aligned}$$
(13)
$$\begin{aligned}& \frac{\partial ^{\alpha _{1}}V_{i}^{n}}{\partial t^{\alpha _{2}}} = \sigma _{2} \Biggl[ V_{i}^{n}- \varphi _{n-1}^{\alpha _{2}}V_{i}^{0}- \sum _{q=1}^{n-1} \bigl( \varphi _{n-q-1}^{\alpha _{2}}- \varphi _{n-q}^{\alpha _{2}} \bigr) V_{i}^{q} \Biggr] +O \bigl( k^{2- \alpha _{2}} \bigr), \end{aligned}$$
(14)
where \(\sigma _{1}=\frac{k^{-\alpha _{1}}}{\Gamma (2-\alpha _{1})}\), \(\sigma _{2}=\frac{k^{-\alpha _{2}}}{\Gamma (2-\alpha _{2})}\).
Substituting Eqs. (13) and (14) into Eqs. (10) and (11), the spatial derivatives \(S_{r}^{n}\) and \(\rho _{r} ^{n}\), \(r=i-1, i, i+1\), are discretized for \(n=1\) and \(n\geq 2\) as follows:
$$\begin{aligned}& S_{i-1}^{1} \simeq \sigma _{1} \bigl( U_{i-1}^{1}-U_{i-1}^{0} \bigr) + \frac{\delta _{i-1}^{1}}{2h} \bigl(4U_{i}^{1}-3U_{i-1}^{1}-U_{i+1}^{1} \bigr) \\& \hphantom{S_{i-1}^{1} \simeq{}}{} +\frac{\eta _{i-1}^{1}}{2h} \bigl(4V_{i}^{1}-3V_{i-1}^{1}-V_{i+1}^{1} \bigr)-f_{i-1}^{1} , \\& S_{i}^{1} \simeq \sigma _{1} \bigl( U_{i}^{1}-U_{i}^{0} \bigr) + \frac{\delta _{i}^{1}}{2h} \bigl(U_{i+1}^{1}-U_{i-1}^{1} \bigr) + \frac{\eta _{i}^{1}}{2h} \bigl(V_{i+1}^{1}-V_{i-1}^{1} \bigr)-f_{i}^{1} , \end{aligned}$$
(15)
$$\begin{aligned}& S_{i+1}^{1} \simeq \sigma _{1} \bigl(U_{i+1}^{1}-U_{i+1}^{0} \bigr) + \frac{\delta _{i+1}^{1}}{2h} \bigl(U_{i-1}^{1}-4U_{i}^{1}+3U_{i+1}^{1} \bigr) \\& \hphantom{S_{i+1}^{1} \simeq {}}{} +\frac{\eta _{i+1}^{1}}{2h} \bigl(V_{i-1}^{1}-4V_{i}^{1}+3V_{i+1}^{1} \bigr)-f_{i+1}^{1} , \\ & \rho _{i-1}^{1} \simeq \sigma _{2} \bigl(V_{i-1}^{1}-V_{i-1} ^{0} \bigr) +\frac{\zeta _{i-1}^{1}}{2h} \bigl(4V_{i}^{1}-3V_{i-1}^{1}-V_{i+1}^{1} \bigr) \\ & \hphantom{\rho _{i-1}^{1} \simeq{}}{} +\frac{\xi _{i-1}^{1}}{2h} \bigl(4U_{i}^{1}-3U_{i-1}^{1}-U_{i+1}^{1} \bigr)-g_{i-1}^{1} , \\ & \rho _{i}^{1} \simeq \sigma _{2} \bigl(V_{i}^{1}-V_{i}^{0} \bigr) + \frac{\zeta _{i}^{1}}{2h} \bigl(V_{i+1}^{1}-V_{i-1}^{1} \bigr) + \frac{\xi _{i}^{1}}{2h} \bigl( U_{i+1}^{1}-U_{i-1}^{1} \bigr)-g_{i}^{1} , \end{aligned}$$
(16)
$$\begin{aligned}& \rho _{i+1}^{1} \simeq \sigma _{2} \bigl(V_{i+1}^{1}-V_{i+1} ^{0} \bigr) +\frac{\zeta _{i+1}^{1}}{2h} \bigl(V_{i-1}^{1}-4V_{i}^{1}+3V_{i+1}^{1} \bigr) \\ & \hphantom{\rho _{i+1}^{1} \simeq{}}{} +\frac{\xi _{i+1}^{1}}{2h} \bigl(U_{i-1}^{1}-4U_{i}^{1}+3U_{i+1}^{1} \bigr)-g_{i+1}^{1} , \\ & S_{i-1}^{n} \simeq \sigma _{1} \bigl(U_{i-1}^{n}-\varphi _{n-1}^{ \alpha _{1}}U_{i-1}^{0} \bigr) +\sigma _{1}{ \sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{ \alpha _{1}} \bigr)U_{i-1}^{q} +\frac{\delta _{i-1}^{n}}{2h} \\ & \hphantom{ S_{i-1}^{n} \simeq{}}{}\times \bigl(-3U_{i-1}^{n}+4U_{i}^{n}-U_{i+1}^{n} \bigr) + \frac{\eta _{i-1}^{n}}{2h} \bigl(-3V_{i-1}^{n}+4V_{i}^{n}-V_{i+1}^{n} \bigr)-f_{i-1}^{n} , \\ & S_{i}^{n} \simeq \sigma _{1} \bigl(U_{i}^{n}-\varphi _{n-1}^{\alpha _{1}}U_{i}^{0} \bigr) +\sigma _{1}{ \sum_{q=1}^{n-1}} \bigl( \varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{\alpha _{1}} \bigr)U_{i}^{q} \\ & \hphantom{S_{i}^{n} \simeq{}}{} +\frac{\delta _{i}^{n}}{2h} \bigl(U_{i+1}^{n}-U_{i-1}^{n} \bigr) + \frac{\eta _{i}^{n}}{2h} \bigl(V_{i+1}^{n}-V_{i-1}^{n} \bigr)-f_{i}^{n} , \end{aligned}$$
(17)
$$\begin{aligned}& S_{i+1}^{n} \simeq \sigma _{1} \bigl(U_{i+1}^{n}-\varphi _{n-1}^{ \alpha _{1}}U_{i+1}^{0} \bigr) +\sigma _{1} { \sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{ \alpha _{1}} \bigr)U_{i+1}^{q} \\ & \hphantom{S_{i+1}^{n} \simeq{}}{} +\frac{\delta _{i+1}^{n}}{2h} \bigl(U_{i-1}^{n}-4U_{i}^{n}+3U_{i+1}^{n} \bigr) +\frac{\eta _{i+1}^{n}}{2h} \bigl(V_{i-1}^{n}-4V_{i}^{n}+3V_{i+1}^{n} \bigr)-f_{i+1}^{n}, \\ & \rho _{i-1}^{n}\simeq \sigma _{2} \bigl(V_{i-1}^{n}-\varphi _{n-1}^{ \alpha _{2}}V_{i-1} ^{0} \bigr) +\sigma _{2} { \sum _{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}- \varphi _{n-q}^{ \alpha _{1}} \bigr)V_{i-1}^{q}+ \frac{\zeta _{i-1}^{n}}{2h} \\ & \hphantom{\rho _{i-1}^{n}\simeq{}}{}\times \bigl(-3V_{i-1}^{n}+4V_{i-1}^{n}-V_{i+1}^{n} \bigr) + \frac{\xi _{i-1}^{n}}{2h} \bigl(-3U_{i-1}^{n}+4U_{i-1}^{n}-U_{i+1}^{n} \bigr)-g_{i-1}^{n}, \\ & \rho _{i}^{n} \simeq \sigma _{2} \bigl(V_{i}^{n}-\varphi _{n-1}^{ \alpha _{2}}V_{i}^{0} \bigr) +\sigma _{2} { \sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{ \alpha _{1}} \bigr)V_{i}^{q} \\ & \hphantom{\rho _{i}^{n} \simeq{}}{} +\frac{\zeta _{i}^{n}}{2h} \bigl(V_{i+1}^{n}-V_{i-1}^{n} \bigr) + \frac{\xi _{i}^{n}}{2h} \bigl( U_{i+1}^{n}-U_{i-1}^{n} \bigr)-g_{i}^{n}, \\ & \rho _{i+1}^{n} \simeq \sigma _{2} \bigl(V_{i+1}^{n}-\varphi _{n-1}^{ \alpha _{2}}V_{i+1}^{0} \bigr) +\sigma _{2}{ \sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{ \alpha _{1}} \bigr)V_{i+1}^{q} \\ & \hphantom{\rho _{i+1}^{n} \simeq{}}{} +\frac{\zeta _{i+1}^{n}}{2h} \bigl(V_{i-1}^{n}-4V_{i}^{n}+3V_{i+1}^{n} \bigr) +\frac{\xi _{i+1}^{n}}{2h} \bigl(U_{i-1}^{n}-4U_{i}^{n}+3U_{i+1}^{n} \bigr)-g_{i+1}^{n}, \end{aligned}$$
(18)
where \(\delta _{i}^{n}= ( V_{i}^{n}-2U_{i}^{n} ) \), \(\zeta _{i}^{n}= ( U_{i}^{n}-2V_{i}^{n} ) \), \(\eta _{i}^{n}=U_{i}^{n}\), and \(\xi _{i}^{n}=V_{i}^{n}\), \(i=1,2,\ldots,N\).
Substituting Eqs. (15) to (18) into Eqs. (8) and (9), after slight rearrangement, yields the following systems:
$$\begin{aligned}& A_{1}U_{i-1}^{1} +A_{2}U_{i}^{1}+A_{3}U_{i+1}^{1}+A_{4}V_{i-1}^{1}+A_{5} V_{i}^{1}+A_{6}V_{i+1}^{1} \\& \quad =A_{7}U_{i-1}^{0}+A_{8}U_{i}^{0}+A_{7}U_{i+1}^{0}- \gamma f_{i-1}^{1}- \beta f_{i}^{1} -\gamma f_{i+1}^{1}, \end{aligned}$$
(19)
$$\begin{aligned}& B_{1}V_{i-1}^{1} +B_{2}V_{i}^{1}+B_{3}V_{i+1}^{1}+B_{4}U_{i-1}^{1}+B_{5}U_{i}^{1}+B_{6}U_{i+1}^{1} \\& \quad =B_{7}V_{i-1}^{0}+B_{8}V_{i}^{0}+B_{7}V_{i+1}^{0}- \gamma g_{i-1}^{1}- \beta g_{i}^{1} -\gamma g_{i+1}^{1}, \end{aligned}$$
(20)
$$\begin{aligned}& A_{1}U_{i-1}^{n} +A_{2}U_{i}^{n}+A_{3}U_{i+1}^{n}+A_{4}V_{i-1}^{n}+A_{5} V_{i}^{n}+A_{6}V_{i+1}^{n} \\& \quad =A_{7}U_{i-1}^{0}+A_{8} U_{i}^{0}+A_{7}U_{i+1}^{0}- (\lambda _{1} )_{i}^{n}-\gamma f_{i-1}^{n}-\beta f_{i}^{n} - \gamma f_{i+1}^{n}, \end{aligned}$$
(21)
$$\begin{aligned}& B_{1}V_{i-1}^{n} +B_{2}V_{i}^{n}+B_{3}V_{i+1}^{n}+B_{4}U_{i-1}^{n}+B_{5} U_{i}^{n}+B_{6}U_{i+1}^{n} \\& \quad =B_{7}V_{i-1}^{0}+B_{8}V_{i}^{0}+B_{7}V_{i+1}^{0}- (\lambda _{2} )_{i}^{n}-\gamma g_{i-1}^{n}-\beta g_{i}^{n} - \gamma g_{i+1}^{n}. \end{aligned}$$
(22)
where \(i=1,2,\ldots,N\), \(n\geq 2\) and
$$\begin{aligned}& A_{1}=1-\gamma \sigma _{1}+\frac{3\gamma \delta _{i-1}^{n}}{2h}+ \frac{\beta \delta _{i}^{n}}{2h}-\frac{\gamma \delta _{i+1}^{n}}{2h}, \qquad A_{2}=-2-\beta \sigma _{1}-\frac{2\gamma \delta _{i-1}^{n}}{h}+ \frac{2\gamma \delta _{i+1}^{n}}{h}, \\& A_{3}=1-\gamma \sigma _{1}+\frac{\gamma \delta _{i-1}^{n}}{2h}- \frac{\beta \delta _{i}^{n}}{2h}-\frac{3\gamma \delta _{i+1}^{n}}{2h}, \qquad A_{4}= \frac{3\gamma \eta _{i-1}^{n}}{2h}+ \frac{\beta \eta _{i}^{n}}{2h}-\frac{\gamma \eta _{i+1}^{n}}{2h}, \\& A_{5}=\frac{2\gamma }{h} \bigl(\eta _{i+1}^{n}- \eta _{i-1}^{n} \bigr) , \qquad A_{6}= \frac{\gamma \eta _{i-1}^{n}}{2h}- \frac{\beta \eta _{i}^{n}}{2h}-\frac{3\gamma \eta _{i+1}^{n}}{2h} \\& A_{7}=-\gamma \sigma _{1}\varphi _{n-1}^{\alpha _{1}},\qquad A_{8}=- \beta \sigma _{1}\varphi _{n-1}^{\alpha _{1}},\qquad B_{1}=1-\gamma \sigma _{2}+\frac{3\gamma \zeta _{i-1}^{n}}{2h}+ \frac{\beta \zeta _{i}^{n}}{2h}-\frac{\gamma \zeta _{i+1}^{n}}{2h}, \\& B_{2}=-2-\beta \sigma _{2}-\frac{2\gamma \zeta _{i-1}^{n}}{h}+ \frac{2\gamma \zeta _{i+1}^{n}}{h},\qquad B_{3}=1-\gamma \sigma _{2}+ \frac{\gamma \zeta _{i-1}^{n}}{2h}-\frac{\beta \zeta _{i}^{n}}{2h}- \frac{3\gamma \zeta _{i+1}^{n}}{2h}, \\& B_{4}=\frac{3\gamma \xi _{i-1}^{n}}{2h}+ \frac{\beta \xi _{i}^{n}}{2h}- \frac{\gamma \xi _{i+1}^{n}}{2h},\qquad B_{5}= \frac{2\gamma }{h} \bigl(\xi _{i+1}^{n}-\xi _{i-1}^{n} \bigr) , \\& B_{6}=\frac{\gamma \xi _{i-1}^{n}}{2h}-\frac{\beta \xi _{i}^{n}}{2h}- \frac{3\gamma \xi _{i+1}^{n}}{2h},\qquad B_{7}=-\gamma \sigma _{2} \varphi _{n-1}^{\alpha _{2}}, \qquad B_{8}=-\beta \sigma _{2}\varphi _{n-1}^{ \alpha _{2}}, \\& (\lambda _{1} )_{i}^{n}=\sigma _{1} {\sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{\alpha _{1}} \bigr) \bigl[ \gamma \bigl(U_{i+1}^{q}+U_{i-1}^{q} \bigr) +\beta U_{i}^{q} \bigr], \\& (\lambda _{2} )_{i}^{n}=\sigma _{2} {\sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{2}}-\varphi _{n-q}^{\alpha _{2}} \bigr) \bigl[ \gamma \bigl(V_{i+1}^{q}+V_{i-1}^{q} \bigr) +\beta V_{i}^{q} \bigr]. \end{aligned}$$
The system thus obtained on simplifying Eqs. (19) to (22) consists of \((2N+4)\) unknown variables \(( U_{0},U_{1},\ldots,U_{N+1} ) \) and \(( V_{0},V_{1},\ldots,V_{N+1} ) \) in the \((2N ) \) linear equations. Four additional constraints are necessary to achieve a unique solution to the resulting scheme. These are obtained as follows by introducing boundary conditions:
$$ U_{0}^{n}=f_{1}(t_{n}),\qquad U_{N+1}^{n}=f_{2}(t_{n}),\qquad V_{0}^{n}=g_{1}(t_{n}),\qquad V_{N+1}^{n}=g_{2}(t_{n}). $$
Eliminating \(U_{0}\), \(U_{N+1}\) and V0, V\(_{N+1}\), the system gets reduced to a matrix system of dimension \((2N)\times (2N)\), and the initial values are obtained by the initial conditions.
Remark 2
The local truncation errors (see [46]) \(T=[T_{1i},T_{2i}]\), \(i=1,2,\dots ,N\), can be written as follows:
$$\begin{aligned}& T_{1i}= \bigl(h^{2}-(2\gamma +\beta ) \bigr) \frac{\partial ^{2} u_{i}^{n}}{\partial x^{2}} + \biggl( \frac{h^{2}}{12}-\gamma \biggr)h^{2} \frac{\partial ^{4} u_{i}^{n}}{\partial x^{4}}+O\bigl(k^{2-\alpha _{1}}+h^{6}\bigr), \end{aligned}$$
(23)
$$\begin{aligned}& T_{2i}= \bigl(h^{2}-(2\gamma +\beta ) \bigr) \frac{\partial ^{2} v_{i}^{n}}{\partial x^{2}} + \biggl( \frac{h^{2}}{12}-\gamma \biggr)h^{2} \frac{\partial ^{4} v_{i}^{n}}{\partial x^{4}}+O\bigl(k^{2-\alpha _{2}}+h^{6}\bigr). \end{aligned}$$
(24)
Equations (23) and (24) design two methods for choices of parameters β and γ as follows:
-
1.
If \(2\gamma +\beta =h^{2}\) and \(\gamma \neq \frac{h^{2}}{12}\), then \(T_{ji}=O(k^{2-\alpha _{2}}+h^{4})\), \(j=1,2\).
-
2.
If \(2\gamma +\beta =h^{2}\) and \(\gamma = \frac{h^{2}}{12}\), then \(T_{ji}=O(k^{2-\alpha _{2}}+h^{6})\), \(j=1,2\).
Convergence analysis
According to Remark 2, we have chosen \(2\gamma +\beta =h^{2}\), where \(\gamma =\frac{h^{2}}{12}\) and \(\beta =\frac{5h^{2}}{6}\). Let us rewrite Eqs. (21) and (22) as follows:
$$\begin{aligned} QR=P, \end{aligned}$$
(25)
where \(R=[U,V]^{T}\), \(U=[U_{1}^{n},U_{2}^{n},\dots ,U_{N}^{n}]^{T}\), \(V=[V_{1}^{n},V_{2}^{n}, \dots ,V_{N}^{n}]^{T}\) and a matrix Q is given as a block matrix
$$ \mathrm{Q} = \left [ \textstyle\begin{array}{c|c} Q_{11} & Q_{12} \\ \hline Q_{21} & Q_{22} \end{array}\displaystyle \right ], $$
where
$$ \left . \begin{aligned} &Q_{11}=Q_{0}+h^{2} \sigma _{1} Q_{1}+\frac{h}{2} Z_{\delta },\qquad Q_{12} = \frac{h}{2} Z_{\eta }, \\ &Q_{21}=\frac{h}{2} Z_{\xi }, \qquad Q_{22}=Q_{0}+h^{2}\sigma _{2} Q_{1}+ \frac{h}{2} Z_{\zeta }, \end{aligned} \right \} , $$
(26)
and square matrices \(Q_{0}\), \(Q_{1}\), and \(Z_{x}, x=\delta ,\eta ,\xi ,\zeta \) are given by
$$\begin{aligned}& Q_{0}= \begin{bmatrix} -2&1&0&0&\cdots &0 \\ 1&-2&1&0&\cdots &0 \\ 0&1&-2&1&\cdots &0 \\ \vdots &\vdots &\ddots &\ddots &\ddots &\vdots \\ 0&0&\cdots &1&-2&1 \\ 0&0&\cdots &0&1&-2 \end{bmatrix}, \\& Q_{1}= \begin{bmatrix} -5/6&-1/12&0&0&\cdots &0 \\ -1/12&-5/6&-1/12&0&\cdots &0 \\ 0&-1/12&-5/6&-1/12&\cdots &0 \\ \vdots &\vdots &\ddots &\ddots &\ddots &\vdots \\ 0&0&\cdots &-1/12&-5/6&-1/12 \\ 0&0&\cdots &0&-1/12&-5/6 \end{bmatrix}, \\& Z_{x}=\left [ \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} \frac{x_{i+1}^{n}-x_{i-1}^{n}}{3}&\frac{3x_{i-1}^{n}-10 x_{i}^{n}-x_{i+1}^{n}}{12}&0&0 \\ \frac{3x_{i-1}^{n}+10 x_{i}^{n}-x_{i+1}^{n}}{12}&\frac{x_{i+1}^{n}-x_{i-1}^{n}}{3}&\frac{3x_{i-1}^{n}-10 x_{i}^{n}-x_{i+1}^{n}}{12}&0 \\ 0&\frac{3x_{i-1}^{n}+10 x_{i}^{n}-x_{i+1}^{n}}{12}&\frac{x_{i+1}^{n}-x_{i-1}^{n}}{3}&\frac{3x_{i-1}^{n}-10 x_{i}^{n}-x_{i+1}^{n}}{12} \\ \vdots &\vdots &\ddots &\ddots \\ 0&0&\cdots &\frac{3x_{i-1}^{n}+10 x_{i}^{n}-x_{i+1}^{n}}{12} \\ 0&0&\cdots &0 \end{array}\displaystyle \right . \\& \left . \textstyle\begin{array}{@{}c@{\quad}c@{\quad}c@{}} &\cdots &0 \\ &\cdots &0 \\ &\cdots &0 \\ &\ddots &\vdots \\ &\frac{x_{i+1}^{n}-x_{i-1}^{n}}{3}&\frac{3x_{i-1}^{n}-10 x_{i}^{n}-x_{i+1}^{n}}{12} \\ &\frac{3x_{i-1}^{n}+10 x_{i}^{n}-x_{i+1}^{n}}{12}&\frac{x_{i+1}^{n}-x_{i-1}^{n}}{3} \end{array}\displaystyle \right ],\quad x=\delta ,\eta ,\xi , \zeta . \end{aligned}$$
A matrix \(P=[P_{1},P_{2}]^{T}\) where
$$\begin{aligned}& P_{1}= \textstyle\begin{cases} \textstyle\begin{array}{l} A_{7}U_{0}^{0}+A_{8} U_{1}^{0}+A_{7}U_{2}^{0}- (\lambda _{1} )_{1}^{n} \\ \quad {}-\gamma f_{0}^{n}-\beta f_{1}^{n} -\gamma f_{2}^{n}-A_{1} U_{0}^{n}, \end{array}\displaystyle & i=1, \\ \textstyle\begin{array}{l} A_{7}U_{i-1}^{0}+A_{8} U_{i}^{0}+A_{7}U_{i+1}^{0} \\ \quad {}- (\lambda _{1} )_{i}^{n}-\gamma f_{i-1}^{n}-\beta f_{i}^{n} -\gamma f_{i+1}^{n}, \end{array}\displaystyle & 1< i< N, \\ \textstyle\begin{array}{l} A_{7}U_{N-1}^{0}+A_{8} U_{N}^{0}+A_{7}U_{N+1}^{0}- (\lambda _{1} )_{N}^{n} \\ \quad {}-\gamma f_{N-1}^{n}-\beta f_{N}^{n} -\gamma f_{N+1}^{n}-A_{3} U_{N+1}^{n}, \end{array}\displaystyle & i=N, \end{cases}\displaystyle \\& P_{2}= \textstyle\begin{cases} \textstyle\begin{array}{l} A_{7}V_{0}^{0}+A_{8} V_{1}^{0}+A_{7}V_{2}^{0}- (\lambda _{1} )_{1}^{n} \\ \quad {}-\gamma f_{0}^{n}-\beta f_{1}^{n} -\gamma f_{2}^{n}-A_{1} V_{0}^{n}, \end{array}\displaystyle & i=1, \\ \textstyle\begin{array}{l} A_{7}V_{i-1}^{0}+A_{8} V_{i}^{0}+A_{7}V_{i+1}^{0} \\ \quad {} - (\lambda _{1} )_{i}^{n}-\gamma f_{i-1}^{n}-\beta f_{i}^{n} -\gamma f_{i+1}^{n} , \end{array}\displaystyle & 1< i< N, \\ \textstyle\begin{array}{l} A_{7}V_{N-1}^{0}+A_{8} V_{N}^{0}+A_{7}V_{N+1}^{0}- (\lambda _{1} )_{N}^{n} \\ \quad {} -\gamma f_{N-1}^{n}-\beta f_{N}^{n} -\gamma f_{N+1}^{n}-A_{3} V_{N+1}^{n} , \end{array}\displaystyle & i=N. \end{cases}\displaystyle \end{aligned}$$
Let \(\bar{U}=[u,v]^{T}\), \(u=[u_{1},u_{2},\dots ,u_{N}]^{T}\), and \(v=[v_{1},v_{2},\dots ,v_{N}]^{T}\) be the exact solutions of Eqs. (1) and (2) at nodal points \(x_{i}\), \(i=1,2,\dots ,N\), and then we have
where \(T=[T_{1i},T_{2i}]^{T}\) is the local truncation error described in Remark 2. From Eqs. (25) and (27), we can write the error equation as follows:
$$ Q (\bar{U}-R )=QE=T, $$
(28)
where \(E=[E_{1i},E_{2i}]^{T}\) is the error of discretization with \(E_{1i}=u_{i}-U_{i}^{n}\) and \(E_{2i}=v_{i}-V_{i}^{n}\).
For sufficiently small step h, the diagonal blocks \(Q_{11}\) and \(Q_{22}\) are invertible and the following condition holds:
$$ \bigl\Vert Q_{12}Q_{22}^{-1} \bigr\Vert _{\infty } \bigl\Vert Q_{21}Q_{11}^{-1} \bigr\Vert _{\infty }< 1. $$
According to [48], matrix Q is invertible. Moreover,
$$ \bigl\Vert Q^{-1} \bigr\Vert _{\infty }\leq \frac{\max \{ \Vert Q_{11}^{-1} \Vert _{\infty }, \Vert Q_{22}^{-1} \Vert _{\infty } \} (1+ \Vert Q_{12}Q_{22}^{-1} \Vert _{\infty } ) (1+ \Vert Q_{21}Q_{11}^{-1} \Vert _{\infty } )}{1- \Vert Q_{12}Q_{22}^{-1} \Vert _{\infty } \Vert Q_{21}Q_{11}^{-1} \Vert _{\infty }}. $$
(29)
From Eq. (28) and norm inequalities, we have
$$ \Vert E \Vert _{\infty }\leq \bigl\Vert Q^{-1} \bigr\Vert _{\infty } \Vert T \Vert _{\infty }. $$
(30)
Since
$$ \Vert T \Vert _{\infty }\leq \textstyle\begin{cases} O(k^{2-\alpha }+h^{4}),& 2\gamma +\beta =h^{2}, \gamma \neq h^{2}/12, \\ O(k^{2-\alpha }+h^{6}),& 2\gamma +\beta =h^{2}, \gamma = h^{2}/12, \end{cases} $$
and from classifications of the matrices \(Q_{11}\), \(Q_{12}\), \(Q_{21}\), and \(Q_{22}\) defined in Eq. (26), we have
$$ \Vert E \Vert _{\infty }\leq \textstyle\begin{cases} O(k^{2-\alpha }+h^{2}),& 2\gamma +\beta =h^{2}, \gamma \neq h^{2}/12, \\ O(k^{2-\alpha }+h^{4}),& 2\gamma +\beta =h^{2}, \gamma = h^{2}/12. \end{cases} $$
(31)
This shows that Eq. (25) is a second-order convergence method in the case \(2\gamma +\beta =h^{2}\), \(\gamma \neq h^{2}/12\), and a fourth-order convergence method in the case \(2\gamma +\beta =h^{2}\), \(\gamma = h^{2}/12\).
Stability analysis of the method
The stability analysis of the difference schemes listed in Eqs. (19) to (22) is discussed by assuming the nonlinear terms \(\delta _{r}^{n}\) and \(\eta _{r}^{n}\), \(r=i-1, i, i+1\), as local constants D and E respectively.
Let \(\tilde{U}_{i}^{n}\) and \(\tilde{V}_{i}^{n}\) be the approximate solutions of Eqs. (19) to (22) and define
$$ P_{i}^{n}=U_{i}^{n}- \tilde{U}_{i}^{n},\qquad Q_{i}^{n}=V_{i}^{n}- \tilde{V}_{i}^{n},\quad i=0, 1,\ldots,N+1, n=0,1,\ldots,T. $$
With the above definition and regarding Eqs. (19) and (21), we can get the following round-off error equations:
$$\begin{aligned}& a_{1}P_{i-1}^{1}+a_{2}P_{i}^{1}+a_{3}P_{i+1}^{1}+ a_{4}Q_{i-1}^{1}+a_{5}Q_{i}^{1}+a_{6}Q_{i+1}^{1} \\& \quad =a_{7}P _{i-1}^{0}+a_{8}P_{i}^{0}+a_{7}P_{i+1}^{0}, \end{aligned}$$
(32)
$$\begin{aligned}& a_{1}P_{i-1}^{n}+a_{2}P_{i}^{n}+a_{3}P_{i+1}^{n}+ a_{4}Q_{i-1}^{n}+a_{5}Q_{i}^{n}+a_{6}Q_{i+1}^{n} \\& \quad =a_{7}P_{i-1}^{0} +a_{8}P_{i}^{0}+a_{7}P_{i+1}^{0}- \sigma _{1} {\sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{\alpha _{1}}-\varphi _{n-q}^{\alpha _{1}} \bigr) \bigl[ \gamma \bigl(P_{i+1}^{q}+P_{i-1}^{q} \bigr) +\beta P_{i}^{q} \bigr], \end{aligned}$$
(33)
where \(a_{1}=1-\gamma \sigma _{1}+\frac{D}{2h} ( \beta +2\gamma )\), \(a_{2}=-2-\beta \sigma _{1}\), \(a_{3}=1-\gamma \sigma _{1}- \frac{D}{2h} ( \beta +2\gamma )\), \(a_{4}=\frac{E}{2h} ( \beta +2\gamma )\), \(a_{5}=0\), \(a_{6}=-\frac{E}{2h} ( \beta +2\gamma ) \), \(a_{7}=-\gamma \sigma _{1} \varphi _{n-1}^{\alpha _{1}}\), and \(a_{8}=-\beta \sigma _{1}\varphi _{n-1}^{\alpha _{1}}\).
The Von Neumann method assumes that
$$\begin{aligned}& P_{i}^{n}=\varsigma _{n}e^{(Ii\phi h)}, \end{aligned}$$
(34)
$$\begin{aligned}& Q_{i}^{n}=\varsigma _{n}e^{(Ii\phi h)}, \end{aligned}$$
(35)
where \(I=\sqrt{-1}\).
Substituting Eqs. (34) and (35) into Eq. (32), we get
$$\begin{aligned}& \bigl( a_{1}e^{I (i-1 ) \phi h}+a_{2}e^{I i \phi h}+a_{3} e^{I ( i+1 ) \phi h}+a_{4}e^{I (i-1 ) \phi h}+a_{6}e^{I (i+1 ) \phi h} \bigr) \varsigma _{1} \\& \quad = \bigl( a_{7}e^{I ( i-1 ) \phi h}+ a_{8}e^{I i \phi h}+ a_{7}e^{I ( i+1 ) \phi h} \bigr) \varsigma _{0}, \end{aligned}$$
after some algebraic manipulation, we have
$$ \varsigma _{1}=\frac{\varphi }{\eta +I \psi }\varsigma _{0}, $$
(36)
where \(\varphi =\sigma _{1} ( \beta +2\gamma \cos ( \phi h ) ) \), \(\eta =2 ( 1-\cos (\phi h) ) +\varphi \), and \(\psi =\frac{D+E}{h} (\beta +2\gamma ) \sin ( \phi h ) \).
$$ \vert \varsigma _{1} \vert =\sqrt{ \frac{\varphi ^{2}}{\eta ^{2}+ \psi ^{2}}} \vert \varsigma _{0} \vert \leq \vert \varsigma _{0} \vert . $$
(37)
Substituting Eqs. (34) and (35) into Eq. (33) results in
$$\begin{aligned}& \bigl(a_{1}e^{I (i-1 ) \phi h}+a_{2}e^{I i \phi h}+a_{3} e^{I (i+1 ) \phi h}+a_{4}e^{I (i-1 )\phi h}+a_{6}e^{I (i+1 ) \phi h} \bigr) \varsigma _{n} \\& \quad = \bigl( a_{7} \bigl(e^{I (i-1 ) \phi h}+e^{I (i+1 ) \phi h} \bigr)+ a_{8}e^{I i \phi h} \bigr) \varsigma _{0} \\& \qquad {} -\sigma _{1}{\sum_{q=1}^{n-1}} \bigl(\varphi _{n-q-1}^{ \alpha _{1}}-\varphi _{n-q}^{\alpha _{1}} \bigr) \bigl[ \gamma \bigl(e^{I (i-1 ) \phi h}+e^{I (i+1 ) \phi h} \bigr)+\beta e^{Ii \phi h} \bigr]\varsigma _{q}. \end{aligned}$$
After some rearrangement we get
$$ \varsigma _{n}=\frac{\varphi }{\eta +I \psi } \Biggl(\varphi _{n-1}^{ \alpha _{1}}\varsigma _{0}+\sum _{q=1}^{n-1} \bigl(\varphi _{n-q-1}^{ \alpha _{1}}- \varphi _{n-q}^{\alpha _{1}} \bigr)\varsigma _{q} \Biggr). $$
Using mathematical induction, we can prove that \(\vert \varsigma _{n} \vert \leq \vert \varsigma _{0} \vert \) as follows:
For \(n=2\),
$$ \varsigma _{2}=\frac{\varphi }{\eta +I \psi } \bigl(\varphi _{1}^{ \alpha _{1}}\varsigma _{0}+ \bigl(\varphi _{0}^{\alpha _{1}}-\varphi _{1}^{ \alpha _{1}} \bigr)\varsigma _{1} \bigr)= \frac{\varphi }{\eta +I \psi } \varphi _{0}^{\alpha _{1}}\varsigma _{0}= \frac{\varphi }{\eta +I \psi }\varsigma _{0}\quad \Rightarrow\quad \vert \varsigma _{2} \vert \leq \vert \varsigma _{0} \vert . $$
Let \(k\in \mathbb{Z_{+}} \) be given and suppose \(\vert \varsigma _{n} \vert \leq \vert \varsigma _{0} \vert \) is true for \(n = k\). Then
$$ \varsigma _{k+1}=\frac{\varphi }{\eta +I \psi } \Biggl(\varphi _{k}^{ \alpha _{1}}\varsigma _{0}+\sum _{q=1}^{k} \bigl(\varphi _{k-q}^{ \alpha _{1}}- \varphi _{k -q+1}^{\alpha _{1}} \bigr)\varsigma _{q} \Biggr). $$
By Lemma 2, we have \(0<\varphi _{q}^{\alpha _{1}}<\varphi _{q-1}^{\alpha _{1}}\), \(q=0,1,\ldots \) , and consequently \((\varphi _{k-q-1}^{\alpha _{1}}-\varphi _{k -q}^{\alpha _{1}} )>0\). Thus
$$\begin{aligned} \vert \varsigma _{k+1} \vert &=\sqrt{ \frac{\varphi ^{2}}{\eta ^{2}+ \psi ^{2}}} \Biggl(\varphi _{k}^{ \alpha _{1}} \vert \varsigma _{0} \vert +\sum_{q=1}^{k} \bigl(\varphi _{k-q}^{\alpha _{1}}-\varphi _{k -q+1}^{\alpha _{1}} \bigr) \vert \varsigma _{q} \vert \Biggr) \\ &\leq \varphi _{k}^{\alpha _{1}} \vert \varsigma _{0} \vert +\sum_{q=1}^{k} \bigl(\varphi _{k-q}^{\alpha _{1}}- \varphi _{k -q+1}^{\alpha _{1}} \bigr) \vert \varsigma _{0} \vert \quad \text{(by induction hypothesis)} \\ & = \Biggl(\varphi _{k}^{\alpha _{1}}+\sum _{q=1}^{k} \bigl( \varphi _{k-q}^{\alpha _{1}}- \varphi _{k -q+1}^{\alpha _{1}} \bigr) \Biggr) \vert \varsigma _{0} \vert =\varphi _{0}^{ \alpha _{1}} \vert \varsigma _{0} \vert = \vert \varsigma _{0} \vert . \end{aligned}$$
Expanding the summation in the last equation, the intermediate terms cancel each other, and we are left with the term \(\varphi _{0}^{\alpha _{1}} \vert \varsigma _{0} \vert \). Thus, \(\vert \varsigma _{n} \vert \leq \vert \varsigma _{0} \vert \) holds for \(n\geq 1\), and we have stability for \(\beta ,\gamma > 0\).
We can obtain similar results for Eqs. (20) and (22).