We are now ready to start an investigation of the k-dimensional hybrid inclusions system (1). We say that \((q_{1}, q_{2}, \ldots, q_{k})\) is a solution for system (1) whenever there exist functions \(\{l_{1}, l_{2}, \ldots, l_{k} \} \in L^{1}[0,1]\) such that
$$\begin{aligned} l_{i}(s)\in \mathcal{S}_{i} \bigl(s , q_{1}(s), q_{2}(s),\ldots, q_{i}(s), q'_{1}(s), q'_{2}(s), \ldots, q'_{i}(s)\bigr) \end{aligned}$$
(6)
for all i and almost all \(s\in [0,1]\) and
$$\begin{aligned} q_{i}(s) &= \varrho _{i} \bigl( s , q_{i}(s), {}^{R}I^{\gamma }q_{i}(s) \bigr) \biggl( \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}m \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}r \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\iota -1}}{\Gamma ( \xi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \biggr) \end{aligned}$$
(7)
for all i and \(s\in [0,1]\). Here, we have \(\alpha \in (2, 3] \), \(p \in (0,1)\), \(d_{1_{i}} , d_{2_{i}} , \varrho , \iota >0 \), and cD and RI denote the Caputo fractional derivative and the Riemann–Liouville fractional integral, respectively. Note that \({}^{c}D_{0^{+}}^{1} = \frac{\mathrm{d}}{\mathrm{d}s} \) and \({}^{c}D_{0^{+}}^{2} = \frac{\mathrm{d}^{2}}{\mathrm{d}s^{2}} \). The nonzero continuous real-valued function \(\alpha _{i} \) is supposed to be defined on \([0,1]\times \mathbb{R} \) and \(\mathcal{S}: [0,1]\times \mathbb{R} \to \mathcal{P}(\mathbb{R}) \) for all \(i=1, \ldots, k\).
Defined the space \(\mathcal{Q}_{i}= \{s:s,q(s),q'(s)\in \mathcal{C}([0,1],\mathbb{R}) \}\) endowed with the norm \(\Vert q \Vert _{\mathcal{Q}_{i} } = \sup_{ s\in [0,1] } \vert q_{i}(s) \vert + \sup_{ s\in [0,1] } \vert q'_{i}(s) \vert \) for all \(\{i\in 1, 2, \ldots, k\}\). Also, define the product space \(\mathcal{Q}=Q_{1}\times Q_{2}\times \cdots\times Q_{k}\) endowed with the norm \(\Vert (q_{1}, q_{2}, \ldots ,q_{k})\Vert = \sum_{i=1}^{k} \Vert q_{i} \Vert \). Then \((\mathcal{Q},\Vert \cdot\Vert )\) is a Banach space. Consider the set of the selections
$$\begin{aligned} \mathcal{Q}_{A_{i,q}} =& \bigl\{ l\in L^{1}[0,1]:l(s)\in A_{i}\bigl(s,q_{1}(s), \ldots, q_{k}(s),q'_{1}(s), \ldots, q'_{k}(s)\bigr) \\ &\text{for all } q=(q_{1}, \ldots, q_{k}) \in \mathcal{Q} \bigr\} , \end{aligned}$$
where \(1 \leq i \leq k\), and we consider the inclusion for almost all \(s\in [0,1]\).
Theorem 3.1
Suppose that \(A_{1}, \ldots, A_{k}:[0,1]\times \mathbb{R}^{3k}\to {\mathcal{P}}_{cmp,cvx}( \mathbb{R})\) are Caratheodory multifunctions and there exist a nondecreasing, bounded, and continuous map \(\psi : [0,\infty )\to (0,\infty )\) and continuous functions \(b_{1}, \ldots, b_{k}:[0,1]\to (0,\infty )\) such that
$$\begin{aligned}& \bigl\Vert A_{i}\bigl(s , q_{1}(s),q_{2}(s), \ldots,q_{i}(s),q'_{1}(s),q'_{2}(s), \ldots,q'_{i}(s)\bigr) \bigr\Vert \\& \quad =\sup \bigl\{ \vert z \vert z\in A_{i} \bigl(s , q_{1}(s),q_{2}(s),\ldots,q_{i}(s),q'_{1}(s),q'_{2}(s), \ldots,q'_{i}(s)\bigr) \bigr\} \\& \quad \leq b_{i}(s) \psi \bigl( \Vert q_{1}, q_{2}, \ldots, q_{i} \Vert \bigr) \end{aligned}$$
for all \(1 \leq i \leq k \), \((q_{1},\dots ,q_{k}) \in \mathcal{Q}\) and almost all \(s\in [0,1]\). Assume that there exist constants \(L_{i}\) such that \(\frac{L_{i}}{M_{i_{1}}+M_{i_{2}}}\leq 1\), where
$$\begin{aligned}& M_{i_{1}}= \biggl[ \frac{(1- e^{-d_{2}})}{d_{1} d_{2} \Gamma ( \alpha _{i} )} + \frac{ \vert 1- e^{- d_{2}} \vert + \vert d_{2}^{2} - d_{2} \vert }{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \biggl( \frac{(1-e^{-d_{2}})}{d_{2} \Gamma (\alpha _{i} )} + \frac{p^{ \alpha _{i} + \xi _{i} - 1} ( d_{2}p+ e^{-d_{2}p}-1) }{d_{2}^{2} \Gamma _{i} ( \alpha _{i} ) \Gamma ( \xi _{i} ) } \biggr) \biggr], \\& M_{i_{2}}= \biggl[ \frac{1}{d_{1}\Gamma ( \alpha _{i} )} + \frac{ \vert d_{2} e^{- d_{2}} \vert + \vert d_{2}^{2} - d_{2} \vert }{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \biggl( \frac{(1-e^{-d_{2}})}{d_{2} \Gamma (\alpha _{i} )} + \frac{p^{ \alpha _{i} + \xi _{i} - 1} ( d_{2}p+ e^{-d_{2}p}-1) }{d_{2}^{2} \Gamma _{i} ( \alpha _{i} ) \Gamma ( \xi _{i} ) } \biggr) \biggr] \end{aligned}$$
and \(\Vert \theta _{i}\Vert =\sup_{ s\in [0,1] } \vert \theta _{i}(s) \vert \) for all \(i=1,\ldots ,k\). Then the k-dimensional hybrid inclusions system (1) has at least one solution.
Proof
Define the operator \(T:\mathcal{Q}\to 2^{\mathcal{Q}}\) by
$$ T(q_{1}, \dots , q_{k})= \bigl(T_{1}(q_{1}, \dots , q_{k}), T_{2}(q_{1}, \dots , q_{k}),\dots , T_{k}(q_{1},\dots , q_{k}) \bigr), $$
where
$$\begin{aligned} T_{i}(q_{1},\dots , q_{k}) =& \biggl\{ z\in \mathcal{Q}_{i}: \text{there exists } l\in \mathcal{Q}_{A_{i,(q_{1},\dots , q_{k})}} \text{ such that} \\ &z(s) = \alpha \bigl( s , q(s), {}^{R}I_{0^{+}}^{\varrho }q(s) \bigr) \biggl( \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-r)} \int _{0}^{r} \frac{ (r-m)^{\alpha -2}}{ \Gamma ( \alpha -1)} \tilde{l}_{i}(m) \,\mathrm{d}m \,\mathrm{d}r \\ &\hphantom{z(s) ={}}{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Delta ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-r)} \int _{0}^{r} \frac{ (r-m)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } \tilde{l}_{i}(m) \,\mathrm{d}m \,\mathrm{d}r \\ &\hphantom{z(s) ={}}{}+ \int _{0}^{p} \frac{ (p-r)^{\xi -1}}{\Gamma ( \xi ) } \int _{0}^{r} e^{-d_{2} (r-\iota )} \int _{0}^{\iota }\frac{ (\iota -m)^{\alpha -2}}{\Gamma ( \alpha -1) } \tilde{l}_{i} (m) \,\mathrm{d}m \,\mathrm{d}\iota \,\mathrm{d} r \biggr] \biggr) \biggr\} . \end{aligned}$$
(8)
We show that the operator T has a fixed point. Consider the maps \(\Psi _{1_{i}}^{*} :\mathcal{Q} \to \mathcal{Q}\) and \(\Psi _{2_{i}}^{*} : \mathcal{Q} \to \mathcal{P}(\mathcal{Q})\) defined by \((\Psi _{1_{i}}^{*} q)(s )= \alpha _{i} ( s , q_{i}(s), {}^{R}I_{0^{+}}^{\varrho }q_{i}(s) )\) and
$$ \bigl(\Psi _{2_{i}}^{*} q \bigr) (s )=\bigl\{ l_{i} \in \mathcal{Q}: l_{i}(s)=b_{ \hat{\vartheta }_{i}}(s) \text{ for all } s \in [0,1]\bigr\} , $$
where \(b_{\hat{\vartheta }_{i}} \in {T}_{i}(q_{1}, \dots , q_{k})\) and
$$\begin{aligned} b_{ \hat{\vartheta }_{i}}(s) &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} b_{ \hat{\vartheta }_{i}(r)} \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Delta ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } b_{ \hat{\vartheta }_{i}(r)} \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } b_{ \hat{\vartheta }_{i}(r)} \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr]. \end{aligned}$$
Put \(\mathcal{G}_{i}(q)=\Psi _{1_{i}}^{*} q \Psi _{2_{i}}^{*} q \) for \(i=1,\dots ,k\). We show that \(\Psi _{1_{i}}^{*} \) and \(\Psi _{2_{i}}^{*} \) satisfy the assumptions of Theorem 2.2 for all i. We first prove that the operator \(\Psi _{1_{i}}^{*} \) is Lipschitzian on \(\mathcal{Q}\). Let \(q_{1},q_{2}\in \mathcal{Q}\). Then
$$\begin{aligned} \bigl\vert \bigl(\Psi _{1_{i}}^{*} q_{1} \bigr) (s) -\bigl(\Psi _{1_{i}}^{*} q_{2}\bigr) (s) \bigr\vert &= \bigl\vert \alpha _{i} \bigl( s , q_{1}(s), {}^{R}I_{0^{+}}^{\varrho }q_{1}(s) \bigr) - \alpha _{i} \bigl( s , q_{2}(s), {}^{R}I_{0^{+}}^{\varrho }q_{2}(s) \bigr) \bigr\vert \\ &\leq \nu _{i}(s) \biggl( \bigl\vert q_{1}(s )- q_{2}(s ) \bigr\vert + \frac{1}{\Gamma (\varrho _{i} +1) } \bigl\vert q_{1}(s)- q_{2}(s) \bigr\vert \biggr) \\ &= \nu _{i}(s) \biggl(1+ \frac{1}{\Gamma (\varrho _{i} +1) } \biggr) \bigl\vert q_{1}(s)- q_{2}(s) \bigr\vert \end{aligned}$$
for all \(s\in [0,1]\). Hence, \(\Vert \Psi _{1_{i}}^{*} q_{1}-\Psi _{1_{i}}^{*} q_{2} \Vert _{ \mathcal{Q}} \leq \nu _{i}^{*} (1+ \frac{1}{\Gamma (\varrho _{i} +1) } ) \Vert q_{1}-q_{2} \Vert _{ \mathcal{Q}}\), and so \(\Psi _{1_{i}}^{*} \) is a Lipschitzian map with constant \(\nu _{i}^{*} (1+ \frac{1}{\Gamma (\varrho +1) } )\). Now we show that \(T(q_{1}, q_{2}, \ldots, q_{k})\) is convex for all \((q_{1}, q_{2}, \ldots, q_{k})\in \mathcal{Q} \). Let \((z_{1}, \ldots, z_{k}), (z_{t_{1}}, \ldots, z_{t_{k}})\in T(q_{1}, q_{2}, \ldots, q_{k}) \). Choose \(l_{i}, l_{t_{i}} \in \mathcal{Q}_{A_{i,(q_{1}, q_{2}, \ldots, q_{k})}}\) such that
$$\begin{aligned} z_{t_{i}}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s- \rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
(9)
and
$$\begin{aligned} z_{t_{i}}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s- \rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{t_{i}}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{t_{i}}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{t_{i}} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
(10)
for all \(s\in [0,1]\) and \(1\leq i \leq k\). Let \(0\leq h\leq 1\). Then we have
$$\begin{aligned} & \bigl[hz_{i}+(1-h)z_{t_{i}}\bigr](s) \\ &\quad = \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \bigl[hz_{i}(r)+(1-h)z_{t_{i}}(r)\bigr] \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad \quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl[hz_{i}(r)+(1-h)z_{t_{i}}(r)\bigr] \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad \quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl[hz_{i}(r)+(1-h)z_{t_{i}}(r)\bigr] \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr]. \end{aligned}$$
(11)
Since \(A_{i}\) is convex-valued for all \(1\leq i \leq k\), \([hz_{i}+(1-h)z_{t_{i}}](s) \in T_{i}(q_{1},\dots , q_{k})\). Thus,
$$ h(z_{1}, \dots , z_{k})+(1-h) (z_{t_{1}}, \dots , z_{t_{k}})=\bigl(hz_{1}+(1-h)z_{t_{1}}, \dots ,hz_{k}+(1-h)z_{t_{k}}\bigr)\in T(q_{1}, \dots , q_{k}). $$
Now, we show that T maps bounded sets of \(\mathcal{Q}\) into bounded sets. Let \(\rho > 0\),
$$ B_{\rho }=\bigl\{ (q_{1},\dots , q_{k})\in \mathcal{Q}: \bigl\Vert (q_{1}, \dots , q_{k}) \bigr\Vert \leq r \bigr\} , $$
\((q_{1},\dots , q_{k}) \in B_{\rho }\) and \((z_{1},\dots , z_{k})\in T(q_{1},\dots , q_{k})\). Choose
$$ (q_{1},\dots , q_{k})\in \mathcal{Q}_{A_{1,(q_{1},\dots , q_{k})}} \times \cdots \times \mathcal{Q}_{A_{k,(q_{1}, \dots , q_{k})}} $$
such that
$$\begin{aligned} z_{i}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
(12)
for all \(s\in [0,1]\) and \(1\leq i \leq k\). Hence,
$$\begin{aligned} z'_{i}(s) &=\frac{1}{d_{1_{i}}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}r \\ &\quad{}+ \frac{d_{2_{i}} e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr], \end{aligned}$$
(13)
and so
$$\begin{aligned}& \begin{aligned} \bigl\vert z_{i}(s) \bigr\vert &\leq \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \bigl\vert \tilde{z}_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \tilde{z}_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \tilde{z}_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ &\leq \frac{1}{ d_{1} } \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \theta _{i} (r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{ \vert 1- e^{- d_{2}s} \vert + \vert d_{2}^{2} - d_{2} \vert s}{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \theta _{i} (r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi _{i} -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha _{i} -2}}{\Gamma ( \alpha _{i} -1) } \theta _{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ & \leq \biggl[ \frac{(1- e^{-d_{2}})}{d_{1} d_{2} \Gamma ( \alpha _{i} )} + \frac{ \vert 1- e^{- d_{2}} \vert + \vert d_{2}^{2} - d_{2} \vert }{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl( \frac{(1-e^{-d_{2}})}{d_{2} \Gamma (\alpha _{i} )} + \frac{p^{ \alpha _{i} + \xi _{i} - 1} ( d_{2}p+ e^{-d_{2}p}-1) }{d_{2}^{2} \Gamma _{i} ( \alpha _{i} ) \Gamma ( \chi _{i} ) } \biggr) \biggr] \Vert \theta _{i} \Vert _{\mathcal{L}^{1}}= M_{i_{1}} \Vert \theta _{i} \Vert _{\mathcal{L}^{1}}, \end{aligned} \\ & \begin{aligned}[b] \bigl\vert z'_{i}(s) \bigr\vert &= \frac{1}{d_{1_{i}}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \bigl\vert \tilde{z'}_{i}(r) \bigr\vert \,\mathrm{d}r \\ &\quad{}+ \frac{d_{2_{i}} e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \tilde{z'}_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \tilde{z'}_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \\ &\leq \frac{1}{ d_{1} } \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \theta '_{i} (r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{ \vert 1- e^{- d_{2}s} \vert + \vert d_{2}^{2} - d_{2} \vert s}{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \theta '_{i} (r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha _{i} -2}}{\Gamma ( \alpha _{i} -1) } \theta '_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ & \leq \biggl[ \frac{1}{d_{1}\Gamma ( \alpha _{i} )} + \frac{ \vert d_{2} e^{- d_{2}} \vert + \vert d_{2}^{2} - d_{2} \vert }{ d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl( \frac{(1-e^{-d_{2}})}{d_{2} \Gamma (\alpha _{i} )} + \frac{p^{ \alpha _{i} + \chi _{i} - 1} ( d_{2}p+ e^{-d_{2}p}-1) }{d_{2}^{2} \Gamma _{i} ( \alpha _{i} ) \Gamma ( \chi _{i} ) } \biggr) \biggr] \bigl\Vert \theta '_{i} \bigr\Vert _{\mathcal{L}^{1}}= M_{i_{2}} \bigl\Vert \theta '_{i} \bigr\Vert _{\mathcal{L}^{1}} \biggr], \end{aligned} \end{aligned}$$
(14)
for all \(s\in [0,1]\) and \(1\leq i\leq k\). Thus, \(\Vert z_{i}\Vert _{i} \leq ( M_{i_{1}}+ M_{i_{2}}) \Vert \theta _{i} \Vert _{\mathcal{L}^{1}}\). Hence,
$$ \vert z_{1}, \ldots, z_{k} \vert =\sum _{i=1}^{k} \Vert z_{i} \Vert \leq \sum_{i=1}^{k} ( M_{i_{1}}+ M_{i_{2}}) \Vert \theta _{i} \Vert _{ \mathcal{L}^{1}}. $$
Now, we show that T maps bounded sets to equicontinuous subsets of \(\mathcal{Q}\). Assume that \((l_{1}, \ldots, l_{k})\in \mathcal{B}_{\rho }\), \(s_{1},s_{2} \in [0,1]\) with \(s_{1} \leq s_{2} \) and \((z_{1}, \ldots, z_{k}) \in T(l_{1}, \ldots, l_{k})\). Then we have
$$\begin{aligned}& \begin{aligned} \bigl\vert l_{i}(s_{2})- l_{i}(s_{1}) \bigr\vert &\leq \biggl\vert \frac{1}{d_{1}} \int _{0}^{s_{2}} e^{-d_{2} (s_{2} -\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} b_{ \hat{\vartheta _{i} }(r)} \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}- \frac{1}{d_{1}} \int _{0}^{s_{1}} e^{-d_{2} (s_{1} -\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} b_{ \hat{\vartheta _{i} }(r)} \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad{}+ \frac{ ( e^{- d_{2}s_{1}} - e^{- d_{2}s_{2}}) + \vert d_{2}^{2} - d_{2} \vert (s_{2}-s_{1}) }{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \vert b_{\hat{\vartheta }_{i}(r)} \vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \vert b_{ \hat{\vartheta }_{i}(r)} \vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ &\leq M_{i_{1}} \Vert \theta _{i} \Vert _{ \mathcal{L}^{1}}, \end{aligned} \\& \begin{aligned} \bigl\vert l'_{i}(s_{2})- l'_{i}(s_{1}) \bigr\vert &\leq \biggl\vert \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} b_{ \hat{\vartheta '_{i} }(r)} \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}- \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} b_{ \hat{\vartheta '_{i} }(r)} \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad{}+ \frac{ ( -d_{2}e^{- d_{2}s_{1}} - d_{2} e^{- d_{2}s_{2}}) + \vert d_{2}^{2} - d_{2} \vert }{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \vert b_{\hat{\vartheta ' }_{i}(r)} \vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \vert b_{ \hat{\vartheta ' }_{i}(r)} \vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ &\leq M_{i_{2}} \bigl\Vert \theta '_{i} \bigr\Vert _{ \mathcal{L}^{1}} \end{aligned} \end{aligned}$$
for all \(1\leq i\leq k\). This implies that \(\lim_{s_{2}\to s_{1}}\vert l_{1}(s_{2})-l_{1}(s_{1}),\ldots,l_{k}(s_{2})-l_{k}(s_{1}) \vert =0\) and
$$ \lim_{s_{2}\to s_{1}} \bigl\vert l'_{1}(s_{2})-l'_{1}(s_{1}), \ldots,l_{k}(s_{2})-l_{k}(s_{1}) \bigr\vert =0. $$
By using the Arzela–Ascoli theorem for each bounded subset \(\mathcal{B}_{r}\) of \(\mathcal{Q}\), \(T(\mathcal{B}_{r})\) is relatively compact. Thus, T is completely continuous. Now, we show that T has a closed graph. Let \((l^{n}_{1}, \ldots, l^{n}_{k} )\in \mathcal{Q} \) and \((z^{n}_{1}, \ldots, z^{n}_{k} )\in T (l^{0}_{1}, \ldots, l^{0}_{k} )\) with \((l^{n}_{1}, \ldots, l^{n}_{k} )\to (l^{0}_{1}, \ldots, l^{0}_{k} )\) and \((z^{n}_{1}, \ldots, z^{n}_{k} )\to (z^{0}_{1}, \ldots, z^{0}_{k} )\). We show that \((z^{0}_{1}, \ldots, z^{0}_{k} )\in T (l^{0}_{1}, \ldots, l^{0}_{k} ) \). For each natural number n, choose \((u^{n}_{1}, \ldots, u^{n}_{k} )\in \mathcal{Q}_{A_{1,q}}\times \cdots \times \mathcal{Q}_{A_{k,q}}\) such that
$$\begin{aligned} z^{n}_{i}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s- \rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}^{n}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}^{n}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}^{n}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
(15)
for \(t\in [0,1]\) and \(1\leq i \leq k\). Now, define the continuous linear operator \(\theta _{i}:L^{1}([0,1],\mathbb{R})\to \mathcal{Q}_{i}\) by
$$\begin{aligned} \theta _{i}(l,s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s- \rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr]. \end{aligned}$$
(16)
By using Theorem 2.1, \(\theta _{i}\circ \mathcal{Q}_{A_{i,q}}\) is a closed graph operator. Since \(z^{n}_{i}\in \theta _{i} ( \mathcal{Q}_{A_{i,(l_{1}, \ldots, l_{k})}} )\) for all \(n,1\leq i\leq k\) and \((l^{n}_{1}, \ldots, l^{n}_{k})\to (l^{0}_{1}, \ldots, l^{0}_{k})\), there exists \(u^{0}_{i} \in \mathcal{Q}_{A_{i,(l_{1}, \ldots, l_{k})}} \) such that
$$\begin{aligned} z^{0}_{1}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s- \rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}^{0}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}^{0}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}^{0}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] . \end{aligned}$$
(17)
Hence, \(z^{0}_{i} \in T (l^{0}_{1}, \ldots, l^{0}_{k} ) \) for all \(1\leq i\leq k\). This implies that \(T_{i}\) has a closed graph for all \(1\leq i\leq k\), and so T has a closed graph. Now, suppose that there exists \(\lambda \in (0,1)\) such that \((l_{1}, \ldots, l_{n})\in \lambda T(l_{1}, \ldots, l_{n}) \). Then there exists \((l_{1}, \ldots, l_{n})\in \mathcal{Q}_{A_{1,(l_{1}, \ldots, l_{k})}} \times \cdots\times \mathcal{Q}_{A_{k,(l_{1}, \ldots, l_{k})}} \) such that
$$\begin{aligned} l_{i}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha _{i} -1)} \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha _{i} -1) } \tilde{l}_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \tilde{l}_{i} (r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
(18)
for all \(s\in [0,1]\) and \(1\leq i\leq k\). Since \(\frac{\Vert l_{i}\Vert }{M_{1}^{i}+M_{2}^{i}}\Vert \theta _{i}\Vert \leq 1\), \(\Vert l_{i}\Vert _{i} \leq \theta _{i} \) for all \(i=1,2,\ldots,k\). Now, put \(\mathrm{L}=\{(v_{1},\ldots,v_{k})\in \mathrm{Q}:\Vert (l_{1},\ldots,l_{k}) \Vert \leq \sum_{i=1}^{k} \theta _{i}+1 \}\). Thus, there are no \((l_{1},\ldots,l_{k})\in \partial \mathrm{L} \) and \(\lambda \in (0,1)\) such that \((l_{1},\ldots,l_{k})\in \lambda \mathrm{T} (l_{1},\ldots,l_{k})\). Also, the operator \(T:\bar{\mathrm{L}}\to P_{cmp,cvx}(\bar{\mathrm{L}})\) is upper semi-continuous because it is completely continuous and has a closed graph. By using the definition of L, there is no \((l_{1},\ldots,l_{k})\in \partial \mathrm{L} \) such that \((l_{1},\ldots,l_{k})\in \lambda T (l_{1},\ldots,l_{k})\) for some \(\lambda \in (0,1)\). Now, by using Theorem 2.3, T has a fixed point in L̄ which is a solution for the k-dimensional hybrid inclusion system. □
Now, we review the k-dimensional non-hybrid inclusion system
$$ \textstyle\begin{cases} d_{1_{1}} ( {}^{c}D^{ \alpha } + d_{2_{1}} {}^{c}D^{\alpha -1} ) q_{1}(s) \in \mathcal{S}_{1} (s , q_{1}(s), \dots , q_{k}(s), q'_{1}(s), \dots , q'_{k}(s), q''_{1}(s),\dots , q''_{k}(s)), \\ d_{1_{2}} ( {}^{c}D^{ \alpha } + d_{2_{2}} {}^{c}D^{\alpha -1} ) q_{2}(s) \in \mathcal{S}_{2} (s , q_{1}(s), \dots , q_{k}(s), q'_{1}(s), \dots , q'_{k}(s), q''_{1}(s),\dots ,q''_{k}(s)), \\ \vdots \\ d_{1_{k}} ( {}^{c}D^{ \alpha } + d_{2_{k}} {}^{c}D^{\alpha -1} ) q_{k}(s) \in \mathcal{S}_{k} (s , q_{1}(s), \dots , q_{k}(s), q'_{1}(s), \dots ,q'_{k}(s), q''_{1}(s),\dots , q''_{k}(s)), \end{cases} $$
(19)
with three-point integro-derivative boundary conditions
$$ q_{i}(0) = 0, \qquad q'_{i}(0) + q''_{i}(0) = 0, \qquad q_{i}(1) + {}^{R}I^{\xi }q_{i}(p) = 0,\quad (1\leq i\leq k), $$
(20)
where \(s\in [0,1]\), \(\alpha \in (2, 3] \), \(p \in (0,1)\), \(d_{1_{1}},\dots ,d_{1_{k}},d_{2_{1}},\dots ,d_{2_{k}}\in (0,\infty )\) and \({}^{R} I^{\xi } \) denotes the Riemann–Liouville fractional integral of order \(\xi >0\). Define the space
$$ \mathcal{Q}_{i}= \bigl\{ s:s,q(s),q'(s), q''(s)\in \mathcal{C}\bigl([0,1], \mathbb{R}\bigr) \bigr\} $$
endowed with the norm \(\Vert q \Vert _{\mathcal{Q}_{i} } = \sup_{ s\in [0,1] } \vert q_{i}(s) \vert + \sup_{ s\in [0,1] } \vert q'_{i}(s) \vert + \sup_{ s \in [0,1] } \vert q''_{i}(s) \vert \) for all \(\{i\in 1, 2, \ldots, k\}\). Also, define the product space \(\mathcal{Q}=Q_{1}\times Q_{2}\times \cdots\times Q_{k}\) endowed with the norm \(\Vert (q_{1}, q_{2}, \ldots ,q_{k})\Vert = \sum_{i=1}^{k} \Vert q_{i} \Vert \). Then \((\mathcal{Q},\Vert \cdot\Vert )\) is a Banach space. We need the next result.
Lemma 3.2
([46])
A function \(q \in \mathcal{AC}_{\mathbb{R}} ([0,1])\) is a solution for the k-dimensional non-hybrid inclusion system (19)–(20) whenever there is an integrable function \(\hat{u} \in \mathcal{L}^{1}_{\mathbb{R}}([0,1])\) such that \(\hat{u} \in \mathcal{S} (s , q(s) ) \) for almost all \(s\in [0,1]\), \(q(0) = 0\), \(q'(0) + q''(0) = 0\), \(q(1) + {}^{R}I^{\chi }q(p) = 0\) and
$$\begin{aligned} q(s) &= \frac{1}{p_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} \hat{u }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } \hat{u }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } \hat{u }(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
for all \(s\in [0,1] \).
We say that a function \((q_{1}, q_{2}, \ldots, q_{k})\in \mathcal{Q} \) is a solution for the k-dimensional system of non-hybrid inclusions (19) whenever there exist functions \(u_{1}, u_{2}, \ldots, u_{k}\) in \(L^{1}[0,1]\) such that
$$ u_{i}(s) \in \mathcal{S}_{i} \bigl(s , q_{1}(s), q_{2}(s),\ldots, q_{i}(s), q'_{1}(s),\ldots,q'_{i}(s), q''_{1}(s),\ldots, q''_{i}(s)\bigr) $$
for all \(s\in [0,1]\)
$$\begin{aligned} q_{i}(s) &= \frac{1}{d_{1_{i}}} \int _{0}^{s} e^{-d_{2_{i}} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma _{i} ( \alpha _{i} -1)} \hat{u }_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2_{i}}s} + (d_{2_{i}}^{2} - d_{2_{i}})s}{d_{1_{i}} ( \tilde{\Delta }_{2_{i}} -d_{2_{i}} \Omega _{i}^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2_{i}} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma _{i} ( \alpha _{2} -1) } \hat{u }_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma _{i} ( \chi _{i} ) } \int _{0}^{\rho }e^{-d_{2_{i}} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha _{i} -2}}{\Gamma _{i} ( \alpha _{i} -1) } \hat{u }_{i}(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
and \(\alpha \in (2, 3] \), \(p \in (0,1)\), \(d_{1_{i}} , d_{2_{i}} , \gamma , \chi >0 \), \({}^{c}D^{ (\cdot )}\) and \({}^{R} I^{(\cdot )}\) denote the Caputo fractional derivative and the Riemann–Liouville fractional integral, respectively. By using the idea of [37], we consider the set of the selections
$$ \mathcal{S}_{G_{i,q}}= \bigl\{ u\in L^{1}[0,1]:u(s)\in J_{i}(s) \text{ for all } s\in [0,1], q=(q_{1}, \ldots, q_{k})\in \mathcal{Q} \text{ and } 1 \leq i \leq k \bigr\} , $$
where \(J_{i}(s)=A_{i}(s,q_{1}(s), \ldots, q_{k}(s),q'_{1}(s), \ldots, q'_{k}(s), q''_{1}(s),\ldots,q''_{k}(s))\).
Theorem 3.3
Let \(\theta _{1},\ldots ,\theta _{i}\in \mathcal{C}([0,1],\mathbb{R})\) be such that \(L=\sum_{i=1}^{k}\Vert \theta _{i} \Vert _{\infty }(M_{i_{1}}+M_{i_{2}}+M_{i_{3}}) \leq 1\), where
$$\begin{aligned}& \begin{aligned} M_{i_{1}}&=\frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \iota \,\mathrm{d} \rho \biggr], \end{aligned} \\& \begin{aligned} M_{i_{2}}&= \biggl\vert \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u'_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho - \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u'_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad{}+ \frac{ ( -d_{2}e^{- d_{2}s_{1}} - d_{2} e^{- d_{2}s_{2}}) + \vert d_{2}^{2} - d_{2} \vert }{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \iota \,\mathrm{d} \rho \biggr] \end{aligned} \end{aligned}$$
and
$$\begin{aligned} M_{i_{3}}&= \biggl\vert \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u''_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho - \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u''_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad {}+ \frac{ ( d_{2}^{2}e^{- d_{2}s_{1}} + d_{2}^{2} e^{- d_{2}s_{2}})}{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u'' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad {}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (r-\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u'' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} r \biggr] \end{aligned}$$
for \(i=1,\ldots , k\). Suppose that \(G_{i}:[0,1]\times \mathbb{R}^{3k}\to {\mathcal{P}}_{cmp}( \mathbb{R})\) is a multifunction such that the map \(s\to G_{i}(s,x_{1},\ldots, x_{k},y_{1},\ldots, y_{k},z_{1},\ldots, z_{k})\) is integrable bounded, measurable and
$$\begin{aligned}& \mathrm{PH}_{d_{\mathcal{Q}}}\bigl(G_{i}(s,x_{1},\ldots, x_{k},y_{1},\ldots, y_{k},z_{1}, \ldots, z_{k}), G_{i}(s,x_{i_{1}},\ldots, x_{i_{k}},y_{i_{1}},\ldots, y_{i_{k}},z_{i_{1}}, \ldots, z_{i_{k}})\bigr) \\& \quad \leq \Vert \theta _{i} \Vert \Biggl(\sum _{i=1}^{k} \vert x_{i}-x_{i_{1}} \vert \Biggr) \end{aligned}$$
for almost all \(s\in [0,1]\), \(x_{i_{1}},\ldots, x_{i_{k}},y_{i_{1}},\ldots, y_{i_{k}},z_{i_{1}},\ldots, z_{i_{k}}\in \mathbb{R} \) and \(i=1,\ldots, k\). Then the non-hybrid k-dimensional inclusion system (19)–(20) has at least one solution.
Proof
Note that the multifunction
$$ s\to G_{i}\bigl(s,q_{1}(s),\ldots,q_{k}(s),q'_{1}(s), \ldots,q'_{k}(s),q''_{1}(s), \ldots,q''_{k}(s)\bigr) $$
is measurable and closed-valued for all \(q_{1},\ldots,q_{k}\in \mathcal{Q} \) and \(i=1,\ldots,k\). Hence, it has measurable selection, and so the set \(\mathcal{S}_{G_{i,(q_{1},\ldots,q_{k}})}\) is nonempty for all \(i=1,\ldots,k\). Consider the operator \(H:\mathcal{Q}\to 2^{\mathcal{Q}}\) defined by \(H(q_{1},\ldots,q_{k})= (H_{1}(q_{1},\ldots,q_{k}),H_{2}(q_{1},\ldots,q_{k}), \ldots, H_{k}(q_{1},\ldots,q_{k}) )\), where
$$\begin{aligned} H_{i}(q_{1},\ldots,q_{k}) =& \biggl\{ z\in \mathcal{Q}_{i}: \text{there exists } q\in \mathcal{S}_{G_{i,(q_{1},\ldots,q_{k}})} : \\ &z(s) = \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} q(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\hphantom{z(s) ={}}{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } q(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\hphantom{z(s) ={}}{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } q(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \biggr\} . \end{aligned}$$
First, we show that \(H(q_{1},\ldots,q_{k})\) is a closed subset of \(\mathcal{Q}\) for all \((q_{1},\ldots,q_{k})\in \mathcal{Q} \). Let \(\{(q_{1}^{n},\ldots,q_{k}^{n})\}\) be a sequence in \(H(q_{1},\ldots,q_{k})\) such that \((q_{1}^{n},\ldots,q_{k}^{n})\to (q_{1}^{0},\ldots,q_{k}^{0})\). Choose \((u_{1}^{n},\ldots,u_{k}^{n})\in \mathcal{S}_{G_{1,(q_{1},\ldots,q_{k}})} \times \mathcal{S}_{G_{2,(q_{1},\ldots,q_{k}})}\times \cdots\times \mathcal{S}_{G_{k,(q_{1},\ldots,q_{k}})} \) such that
$$\begin{aligned} q_{i}^{n}(s) &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} u_{i}^{n}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } u_{i}^{n}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } u_{i}^{n}(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
for all \(s\in [0,1]\) and \(i=1,\ldots,k\). Since \(G_{i}\) is compact-valued for all i, \(\{u_{i}^{n}\}_{n\leq 1}\) has a subsequence which converges to some \(u_{i}^{0}\in L^{1}([0,1],\mathbb{R})\). Denote the subsequence again by \(\{u_{i}^{n}\}_{n\leq 1}\). It is easy to check that \(u_{i}^{0}\in \mathcal{S}_{G_{i,(q_{1},\ldots,q_{k}})} \) and
$$\begin{aligned} q_{i}^{n}(s)\to q_{i}^{0}(s) &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} u_{i}^{0}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } u_{i}^{0}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \xi ) } \int _{0}^{\rho }e^{-d_{2} (r-\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } u_{i}^{0}(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} r \biggr] \end{aligned}$$
for all \(s\in [0,1]\). This implies that \(q_{i}^{0}\in H_{i}(q_{1},\ldots,q_{k})\) for any \(i=1,2,\ldots,k\). This concludes that \((q_{1}^{0},\ldots,q_{k}^{0})\in H_{i}(q_{1},\ldots,q_{k})\). Now, we show that H is a contractive multifunction with the constant \(L\leq 1\), where \(\sum_{i=1}^{k}(M_{i_{1}}+M_{i_{2}}+M_{i_{3}})\leq 1\). Let \((y_{1},\ldots, y_{k}),(z_{1},\ldots,z_{k})\in \mathcal{Q} \) and \((h_{1},\ldots,h_{k})\in H (z_{1},\ldots,z_{k})\) be given. Then we can choose
$$ (u_{1},\ldots,u_{k})\in \mathcal{S}_{G_{1,(z_{1},\ldots,z_{k}})} \times \mathcal{S}_{G_{2,(z_{1},\ldots,z_{k}})}\times \cdots\times \mathcal{S}_{G_{k,(z_{1},\ldots,z_{k}})} $$
such that
$$\begin{aligned} h_{i}(s) &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} u_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } u_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\xi -1}}{\Gamma ( \chi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } u_{i}(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
for all \(t\in [0,1]\) and \(i=1,\ldots ,k\). Since
$$\begin{aligned}& \mathrm{PH}_{d_{Q}} ( G_{i}\bigl(s,y_{1}(s), \ldots,y_{k}(s),y'_{1}(s), \ldots,y'_{k}(s),y''_{1}(s), \ldots,y''_{k}(s), \\& \qquad G_{i}\bigl(s,z_{1}(s),\ldots,z_{k}(s),z'_{1}(s), \ldots,z'_{k}(s),z''_{1}(s), \ldots,z''_{k}(s)\bigr) \bigr) \\& \quad \leq M_{i}(s) \sum_{i=1}^{k} \bigl( \bigl\vert y_{i}(s)-z_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y_{i}'(s)-z'_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y''_{i}(s)-z''_{i}(s) \bigr\vert \bigr) \end{aligned}$$
for almost all \(s\in [0,1]\) and \(i=1,\ldots,k\), there exists
$$ u_{i}\in G_{i}\bigl(s,y_{1}(s), \ldots,y_{k}(s),y'_{1}(s), \ldots,y'_{k}(s),y''_{1}(s), \ldots,y''_{k}(s)\bigr) $$
such that
$$ \bigl\vert u_{i}(s)-u_{i} \bigr\vert \leq M_{i}(s) \sum_{i=1}^{k} \bigl( \bigl\vert y_{i}(s)-z_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y'_{i}(s)-z'_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y''_{i}(s)-z''_{i}(s) \bigr\vert \bigr) $$
for almost all \(s\in [0,1]\) and \(i=1,\ldots ,k\). Consider the multifunction \(\mathcal{U}_{i}:[0,1]\to 2^{\mathbb{R}}\) by \(\mathcal{U}_{i}(s)=\{u\in {\mathbb{R}}:\vert u_{i}(s)-u_{i}\vert \leq M_{i}(s)f(s)\text{ for almost all }s\in [0,1] \}\), where
$$ f(s)=\sum_{i=1}^{k} \bigl( \bigl\vert y_{i}(s)-z_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y_{i}'(s)-z'_{i}(s) \bigr\vert \bigr)+\bigl( \bigl\vert y''_{i}(s)-z''_{i}(s) \bigr\vert \bigr). $$
Since \(u_{i}\) and \(\phi _{i}= M_{i}(s) \sum_{i=1}^{k} (\vert y_{i}(s)-z_{i}(s) \vert )+(\vert y_{i}'(s)-z'_{i}(s)\vert )+(\vert y''_{i}(s)-z''_{i}(s) \vert )\) are measurable for all \(i,\mathcal{U}_{i}(\cdot) \cap G_{i}(s,y_{1}(\cdot),\ldots,y_{k}(\cdot),y'_{1}(\cdot),\ldots,y'_{k}(\cdot),y''_{1}(\cdot),\ldots,y''_{k}(\cdot))\) is a measurable multifunction. Thus, we can choose
$$ u'_{i}(s)=G_{i}\bigl(s,y_{1}(s), \ldots,y_{k}(s),y'_{1}(s), \ldots,y'_{k}(s),y''_{1}(s), \ldots,y''_{k}(s)\bigr) $$
such that
$$\begin{aligned} h'_{i}(s) &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} u'_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } u'_{i}(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \xi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } u'_{i}(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \end{aligned}$$
for all \(s\in [0,1]\) and \(i=1,\ldots,k\). Since
$$\begin{aligned}& \begin{aligned} \bigl\vert h_{i}(s)-h_{t_{i}}(s) \bigr\vert &= \frac{1}{d_{1}} \int _{0}^{s} e^{-d_{2} (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha -2}}{ \Gamma ( \alpha -1)} \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \frac{1- e^{- d_{2}s} + (d_{2}^{2} - d_{2})s}{d_{1} ( \tilde{\Delta }_{2} -d_{2} \Omega ^{*}) } \\ &\quad {}\times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha -2 } }{ \Gamma ( \alpha -1) } \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi -1}}{\Gamma ( \xi ) } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha -1) } \bigl\vert u_{i}(r)- u_{t_{i}}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \iota \,\mathrm{d} \rho \biggr] \\ &\leq M_{i_{1}} \Vert \theta _{i} \Vert _{\mathcal{L}^{1}} \bigl\Vert (y_{1}-z_{1},\ldots, y_{k}-z_{k}) \bigr\Vert , \end{aligned} \\& \begin{aligned} \bigl\vert h'_{i}(s_{2})- h'_{i}(s_{1}) \bigr\vert &\leq \biggl\vert \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u'_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}- \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u'_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad{}+ \frac{ ( -d_{2}e^{- d_{2}s_{1}} - d_{2} e^{- d_{2}s_{2}}) + \vert d_{2}^{2} - d_{2} \vert }{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \\ &\quad{}\times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d} \iota \,\mathrm{d} \rho \biggr] \\ &\leq M_{i_{2}} \Vert \theta _{i} \Vert _{\mathcal{L}^{1}} \bigl\Vert (y_{1}-z_{1},\ldots, y_{k}-z_{k}) \bigr\Vert , \end{aligned} \end{aligned}$$
and
$$\begin{aligned} \bigl\vert h''_{i}(s_{2})- h''_{i}(s_{1}) \bigr\vert & \leq \biggl\vert \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u''_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}- \frac{1}{d_{1}} \int _{0}^{\rho }\frac{ (\rho -r)^{\alpha _{i} -2}}{ \Gamma ( \alpha _{i} -1)} \hat{u''_{i} }(r) \,\mathrm{d}r \,\mathrm{d}\rho \biggr\vert \\ &\quad{}+ \frac{ ( d_{2}^{2}e^{- d_{2}s_{1}} + d_{2}^{2} e^{- d_{2}s_{2}})}{d_{1} \vert \tilde{\Delta }_{2_{i}} -d_{2} \Omega _{i}^{*} \vert } \times \biggl[ \int _{0}^{1} e^{-d_{2} (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ \alpha _{i} -2 } }{ \Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u'' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{p} \frac{ (p-\rho )^{\chi _{i} -1}}{\Gamma ( \chi )_{i} } \int _{0}^{\rho }e^{-d_{2} (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{\alpha -2}}{\Gamma ( \alpha _{i} -1) } \bigl\vert \hat{u'' }_{i}(r) \bigr\vert \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr] \\ & \leq M_{i_{3}} \Vert \theta _{i} \Vert _{\mathcal{L}^{1}} \bigl\Vert (y_{1}-z_{1},\ldots, y_{k}-z_{k}) \bigr\Vert , \end{aligned}$$
we get \(\Vert h_{i}-h_{t_{i}}\Vert \leq ( M_{i_{1}}+ M_{i_{2}}+ M_{i_{3}}) \Vert \theta _{i} \Vert _{\mathcal{L}^{1}}\Vert (y_{1}-z_{1},\ldots, y_{k}-z_{k}) \Vert \) for all \(i=1,\ldots,k\). Hence,
$$\begin{aligned}& \bigl\Vert (h_{1},\ldots ,h_{k})-(h_{t_{1}}, \ldots ,h_{t_{k}}) \bigr\Vert \\& \quad =\sum_{i=1}^{k} \Vert h_{i}-h_{t_{i}} \Vert _{i} \leq \sum_{i=1}^{k} M_{i_{3}} \Vert \theta _{i} \Vert _{\mathcal{L}^{1}} \bigl\Vert (y_{1}-z_{1},\ldots, y_{k}-z_{k})\bigr\Vert \\& \quad \leq A \bigl\Vert (y_{1},\ldots ,y_{k})-(z_{1}, \ldots ,z_{k}) \bigr\Vert . \end{aligned}$$
This implies that
$$ \mathrm{PH}_{d_{Q}}\bigl(H(y_{1},\ldots ,y_{k}),H(z_{1}, \ldots ,z_{k})\bigr)\leq A \bigl\Vert (y_{1},\ldots ,y_{k})-(z_{1},\ldots ,z_{k}) \bigr\Vert , $$
and so H is a closed-valued contractive multifunction. Now, by using Lemma 2.4 and Theorem 2.3, we deduce that H has a fixed point which is a solution for the non-hybrid inclusion system. □
We now present two examples to illustrate our main results.
Example 3.4
Consider the fractional two-dimensional fractional sequential differential inclusion system
$$ \textstyle\begin{cases} 0.07 ( {}^{c}D^{2.64}+ 0.21 {}^{c}D^{1.64} ) ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \\ \quad \in [0, (s+\frac{1}{3} )\sin v(s) + \frac{1}{5},\sin v(s)+(s+\frac{1}{5})v'(s) \cos v(s) ], \\ 0.069 ( {}^{c}D^{2.64}+ 0.20 {}^{c}D^{1.64} ) ( \frac{ v(s) }{ 0.0005 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \\ \quad \in [0, (s+\frac{1}{2} )\sin v(s) + \frac{1}{4},\sin v(s)+(s+\frac{1}{4})v'(s) \cos v(s) ] \end{cases} $$
(21)
with hybrid integro-derivative boundary conditions
$$ \textstyle\begin{cases} ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \vert _{s=0} = 0, \\ {}^{c}D^{1} ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \vert _{s=0} \\ \quad {}+ {}^{c}D^{2} ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \vert _{s=0} = 0, \\ ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \vert _{s=1} \\ \quad {}+ {}^{R}I^{0.32} ( \frac{ v(s) }{ 0.0006 + \frac{s}{1000} ( \arcsin v(s) + \sin ({}^{R}I^{0.03}v(s))) } ) \vert _{s=0.4} = 0, \end{cases} $$
(22)
where \(s \in [0,1]\), \(\alpha =2.64\), \(d_{1_{1}} = 0.07\), \(d_{1_{2}} = 0.069\), \(d_{2_{1}} = 0.21\), \(d_{2_{2}} = 0.20\), \(\rho = 0.03\), and \(\xi = 0.32\). Then we have \(\tilde{\Delta }_{1} \simeq 0.1576\), \(\tilde{\Delta }_{2} \simeq 0.008\), and \(\Omega ^{*} \simeq 0.1323\). Define the continuous map \(\alpha : [0,1]\times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \setminus \{ 0 \} \) by \(\alpha (s , v_{1}(s), v_{2}(s)) = 0.0006 + \frac{s }{1000} ( \arcsin v_{1}(s) + \sin ( {}^{R}I^{0.03}v_{2}(s) ) )\) with \(\alpha ^{*} = \sup_{s\in [0,1]} \vert \alpha (s, 0 , 0)\vert = 0.0007\). Let \(v, v' \in \mathbb{R}\). Then we have
$$\begin{aligned} & \bigl\vert \alpha \bigl(s , v(s),v'(s) {}^{R}I^{\gamma }v(s) \bigr) - \alpha \bigl(s , v'(s), {}^{R}I^{\gamma }v'(s) \bigr) \bigr\vert \\ &\quad \leq \nu (s) \biggl[ 1+ \frac{ s^{ \gamma }}{ \Gamma ( \gamma +1) } \biggr] \bigl\vert v(s)-v'(s) \bigr\vert = \frac{s}{1000} \biggl[ 1 + \frac{s^{0.04}}{ \Gamma (1.04)} \biggr] \bigl\vert v(s)-v'(s) \bigr\vert , \end{aligned}$$
where \(\nu (s) = \frac{s}{1000}\) and \(\nu ^{*} = \sup_{s\in [0,1]} \vert \nu (s) \vert = \frac{1}{1000}\). Note that the Lipschitz constant of the function α is \(\nu ^{*} [ 1+ \frac{1}{ \Gamma ( \gamma +1) } ] = \frac{1}{1000} [ 1+ \frac{1}{ \Gamma ( 1.03) } ] \simeq 0.012021 > 0\). Consider the set-valued map \(\mathcal{S}: [0,1]\times \mathbb{R} \to \mathcal{P}(\mathbb{R})\) defined by
$$\begin{aligned} \mathcal{S} \bigl(s, v(s), v'(s) \bigr) &= \biggl[0, \biggl(s+ \frac{1}{3} \biggr)\sin v(s) + \frac{1}{5},\sin v(s)+\biggl(s+ \frac{1}{5}\biggr)v'(s)\cos v(s) , 0, \\ &\quad \biggl(s+\frac{1}{2} \biggr)\sin v(s) + \frac{1}{4},\sin v(s)+\biggl(s+\frac{1}{4}\biggr)v'(s)\cos v(s) \biggr]. \end{aligned}$$
Since
$$ \vert v \vert \leq \max \biggl[ 0, \biggl(s + \frac{1}{4} \biggr) \sin v(s) + \frac{1}{2} \sin v(s)+\biggl(s+\frac{1}{5} \biggr)v'(s)\cos v(s) \biggr] \leq s+ 0.35 $$
for all \(v \in \mathcal{S} (s ,v(s) ) \),
$$ \bigl\Vert \mathcal{S} \bigl(s ,v(s), v'(s) \bigr) \bigr\Vert = \sup \bigl\{ \vert \hat{\vartheta } \vert : \hat{\vartheta } \in \mathcal{S} \bigl(s ,v(s ), v'(s) \bigr) \bigr\} \leq s+ 0.35. $$
Here, put \(\theta (s) = s+ 0.35 \) for all \(s\in [0,1]\). Then
$$ \Vert \theta \Vert _{\mathcal{L}^{1}}= \int _{0}^{1} \bigl\vert \theta (r) \bigr\vert \,\mathrm{d}r = \int _{0}^{1} (r+ 0.35) \,\mathrm{d}r = 1.15 $$
and \(M \simeq 117.7012 \). Choose \(q > 0.2474259 \). Then
$$ \nu ^{*} \biggl[ 1+ \frac{1}{ \Gamma ( \gamma +1) } \biggr] M \Vert q \Vert _{\mathcal{L}^{1}} \simeq (0.002022) (117.6114) (1.15) \simeq 0.343974. $$
Now, by using Theorem 3.1, hybrid system (21)–(22) has a solution.
Example 3.5
Consider the fraction two-dimensional hybrid differential inclusion system
$$ \textstyle\begin{cases} 0.07 ( {}^{c}D^{2.35}+ 0.21 {}^{c}D^{1.35} ) q(s) \\ \quad \in [0, \frac{2e^{s}}{8} { \cos q(s) }, \frac{-2e^{s}}{8} q'(s) \sin q(s), \frac{-2e^{s}}{8} q''(s) \sin q(s)+ \frac{-2e^{s}}{8} q'(s) \cos q(s) ], \\ 0.06 ( {}^{c}D^{2.35}+ 0.20 {}^{c}D^{1.35} ) q(s) \\ \quad \in [0, \frac{3e^{s}}{8} { \cos q(s) }, \frac{-3e^{s}}{8} q'(s) \sin q(s), \frac{-3e^{s}}{8} q''(s) \sin q(s)+ \frac{-3e^{s}}{8} q'(s) \cos q(s) ] \end{cases} $$
(23)
with three-point integro-derivative boundary conditions
$$ q(0) = 0, \qquad q'(0) + q''(0) = 0,\qquad q(1) + {}^{R}I^{0.32} q(0.4) = 0, $$
(24)
for all \(s \in [0,1]\), where \({}^{c}D^{ j }\) is the Caputo derivative of order \(j\in \{ 2.35, 1.35 \}\) and \({}^{R}I^{0.32}\) is the Riemann–Liouville integral of order 0.32. Put \(\alpha =2.35\), \(d_{1_{1}} = 0.07\), \(d_{1_{2}} = 0.06\), \(d_{2,1} = 0.21\), \(d_{2,2} = 0.20\), and \(\xi = 0.32\). One can find that \(\tilde{\Delta }_{1} \simeq 0.1246\), \(\tilde{\Delta }_{2} \simeq 0.007\), \(\Omega ^{*} \simeq 0.1656\), and \(M \simeq 151.6013\). Define the set-valued map \(\mathcal{S}: [0,1] \times \mathcal{Q} \to \mathcal{P}(\mathcal{Q})\) by
$$\begin{aligned}& \mathcal{S} \bigl(s, q(s), q'(s), q''(s) \bigr) \\& \quad =\biggl[0, \frac{2e^{s}}{8} { \cos q(s) }, \frac{-2e^{s}}{8} q'(s) \sin q(s), \frac{-2e^{s}}{8} q''(s) \sin q(s)+ \frac{-2e^{s}}{8} q'(s) \cos q(s) \biggr] \end{aligned}$$
for all \(s \in [0,1]\). Consider the function \(\delta \in \mathcal{C}_{\mathbb{R}^{\geq 0}}([0,1])\) defined by \(\delta (s)= \frac{2e^{s}}{8}\) for all s with \(\Vert \delta \Vert = \frac{2e}{8} \simeq 1.8361 \). Define the nondecreasing nonnegative function \(\psi : [0,\infty )\to [0,\infty )\) by \(\psi (s) = \frac{s}{2}\) for all \(s >0\). Note that ψ has the upper semi-continuity property
$$ \lim \inf_{s\to \infty }\bigl(s-\psi (s)\bigr)>0 $$
and \(\psi (s)< s\) for all \(s>0\). For every \(q,q_{i} \in \mathcal{Q}\), we have
$$\begin{aligned} &\mathrm{PH}_{d_{\mathcal{Q}}} \bigl(\mathcal{S} \bigl(s, q(s),q'(s),q''(s) \bigr) , \mathcal{S} \bigl(s, q_{i}'(s), q_{i}'' \bigr) \bigr) \\ &\quad \leq \frac{2e^{s}}{8} \frac{1}{2} \bigl( \vert q - q_{i} \vert \bigr) = \frac{2e^{s}}{8} \psi \bigl( \vert q - q_{i} \vert \bigr) \leq \delta (s) \psi \bigl( \vert q - q_{i} \vert \bigr) \frac{1}{M \Vert \delta \Vert } , \end{aligned}$$
where \(\frac{1}{M \Vert \delta \Vert } \simeq 0.002007 \). Consider the operator \(\mathcal{K}: \mathcal{Q}\to \mathcal{P}(\mathcal{Q})\) defined by
$$ \mathcal{K}(q)= \bigl\{ z\in \mathcal{Q}: \text{there is } \hat{v } \in ( \mathcal{SEL})_{ \mathcal{S},q} \text{ such that } z(s) = h(s) \text{ for any } s \in [0,1] \bigr\} , $$
where
$$\begin{aligned} h(s) &= \frac{1}{0.07} \int _{0}^{s} e^{-0.21 (s-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{2.35 -2}}{ \Gamma ( 2.35 -1)} \hat{ \vartheta }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \frac{1- e^{- 0.21s} + ((0.21)^{2} - 0.21)s}{0.07 ( 0.007 - (0.21)(0.1565) ) } \biggl[ \int _{0}^{1} e^{-0.21 (1-\rho )} \int _{0}^{\rho }\frac{ (\rho -r)^{ 2.53 -2 } }{ \Gamma ( 2.35 -1) } \hat{ \vartheta }(r) \,\mathrm{d}r \,\mathrm{d}\rho \\ &\quad{}+ \int _{0}^{0.4} \frac{ (0.4-\rho )^{0.32 -1}}{\Gamma ( 0.32 ) } \int _{0}^{\rho }e^{-0.21 (\rho -\iota )} \int _{0}^{\iota }\frac{ (\iota -r)^{2.35 -2}}{\Gamma ( 2.35 -1) } \hat{ \vartheta }(r) \,\mathrm{d}r \,\mathrm{d}\iota \,\mathrm{d} \rho \biggr]. \end{aligned}$$
Now, by using Theorem 3.3, the non-hybrid two-dimensional inclusion system (23)–(24) has a solution.