It is known that \(X = \{ u : u, {}^{c}\mathfrak{D}^{\sigma }u \in C_{\mathbb{R}}(J) \} \) is a Banach space with the sup norm \(\Vert u \Vert _{X} := \sup_{s \in J} \vert u ( s) \vert + \sup_{s \in J} \vert {}^{c}\mathfrak{D}^{\sigma }u ( s) \vert \), where \(C_{\mathbb{R}}(J)\) denotes the collection of all continuous real-valued functions on J. In the following, we characterize the structure of the solutions for given GFBVP caused by thermostat model (3) which plays a key role in our required method. Before it, we introduce some notations for simplicity:
$$\begin{aligned} V_{1} &:= \varepsilon _{1}, \qquad V_{2} := 1 - \frac{\varepsilon _{1}}{2}, \qquad V_{3} := m- \varepsilon _{2}, \\ V_{4} &:= \Biggl( \frac{k}{\Gamma (3-p)} - \frac{\varepsilon _{2}}{2} + \sum_{j=1}^{m} \zeta _{j} \Biggr),\qquad V:= V_{2}V_{3} + V_{1}V_{4}. \end{aligned}$$
(6)
Proposition 3.1
Let \(p \in (1,2]\), \(p -1 \in (0,1]\), \(k >0\), \(0< \zeta _{1} < \zeta _{2} < \cdots < \zeta _{m} < 1\), \(m\in \mathbb{N}\), \(\varepsilon _{1} , \varepsilon _{2} \in \mathbb{R}\), and \(h \in C_{\mathbb{R}}(J)\). Then the solution of the linear thermostat GFBVP
$$ \textstyle\begin{cases} {}^{c}\mathfrak{D}^{p} u(s) = h(s),\quad (s \in J := [0,1]), \\ {}^{c}\mathfrak{D}^{1} u(0)= \varepsilon _{1} \int _{0}^{1} u(r)\,\mathrm{d}r,\qquad \sum_{j=1}^{m} u( \zeta _{j} ) + k {}^{c} \mathfrak{D}^{ p -1}u(1) = \varepsilon _{2} \int _{0}^{1} u(r)\,\mathrm{d}r, \end{cases} $$
(7)
is given by
$$\begin{aligned} u(s) ={}& \int _{0}^{s} \frac{(s- r )^{p -1}}{\Gamma (p)} h(r )\, \mathrm{d}r - \frac{kA(s)}{V} \int _{0}^{1} h(r) \, \mathrm{d}r \\ &{}- \frac{A(s)}{V} \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \frac{(\zeta _{j} -r )^{p -1}}{\Gamma (p)} h(r)\, \mathrm{d}r + \frac{G(s)}{V} \int _{0}^{1} \int _{0}^{r} \frac{(r-q)^{p-1}}{\Gamma (p)} h(q)\, \mathrm{d}q \,\mathrm{d}r , \end{aligned}$$
(8)
where \(A,G\in C_{\mathbb{R}}(J)\) are introduced as
$$ A(s) := V_{2} + V_{1} s, \qquad G(s):= (\varepsilon _{2} V_{2} - \varepsilon _{1} V_{4}) + (\varepsilon _{1} V_{3} + \varepsilon _{2} V_{1})s. $$
(9)
Proof
We assume that \(u_{*}\) satisfies the linear thermostat GFBVP (7). Then \({}^{c}\mathfrak{D}^{p} u_{*}(s) = h(s)\). By integrating of order \(1 < p \leq 2\) on both sides of it, we get
$$ u_{*}(s) = \frac{1}{\Gamma (p)} \int _{0}^{s} (s- r )^{p -1} h(r )\, \mathrm{d}r + c_{0} + c_{1} s, $$
(10)
where we try to obtain the constant values of the coefficients \(c_{0}, c_{1}\in \mathbb{R}\). On the other hand, we have
$$ {}^{c}\mathfrak{D}^{1} u_{*}(s) = \frac{1}{\Gamma (p - 1)} \int _{0}^{s} (s- r )^{p - 2} h(r )\, \mathrm{d}r + c_{1} $$
(11)
and
$$ {}^{c}\mathfrak{D}^{p - 1} u_{*}(s) = \int _{0}^{s} h(r )\, \mathrm{d}r + c_{1} \frac{ s^{2-p }}{\Gamma (3- p) }, $$
(12)
and
$$ \int _{0}^{1} u_{*}(r) \, \mathrm{d}r = \frac{1}{\Gamma (p)} \int _{0}^{1} \int _{0}^{r} (r-q)^{p-1} h(q)\, \mathrm{d}q \,\mathrm{d}r + c_{0} + \frac{1}{2} c_{1}. $$
(13)
Now, in view of notations (6) and by using boundary conditions (7) and by invoking relations (11), (12), and (13), we reach
$$\begin{aligned} c_{0} ={}& {-} \frac{kV_{2}}{V} \int _{0}^{1} h(r)\, \mathrm{d}r - \frac{V_{2}}{V} \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \frac{(\zeta _{j} - r)^{p-1}}{\Gamma (p)} h(r)\, \mathrm{d}r \\ &{}+\frac{(\varepsilon _{2}V_{2} - \varepsilon _{1}V_{4})}{V} \int _{0}^{1} \int _{0}^{r} \frac{(r-q)^{p-1}}{\Gamma (p)}h(q)\, \mathrm{d}q \,\mathrm{d}r \end{aligned}$$
(14)
and
$$\begin{aligned} c_{1} ={}& {-} \frac{kV_{1}}{V} \int _{0}^{1} h(r)\, \mathrm{d}r - \frac{V_{1}}{V} \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \frac{(\zeta _{j} - r)^{p-1}}{\Gamma (p)} h(r)\, \mathrm{d}r \\ &{}+\frac{(\varepsilon _{1}V_{3} + \varepsilon _{2}V_{1})}{V} \int _{0}^{1} \int _{0}^{r} \frac{(r-q)^{p-1}}{\Gamma (p)}h(q)\, \mathrm{d}q\, \mathrm{d}r. \end{aligned}$$
(15)
Eventually, by (14) and (15), we substitute the obtained values for the coefficients \(c_{0}\) and \(c_{1}\) in (10) and it becomes
$$\begin{aligned} u_{*}(s) ={}& \int _{0}^{s} \frac{(s- r )^{p -1}}{\Gamma (p)} h(r )\, \mathrm{d}r - \frac{kA(s)}{V} \int _{0}^{1} h(r) \, \mathrm{d}r \\ &{}- \frac{A(s)}{V} \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \frac{(\zeta _{j} -r )^{p -1}}{\Gamma (p)} h(r)\, \mathrm{d}r + \frac{G(s)}{V} \int _{0}^{1} \int _{0}^{r} \frac{(r-q)^{p-1}}{\Gamma (p)} h(q)\, \mathrm{d}q \,\mathrm{d}r , \end{aligned}$$
which confirms that \(u_{*}\) satisfies (8), and accordingly, the proof is finished. □
To follow the procedure of the paper, we introduce the operator \(\mathbb{K}: X \to X\) associated with the nonlinear thermostat GFBVP which takes the form
$$\begin{aligned} (\mathbb{K}u) (s) ={}& \int _{0}^{s} \frac{(s- r )^{p -1}}{\Gamma (p)} \mathfrak{g} \bigl(r, \beta u(r), {}^{c}\mathfrak{D}^{\sigma }u(r), \mathcal{I}^{\rho }u(r) \bigr)\, \mathrm{d}r \\ &{}- \frac{kA(s)}{V} \int _{0}^{1} \mathfrak{g} \bigl(r, \beta u(r), {}^{c} \mathfrak{D}^{\sigma }u(r), \mathcal{I}^{\rho }u(r) \bigr)\, \mathrm{d}r \\ &{}- \frac{A(s)}{V} \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \frac{(\zeta _{j} -r )^{p -1}}{\Gamma (p)} \mathfrak{g} \bigl(r, \beta u(r), {}^{c}\mathfrak{D}^{\sigma }u(r), \mathcal{I}^{\rho }u(r) \bigr)\, \mathrm{d}r \\ &{}+ \frac{G(s)}{V} \int _{0}^{1} \int _{0}^{r} \frac{(r-q)^{p-1}}{\Gamma (p)} \mathfrak{g} \bigl(q, \beta u(q), {}^{c} \mathfrak{D}^{\sigma }u(q), \mathcal{I}^{\rho }u(q) \bigr)\, \mathrm{d}q \mathrm{d}r , \end{aligned}$$
(16)
where the functions \(A,G\in C_{\mathbb{R}}(J)\) are introduced by (9).
Before presenting our main theorems, we equip the space X with the metric d formulated as \(\mathbf{d}(x,y)=\|x-y\|_{X} \).
It is well known that \((X,\mathbf{d})\) is a complete metric space (see [51]).
Theorem 3.2
Consider a continuous function \(\mathfrak{g}:J\times \mathbb{R}^{3}\to \mathbb{R}\) and assume that the following assumptions hold:
\((ASS1)\) There are a map \(\varphi \in \Phi \) (Φ is the family defined in Section 2) and a function \(w: \mathbb{R}^{2}\to \mathbb{R}\) such that for all \(x,\widehat{x},y,\widehat{y},z,\widehat{z}\in \mathbb{R}\) we have \(w(x,y)\geq 0\) and
$$ \bigl\vert \mathfrak{g}(s,x,y,z)-\mathfrak{g}(s,\widehat{x},\widehat{y}, \widehat{z}) \bigr\vert \leq \frac{1}{\vartheta _{1}+\vartheta _{2}} \varphi \bigl( \vert x- \widehat{x} \vert + \vert y-\widehat{y} \vert + \vert z-\widehat{z} \vert \bigr), $$
where \(\vartheta _{1}\) and \(\vartheta _{2}\) are two positive real constants which satisfy the following inequalities:
$$ \vartheta _{1}>\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} + \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} $$
and
$$\begin{aligned} \vartheta _{2} >&\frac{1}{\Gamma (p-\sigma +1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert \Gamma (2-\sigma )}+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +1)}\sum_{j=1}^{m} \zeta _{j} ^{p-\sigma } \\ &{}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +2)}. \end{aligned}$$
\((ASS2)\) \(\exists \, x^{\star }\in X\quad s.t. \quad w(x^{\star }(s),\mathbb{K}x^{ \star }(s))\geq 0\), \(\forall s\in J\).
\((ASS3)\) \(\forall x,y\in X\), we have
$$ w\bigl(x(s),y(s)\bigr)\geq 0\quad \Rightarrow\quad w\bigl(\mathbb{K}x(s),\mathbb{K}y(s) \bigr)\geq 0 \quad \textit{for all } s\in J. $$
\((ASS4)\) For each sequence \(x_{n}\in X\) which converges to x in X and \(w(x_{n}(s),x_{n+1}(s))\geq 0\), \(\forall s\in J\) and \(\forall n\in \mathbb{N}\), we have \(w(x_{n}(s),x(s))\geq 0\).
\((ASS5)\) the constants β and ρ are linked by the relation \(\beta +\frac{1}{\Gamma (\rho +1)}<1\).
Then problem (3) has a solution.
Proof
Let us define a map \(\mu :X\times X\to \mathbb{R}^{+}\) as
$$ \mu (x,y)= \textstyle\begin{cases} 1,& \text{if } w(x(s),y(s ))\geq 0, \\ 0,& \text{otherwise}. \end{cases} $$
\(\text{For all } x,y\in X\) and \(w(x(s),y(s))\geq 0\) for each \(s\in J\), we have
$$\begin{aligned} & \bigl\vert \mathbb{K}x(s)-\mathbb{K}y(s) \bigr\vert \\ &\quad = \frac{1}{\Gamma (p)} \int _{0}^{s} \vert s-r \vert ^{p-1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr)-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{k \vert A(s) \vert }{ \vert V \vert } \\ &\qquad {}\times \int _{0}^{s} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c} \mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr)-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{ \vert A(s) \vert }{ \vert V \vert \Gamma (p)} \\ &\qquad {}\times \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \vert \zeta _{j} -r \vert ^{p -1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr) \\ &\qquad {}-\mathfrak{g} \bigl(r, \beta y(r), {}^{c} \mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{ \vert G(s) \vert }{ \vert V \vert \Gamma (p)} \\ &\qquad {}\times \int _{0}^{1} \int _{0}^{r} \vert r-q \vert ^{p-1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr) \\ &\qquad {}-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \,\mathrm{d}q \mathrm{d}r \\ &\quad \leq \Biggl[\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)} \sum_{j=1}^{m} \zeta _{j} ^{p} \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \Biggr] \\ &\qquad {}\times \sup_{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c} \mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)-\mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert \\ &\quad \leq \vartheta _{1}\sup_{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c}\mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)- \mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert , \end{aligned}$$
(17)
and
$$\begin{aligned} & \bigl\vert {}^{c} \mathfrak{D}^{\sigma } \mathbb{K}x(s)-{}^{c} \mathfrak{D}^{\sigma }\mathbb{K}y(s) \bigr\vert \\ &\quad = \frac{1}{\Gamma (p-\sigma )} \\ &\qquad {}\times \int _{0}^{s} \vert s-r \vert ^{p-\sigma -1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr)-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{k \vert A(s) \vert }{ \vert V \vert \Gamma (1-\sigma )} \\ &\qquad {}\times \int _{0}^{s} \vert 1-\sigma \vert ^{-\sigma } \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr)-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{ \vert A(s) \vert }{ \vert V \vert \Gamma (p-\sigma )} \\ &\qquad {}\times \sum_{j=1}^{m} \int _{0}^{\zeta _{j}} \vert \zeta _{j} -r \vert ^{p- \sigma -1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr) \\ &\qquad {}-\mathfrak{g} \bigl(r, \beta y(r), {}^{c}\mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}r \\ &\qquad {}+\frac{ \vert G(s) \vert }{ \vert V \vert \Gamma (p-\sigma )} \\ &\qquad {}\times \int _{0}^{1} \int _{0}^{r} \vert r-q \vert ^{p-\sigma -1} \bigl\vert \mathfrak{g} \bigl(r, \beta x(r), {}^{c}\mathfrak{D}^{\sigma }x(r), \mathcal{I}^{\rho }x(r) \bigr) \\ &\qquad {}-\mathfrak{g} \bigl(r, \beta y(r), {}^{c} \mathfrak{D}^{\sigma }y(r), \mathcal{I}^{\rho }y(r) \bigr) \bigr\vert \, \mathrm{d}q \mathrm{d}r \\ &\quad \leq \Biggl[\frac{1}{\Gamma (p-\sigma +1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert \Gamma (2-\sigma )} \\ &\qquad {}+\frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +1)}\sum_{j=1}^{m} \zeta _{j} ^{p-\sigma } + \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +2)} \Biggr] \\ &\qquad {}\times \sup_{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c} \mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)-\mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert \\ &\quad \leq \vartheta _{2}\sup_{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c}\mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)- \mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert . \end{aligned}$$
(18)
Therefore, from (17) and (18) it follows that
$$\begin{aligned} \mathbf{d}(\mathbb{K}x,\mathbb{K}y)={}&\sup_{s\in J} \bigl\vert \mathbb{K}x(s)- \mathbb{K}y(s) \bigr\vert +\sup _{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma } \mathbb{K}x(s)-{}^{c} \mathfrak{D}^{\sigma }\mathbb{K}y(s) \bigr\vert \\ \leq {}&(\vartheta _{1}+\vartheta _{2})\sup _{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c}\mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)-\mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert \\ \leq {}&(\vartheta _{1}+\vartheta _{2})\sup _{s\in J} \biggl[ \frac{1}{\vartheta _{1}+\vartheta _{2}}\varphi \bigl(\beta \bigl\vert x(s)-y(s) \bigr\vert + \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \\ & {}+ \bigl\vert \mathcal{I}^{\rho }x(s)-\mathcal{I}^{\rho }y(s) \bigr\vert \bigr) \biggr] \\ \leq {}&\varphi \Bigl(\beta \sup_{s\in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup_{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert +\sup_{s\in J} \bigl\vert \mathcal{I}^{\rho }x(s)- \mathcal{I}^{\rho }y(s) \bigr\vert \Bigr) \\ \leq {}&\varphi \biggl(\beta \sup_{s\in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup_{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \\ &{}+\frac{1}{\Gamma (\rho )}\sup_{s\in J} \bigl\vert x(s)- y(s) \bigr\vert \int _{0}^{s} \vert s-r \vert ^{ \rho -1}\, \mathrm{d}r \biggr) \\ \leq {}&\varphi \biggl( \biggl(\beta +\frac{1}{\Gamma (\rho +1)} \biggr) \sup _{s \in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup _{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \biggr) \\ \leq {}&\varphi \Bigl( \sup_{s\in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup_{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \Bigr). \end{aligned}$$
This means that \(\mathbf{d}(\mathbb{K}x,\mathbb{K}y)\leq \varphi (\mathbf{d}(x,y) )\). Consequently, from the definition of the map μ it follows that
$$ \mu (x,y)\mathbf{d}(\mathbb{K}x,\mathbb{K}y)\leq \varphi \bigl( \mathbf{d}(x,y) \bigr),\quad \forall x,y\in X, $$
which means that \(\mathbb{K}\) is a \(\mu -\varphi -\) contraction. Furthermore, in view of the definition of the map μ and assumption \((ASS3)\), we can easily verify that \(\mathbb{K}\) is μ-admissible.
Let now \(x_{n}\) be a sequence in X which approaches to x in X and satisfies \(\mu (x_{n},x_{n+1})\geq 1\), \(\forall n\in \mathbb{N}\) and \(\omega (x_{n}(s),x_{n+1}(s))\geq 0\). Then from the definition of the map μ together with assumption \((ASS5)\), we can directly verify that \(\mu (x_{n},x)\geq 1\). At this time, all the assumptions of Theorem 2.6 are fulfilled. Consequently, the operator \(\mathbb{K}\) admits a fixed point which is solution of our nonlinear thermostat GFBVP (3). □
Theorem 3.3
Let \(\mathfrak{g}:J\times \mathbb{R}^{3}\to \mathbb{R}\) be continuous and the following assumptions hold:
\((ASS6)\) \(\exists \, R>0\), \(s.t.~\forall s\in J\), \(\mathrm{and}\, \forall x, \widehat{x},y,\widehat{y},z,\widehat{z}\in \mathbb{R}\),
$$ \bigl\vert \mathfrak{g}(s,x,y,z)-\mathfrak{g}(s,\widehat{x},\widehat{y}, \widehat{z}) \bigr\vert \leq R \bigl( \vert x-\widehat{x} \vert + \vert y- \widehat{y} \vert + \vert z- \widehat{z} \vert \bigr), $$
\((ASS7)\) The constants β and ρ are linked by the relation \(\beta +\frac{1}{\Gamma (\rho +1)}<1\) and
$$\begin{aligned} \gamma ={}& R \Biggl(\frac{1}{\Gamma (p+1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} \\ &{}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} +\frac{1}{\Gamma (p-\sigma +1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert \Gamma (2-\sigma )} \\ &{}+\frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +1)}\sum_{j=1}^{m} \zeta _{j} ^{p-\sigma } + \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +2)} \Biggr) < 1. \end{aligned}$$
(19)
Then the nonlinear thermostat GFBVP (3) has exactly one solution.
Proof
By following the same arguments of the calculations used in Theorem 3.2 together with the hypotheses of Theorem 3.3, we write
$$\begin{aligned} & \bigl\vert \mathbb{K}x(s)-\mathbb{K}y(s) \bigr\vert \\ &\quad \leq \Biggl[\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)} \sum_{j=1}^{m} \zeta _{j} ^{p} \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \Biggr] \\ &\qquad {}\times \sup_{s\in J} \bigl\vert \mathfrak{g} \bigl(s, \beta x(s), {}^{c} \mathfrak{D}^{\sigma }x(s), \mathcal{I}^{\rho }x(s) \bigr)-\mathfrak{g} \bigl(s, \beta y(s), {}^{c}\mathfrak{D}^{\sigma }y(s), \mathcal{I}^{\rho }y(s) \bigr) \bigr\vert \\ &\quad \leq R \Biggl[\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \Biggr] \\ &\qquad {}\times \sup_{s\in J} \bigl[\beta \bigl\vert x(s)-y(s) \bigr\vert + \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert + \bigl\vert \mathcal{I}^{\rho }x(s)-\mathcal{I}^{\rho }y(s) \bigr\vert \bigr] \\ &\quad \leq R \Biggl[\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \Biggr] \\ &\qquad {}\times \biggl( \biggl(\beta +\frac{1}{\Gamma (\rho +1)} \biggr) \sup _{s \in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup _{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \biggr) \\ &\quad \leq R \Biggl[\frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert }+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \Biggr] \\ &\qquad {}\times \Bigl( \sup_{s\in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup_{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \Bigr). \end{aligned}$$
Similarly, we obtain
$$\begin{aligned} & \bigl\vert {}^{c} \mathfrak{D}^{\sigma } \mathbb{K}x(s)-{}^{c} \mathfrak{D}^{\sigma }\mathbb{K}y(s) \bigr\vert \\ &\quad \leq R \Biggl[\frac{1}{\Gamma (p-\sigma +1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert \Gamma (2-\sigma )} \\ &\qquad {} +\frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +1)}\sum_{j=1}^{m} \zeta _{j} ^{p-\sigma } \\ &\qquad {}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +2)} \Biggr] \\ &\qquad {}\times \Bigl( \sup_{s\in J} \bigl\vert x(s)-y(s) \bigr\vert + \sup_{s\in J} \bigl\vert {}^{c} \mathfrak{D}^{\sigma }x(s)-{}^{c} \mathfrak{D}^{\sigma }y(s) \bigr\vert \Bigr). \end{aligned}$$
Thus,
$$\begin{aligned} \Vert \mathbb{K}x-\mathbb{K}y \Vert _{X}\leq{} & R \Biggl( \frac{1}{\Gamma (p+1)}+\frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert } \\ &{}+\frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p+1)}\sum_{j=1}^{m} \zeta _{j} ^{p} \\ &{}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p+2)} \\ &{}+\frac{1}{\Gamma (p-\sigma +1)}+ \frac{k( \vert V_{2} \vert + \vert V_{1} \vert )}{ \vert V \vert \Gamma (2-\sigma )}+ \frac{ \vert V_{2} \vert + \vert V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +1)}\sum _{j=1}^{m} \zeta _{j} ^{p-\sigma } \\ &{}+ \frac{ \vert \varepsilon _{2} V_{2}-\varepsilon _{1} V_{4} \vert + \vert \varepsilon _{1} V_{3}+\varepsilon _{2} V_{1} \vert }{ \vert V \vert \Gamma (p-\sigma +2)} \Biggr) \Vert x-y \Vert _{X}. \end{aligned}$$
It yields \(\|\mathbb{K}x-\mathbb{K}y \|_{X}\leq \gamma \|x-y \|_{X}\), \(\forall x,y\in X\). Now, from the assumption \(\gamma <1\) and the Banach contraction principle, we conclude that \(\mathbb{K}\) admits a unique fixed point which represents the unique solution of our nonlinear thermostat GFBVP (3). □