Abdeljawad, T., Rashid, S., Hammouch, Z., Iscan, I., Chu, Y.M.: Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020(1), 496 (2020)
Article
MathSciNet
Google Scholar
Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017)
Article
MathSciNet
Google Scholar
Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 55 (2017). https://doi.org/10.1186/s13660-017-1318-y
Article
MathSciNet
MATH
Google Scholar
Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Collect. 12(4) (2009)
Budak, H., Erden, S., Ali, M.A.: Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 44(1), 378–390 (2021)
Article
MathSciNet
Google Scholar
Budak, H., Kara, H., Hezenci, F.: Fractional Simpson type inequalities for twice differentiable functions (2021, submitted)
Chand, M., Prajapati, J.C., Bonyah, E.: Fractional integrals and solution of fractional kinetic equations involving k-Mittag-Leffler function. Trans. A. Razmadze Math. Inst. 171(2), 144–166 (2017)
Article
MathSciNet
Google Scholar
Chen, J., Huang, X.: Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 31(15), 4989–4997 (2017)
Article
MathSciNet
Google Scholar
Choi, J., Agarwal, P.: Some new Saigo type fractional integral inequalities and their q-analogues. Abstr. Appl. Anal. 2014, Article ID 579260 (2014). https://doi.org/10.1155/2014/579260
Article
MathSciNet
MATH
Google Scholar
Dragomir, S.S., Agarwal, R.P., Cerone, P.: On Simpson’s inequality and applications. J. Inequal. Appl. 5, 533–579 (2000)
MathSciNet
MATH
Google Scholar
Du, T., Li, Y., Yang, Z.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s,m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017)
MathSciNet
MATH
Google Scholar
Ertuğral, F., Sarikaya, M.Z.: Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(4), 3115–3124 (2019)
Article
MathSciNet
Google Scholar
Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223–276. Springer, Vienna (1997)
MATH
Google Scholar
Hua, J., Xi, B.Y., Qi, F.: Some new inequalities of Simpson type for strongly s-convex functions. Afr. Math. 26(5), 741–752 (2015)
Article
MathSciNet
Google Scholar
Hussain, S., Khalid, J., Chu, Y.M.: Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Math. 5(6), 5859–5883 (2020)
Article
MathSciNet
Google Scholar
Hussain, S., Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings. SpringerPlus 5(1), 77 (2016)
Article
Google Scholar
Iqbal, M., Qaisar, S., Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals. J. Comput. Anal. Appl. 23(6), 1137–1145 (2017)
MathSciNet
Google Scholar
İşcan, İ.: Hermite–Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, Article ID 346305 (2014)
MathSciNet
Google Scholar
Kermausuor, S.: Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions. Kragujev. J. Math. 45(5), 709–720 (2021)
Article
Google Scholar
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Book
Google Scholar
Lei, H., Hu, G., Nie, J., Du, T.: Generalized Simpson-type inequalities considering first derivatives through the k-fractional integrals. IAENG Int. J. Appl. Math. 50(3), 1–8 (2020)
Google Scholar
Li, Y., Du, T.: Some Simpson type integral inequalities for functions whose third derivatives are \((\alpha ,m)\)-GA-convex functions. J. Egypt. Math. Soc. 24(2), 175–180 (2016)
Article
MathSciNet
Google Scholar
Liu, B.Z.: An inequality of Simpson type. Proc. R. Soc. A 461, 2155–2158 (2005)
Article
MathSciNet
Google Scholar
Liu, W.: Some Simpson type inequalities for h-convex and \((\alpha ,m)\)-convex functions. J. Comput. Anal. Appl. 16(5), 1005–1012 (2014)
MathSciNet
MATH
Google Scholar
Liu, X., Zhang, L., Agarwal, P., Wang, G.: On some new integral inequalities of Gronwall–Bellman–Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27(1), 1–10 (2016)
Article
MathSciNet
Google Scholar
Luo, C., Du, T.: Generalized Simpson type inequalities involving Riemann–Liouville fractional integrals and their applications. Filomat 34(3), 751–760 (2020)
Article
MathSciNet
Google Scholar
Matloka, M.: Some inequalities of Simpson type for h-convex functions via fractional integrals. Abstr. Appl. Anal. 2015, Article ID 956850 (2015)
Article
MathSciNet
Google Scholar
Mehrez, K., Agarwal, P.: New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274–285 (2019)
Article
MathSciNet
Google Scholar
Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
MATH
Google Scholar
Ozdemir, M.E., Akdemir, A.O., Kavurmaci, H.: On the Simpson’s inequality for convex functions on the coordinates. Turk. J. Anal. Number Theory 2(5), 165–169 (2014)
Article
Google Scholar
Park, J.: On Simpson like type integral inequalities for differentiable preinvex functions. Appl. Math. Sci. 7(121), 6009–6021 (2013)
MathSciNet
Google Scholar
Rashid, S., Akdemir, A.O., Jarad, F., Noor, M.A., Noor, K.I.: Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS Math. 4(4), 1087–1100 (2019)
Article
MathSciNet
Google Scholar
Sarikaya, M.Z., Budak, H., Erden, S.: On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 27(2), 279–295 (2019)
MathSciNet
MATH
Google Scholar
Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for convex functions. RGMIA Res. Rep. Collect. 13(2), Article 2 (2010)
MATH
Google Scholar
Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex. J. Appl. Math. Stat. Inform. 9(1), 37–45 (2013)
Article
MathSciNet
Google Scholar
Sarikaya, M.Z., Set, E., Ozdemir, M.E.: On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 60(8), 2191–2199 (2020)
Article
MathSciNet
Google Scholar
Set, E., Akdemir, A.O., Ozdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017)
Article
MathSciNet
Google Scholar
Vivas-Cortez, M., Abdeljawad, T., Mohammed, P.O., Rangel-Oliveros, Y.: Simpson’s integral inequalities for twice differentiable convex functions. Math. Probl. Eng. 2020, Article ID 1936461 (2020)
Article
MathSciNet
Google Scholar
Wang, G., Agarwal, P., Chand, M.: Certain Gruss type inequalities involving the generalized fractional integral operator. J. Inequal. Appl. 2014, 147 (2014). https://doi.org/10.1186/1029-242X-2014-147
Article
MathSciNet
MATH
Google Scholar