In this section, we are concerned with the existence of solutions of the given generalized Sturm–Liouville–Langevin q-difference FBVP (1).
Definition 15
By a solution of the generalized Sturm–Liouville–Langevin q-difference FBVP (1), we mean a measurable function \({\mathrm{w}\in \mathcal{U}}\) such that \(\mathrm{w}(0)=0\), \({}_{c}\mathcal{D}^{\beta }_{q} \mathrm{w}(T)+ \frac{r(T)}{\rho (T)} \mathrm{w}(T)=0\), and the FDEq
$$ {}_{c}{\mathcal{D}}^{\alpha }_{q} \bigl( \bigl[ \rho (t) {}_{c} {\mathcal{D}}_{q}^{\beta }+r(t) \bigr] \bigr) \mathrm{w}(t)= \sigma \bigl(t,\mathrm{w}(t) \bigr) $$
is satisfied on \(\mathbb{I}\).
In what follows, we present the characterization of solutions in relation to suggested generalized Sturm–Liouville–Langevin q-difference FBVP (1).
Lemma 16
Let \(K(t) \in \mathcal{U}\), \(0<\alpha , \beta \leq 1\), \(\rho \in C(\mathbb{I}, \mathbb{R} \backslash \{0\})\), and \(r \in C(\mathbb{I}, \mathbb{R})\). Then the solution of the following linear generalized Sturm–Liouville–Langevin q-difference FBVP
$$ \textstyle\begin{cases} {}_{c}{\mathcal{D}}^{\alpha }_{q} ( [\rho (t) {}_{c} \mathcal{D}_{q}^{\beta }+r(t) ] ) \mathrm{w}(t)=K(t), \quad t \in \mathbb{I}, \\ \mathrm{w}(0)=0, \quad\quad {}_{c}\mathcal{D}^{\beta }_{q} \mathrm{w}(T)+ \frac{r(T)}{\rho (T)} \mathrm{w}(T)=0, \end{cases} $$
(3)
is given by
$$ \mathrm{w}(t)= {}_{RL}\mathcal{I}^{\beta }_{q} \biggl(\frac{1}{\rho } {}_{RL} \mathcal{I}^{\alpha }_{q} K \biggr) (t)- {}_{RL}\mathcal{I}^{\beta }_{q} \biggl( \frac{r}{\rho } \mathrm{w} \biggr) (t) - {}_{RL} \mathcal{I}_{q}^{ \alpha }K(T) {}_{RL} \mathcal{I}^{\beta }_{q} \biggl( \frac{1}{\rho } \biggr) (t). $$
(4)
Proof
Taking the \(\alpha ^{th}\)-q-Riemann–Liouville integral to the FDEq of (3), we get
$$ {}_{c}{\mathcal{D}}_{q}^{\beta } \mathrm{w}(t)= \frac{ {}_{RL}\mathcal{I}_{q}^{\alpha } K(t)+c_{0}-r(t) \mathrm{w}(t)}{\rho (t)}, $$
(5)
where \(c_{0} \in \mathbb{R}\). The second BCs of system (3) gives
$$ c_{0}=- {}_{RL}{\mathcal{I}}_{q}^{\alpha } K(T). $$
Taking the \(\beta ^{th}\)-q-Riemann–Liouville integral to (5), we obtain
$$ \mathrm{w}(t)= {}_{RL}\mathcal{I}^{\beta }_{q} \biggl(\frac{1}{\rho } {}_{RL} \mathcal{I}^{\alpha }_{q} K \biggr) (t)- {}_{RL}\mathcal{I}^{\beta }_{q} \biggl( \frac{r}{\rho } \mathrm{w} \biggr) (t) - {}_{RL} \mathcal{I}_{q}^{ \alpha }K(T) {}_{RL} \mathcal{I}^{\beta }_{q} \biggl( \frac{1}{\rho } \biggr) (t) + c_{1}, $$
(6)
where \(c_{1} \in \mathbb{R} \). Using the condition \(\mathrm{w}(0)=0\) of (3), we have
Substituting the obtained value for \(c_{1}\), we derive the q-integral equation (4), and the proof is completed. □
Note that, on the other side, if we apply the Caputo \(\beta ^{th}\)-q-derivative and \(\alpha ^{th}\)-q-derivative to both sides of (4) and use Lemma 9, then the given system (3) immediately is established.
Now, consider the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1). On the basis of Lemma 16, the solutions of (1) correspond to q-integral equation in the following form:
$$ \begin{aligned} \mathrm{w}(t)&= {}_{RL} { \mathcal{I}}_{q}^{\beta } \biggl( \frac{1}{\rho } {}_{RL}\mathcal{I}^{\alpha } \sigma \biggr) \bigl(t, \mathrm{w}(t) \bigr)- {}_{RL}\mathcal{I}^{\beta } \biggl(\frac{r}{\rho } \mathrm{w} \biggr) (t) \\ &\quad {} - {}_{RL}\mathcal{I}^{\alpha } \sigma \bigl(T, \mathrm{w}(T) \bigr) {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t). \end{aligned} $$
(7)
3.1 Existence result via the KMNC-method
We further will use the following hypotheses.
-
(H1)
\(\sigma : \mathbb{I} \times \mathcal{U}\rightarrow \mathcal{U}\) is Caratheodory;
-
(H2)
There exists \(p\in C( \mathbb{I}, \mathbb{R}^{+})\) such that
$$\begin{aligned}& \bigl\Vert \sigma \bigl(t,\mathrm{w}(t) \bigr) \bigr\Vert \leq p(t) \Vert \mathrm{w} \Vert , \quad \forall t\in \mathbb{I}, \forall \mathrm{w}\in \mathcal{U}; \end{aligned}$$
-
(H3)
For each \(t\in \mathbb{I}\) and each bounded measurable set \(B\subset \mathcal{U}\),
$$ \lim_{h\rightarrow 0^{+}}\kappa \bigl(\sigma ( \mathbb{I}_{t,h} \times B),0 \bigr) \leq p(t)\kappa (B), $$
where κ is the Kuratowski MNC and \(\mathbb{I}_{t,h}=[t-h, t]\cap \mathbb{I}\).
Set
$$ p^{*}=\sup_{t\in \mathbb{I}} \bigl\vert p(t) \bigr\vert , \quad\quad \rho ^{*}=\inf_{t \in \mathbb{I}} \bigl\vert \rho (t) \bigr\vert , \quad\quad r^{*}=\sup _{t\in \mathbb{I}} \bigl\vert r(t) \bigr\vert . $$
(8)
Theorem 17
Suppose that conditions (H1)–(H3) hold. If
with
$$ \Lambda :=\mu p^{*}+\nu , $$
where
$$\begin{aligned}& \mu =\frac{1}{\rho ^{*}} \biggl\{ \frac{T^{\alpha +\beta }}{\Gamma _{q}(\alpha +\beta +1)} + \frac{T^{\beta }}{\Gamma _{q} (1+\beta )} \frac{T^{\alpha }}{\Gamma _{q}(\alpha +1)} \biggr\} , \end{aligned}$$
(10)
$$\begin{aligned}& \nu = \biggl\{ \frac{r^{*}}{\rho ^{*}} \frac{T^{\beta }}{\Gamma _{q}(\beta +1)} \biggr\} , \end{aligned}$$
(11)
then the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) has a solution on \(\mathbb{I}\).
Proof
Firstly, for \(\mathrm{w} \in \mathcal{U}\), we consider the operator \(\mathcal{G}:\mathcal{U}\rightarrow \mathcal{U}\) defined by
$$ \mathcal{G}\mathrm{w}={}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } {}_{RL}\mathcal{I}^{\alpha } \sigma \biggr) \bigl(t, \mathrm{w}(t) \bigr)- {}_{RL}\mathcal{I}^{\beta } \biggl(\frac{r}{\rho } \mathrm{w} \biggr) (t) - {}_{RL} \mathcal{I}^{\alpha } \sigma \bigl(T, \mathrm{w}(T) \bigr) {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t). $$
(12)
Evidently, the fixed points of \(\mathcal{G}\) are solutions of the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1). We take
$$ D_{R}= \bigl\{ \mathrm{w} \in \mathcal{U} : \Vert \mathrm{w} \Vert \leq R \bigr\} . $$
\(D_{R}\) is convex, closed, and bounded. We shall follow the proof in three steps.
STEP 1: \(\mathcal{G}\) is sequentially continuous:
Let \(\{ \mathrm{w}_{n} \}_{n}\) be a sequence with \(\mathrm{w}_{n} \rightarrow \mathrm{w}\) in \(\mathcal{U}\). Then, for each \(t \in \mathbb{I}\), one may write
$$\begin{aligned} \bigl\vert (\mathcal{G}\mathrm{w}_{n}) (t)-(\mathcal{G}\mathrm{w}) (t) \bigr\vert &\leq {}_{RL} \mathcal{I}^{\beta }_{q} \biggl( \frac{1}{\rho (t)} {}_{RL}\mathcal{I}^{ \alpha }_{q} \bigl\vert \sigma (t,\mathrm{w}_{n})- \sigma \bigl(t,\mathrm{w}(t) \bigr) \bigr\vert \biggr) \\ &\quad {} +{}_{RL}\mathcal{I}^{\beta }_{q} \biggl( \frac{r}{\rho } \vert \mathrm{w}_{n}- \mathrm{w} \vert \biggr) (t) \\ &\quad {} + {}_{RL}\mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(T,\mathrm{w}_{n}(T) \bigr)- \sigma \bigl(T, \mathrm{w}(T) \bigr) \bigr\vert {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t). \end{aligned}$$
Since the function σ is continuous and satisfies (H1), so \(\sigma (t,\mathrm{w}_{n}(t))\) tends uniformly to \(\sigma (t,\mathrm{w}(t))\). In accordance with Lebesgue’s dominated convergence theorem, \(\{\mathcal{G}(\mathrm{w}_{n})(t)\}\) tends uniformly to \(\mathcal{G}(\mathrm{w})(t)\), that is, \(\mathcal{G}\mathrm{w}_{n}\rightarrow \mathcal{G}\mathrm{w}\). Hence \(\mathcal{G}:D_{R}\rightarrow D_{R}\) is sequentially continuous.
STEP 2: \(\mathcal{G}(D_{R}) \subseteq D_{R}\):
Take \(\mathrm{w} \in \mathcal{D}_{R}\). By (H2) and for each \(t \in \mathbb{I}\), let \(\mathcal{G}(\mathrm{w})(t)\neq 0\). Then
$$\begin{aligned} \bigl\vert \mathcal{G}\mathrm{w}(t) \bigr\vert &\leq \biggl\vert {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } {}_{RL}\mathcal{I}_{q}^{ \alpha } \sigma \biggr) \bigl(t,\mathrm{w}(t) \bigr) \biggr\vert + \biggl\vert {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{r}{\rho } \mathrm{w} \biggr) (t) \biggr\vert \\ &\quad {} + \biggl\vert {}_{RL}\mathcal{I}_{q}^{\alpha } \sigma \bigl(T,\mathrm{w}(T) \bigr) {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t) \biggr\vert \\ &\leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{ \vert \rho \vert } {}_{RL}\mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(t,\mathrm{w}(t) \bigr) \bigr\vert \biggr) (t) +{}_{RL}\mathcal{I}_{q}^{ \beta } \biggl( \frac{ \vert r \vert }{ \vert \rho \vert } \bigl\vert \mathrm{w}(t) \bigr\vert \biggr) (t) \\ &\quad {} +{}_{RL}\mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(T,\mathrm{w}(T) \bigr) \bigr\vert {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{ \vert \rho \vert } \biggr) (t) \\ &\leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl[ \Vert \mathrm{w} \Vert p(t) \bigr] \biggr) (t) +{}_{RL} \mathcal{I}_{q}^{\beta } \biggl(\frac{r^{*}}{\rho ^{*}} \bigl\vert \mathrm{w}(t) \bigr\vert \biggr) (t) \\ &\quad {} +\frac{t^{\beta }}{\Gamma _{q} (1+\beta )} \biggl( \frac{1}{\rho ^{*}}{}_{RL} \mathcal{I}_{q}^{\alpha } \bigl[ \Vert \mathrm{w} \Vert p(t) \bigr] \biggr) (T) \\ &\leq p^{*}R \biggl\{ {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL}\mathcal{I}_{q}^{\alpha }(1) (t) \biggr)+ \frac{t^{\beta }}{\Gamma _{q} (1+\beta )} \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha }(1) (T) \biggr\} \\ &\quad {} +R{}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{r^{*}}{\rho ^{*}}(1) \biggr) (t) \\ &\leq R\frac{p^{*}}{\rho ^{*}} \biggl\{ \frac{T^{\alpha +\beta }}{\Gamma _{q}(\alpha +\beta +1)} + \frac{T^{\beta }}{\Gamma _{q} (1+\beta )} \frac{T^{\alpha }}{\Gamma _{q}(\alpha +1)} \biggr\} \\ &\quad {} +R \biggl\{ \frac{r^{*}}{\rho ^{*}} \frac{T^{\beta }}{\Gamma _{q}(\beta +1)} \biggr\} \\ &= R \bigl(\mu p^{*}+\nu \bigr). \end{aligned}$$
Hence we get
$$ \bigl\Vert \mathcal{G}(\mathrm{w}) \bigr\Vert _{\mathcal{U}} \leq R \bigl( \mu p^{*}+\nu \bigr) = R\Lambda \leq R. $$
(13)
STEP 3: \(\mathcal{G}(D_{R})\) is equicontinuous:
By considering STEP 2, it is known that \(\mathcal{G}(D_{R})\subset \mathcal{U}\) is bounded uniformly. In relation to the equicontinuity of \(\mathcal{G}(D_{R})\), we take \(t_{1}, t_{2}\in \mathbb{I}\), \(t_{1}< t_{2}\), and \(\mathrm{w}\in D_{R}\). Then
$$\begin{aligned} \bigl\vert \mathcal{G}\mathrm{w}(t_{2})-\mathcal{G} \mathrm{w}(t_{1}) \bigr\vert &\leq {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL}\mathcal{I}_{q}^{ \alpha } \bigl\vert \sigma \bigl(t_{2},\mathrm{w}(t_{2}) \bigr)- \sigma \bigl(t_{1}, \mathrm{w}(t_{1}) \bigr) \bigr\vert \biggr) \\ &\quad {} +{}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{r^{*}}{\rho ^{*}} \bigl\vert \mathrm{w}(t_{2})-\mathrm{w}(t_{1}) \bigr\vert \biggr) \\ &\quad {} +{}_{RL}\mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(T,\mathrm{w}(T) \bigr) \bigr\vert \biggl( \frac{1}{ \rho ^{*} } \biggr) \bigl\vert {}_{RL}\mathcal{I}_{q}^{ \beta }(1) (t_{2}) - {}_{RL}\mathcal{I}_{q}^{\beta }(1) (t_{1}) \bigr\vert \\ &\leq p^{*}R \biggl\{ {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} \bigl\vert {}_{RL}\mathcal{I}_{q}^{\alpha }(1) (t_{2})-{}_{RL} \mathcal{I}_{q}^{\alpha }(1) (t_{1}) \bigr\vert \biggr) \biggr\} \\ &\quad {} +R \biggl(\frac{r^{*}}{\rho ^{*}} \bigl({}_{RL} \mathcal{I}_{q}^{\beta }(1) (t_{2})-{}_{RL} \mathcal{I}_{q}^{\beta }(1) (t_{1}) \bigr) \biggr) \\ &\quad {} + \frac{p^{*}}{\rho ^{*}}R \frac{T^{\alpha }}{\Gamma _{q}(\alpha +1)} \bigl\vert {}_{RL} \mathcal{I}_{q}^{\beta }(1) (t_{2}) - {}_{RL} \mathcal{I}_{q}^{ \beta }(1) (t_{1}) \bigr\vert \\ &\leq \frac{R}{\rho ^{*}}\frac{p^{*}}{\Gamma _{q}(\alpha +\beta +1)} \bigl\{ \bigl(t_{2}^{\alpha +\beta }-t_{1}^{\alpha +\beta } \bigr)+2(t_{2}-t_{1})^{ \alpha +\beta } \bigr\} \\ &\quad {} +\frac{r^{*}}{\rho ^{*}}\frac{R}{\Gamma _{q}(\beta +1)} \bigl\{ \bigl(t_{2}^{ \beta }-t_{1}^{\beta } \bigr)+2(t_{2}-t_{1})^{\beta } \bigr\} \\ &\quad {} +\frac{p^{*}}{\rho ^{*}} \frac{R T^{\alpha }}{\Gamma _{q}(\alpha +1)\Gamma _{q}(\beta +1)} \bigl\{ \bigl(t_{2}^{\beta }-t_{1}^{\beta } \bigr)+2(t_{2}-t_{1})^{\beta } \bigr\} . \end{aligned}$$
(14)
As \(t_{1}\rightarrow t_{2}\), the right-hand side of (14) goes to 0 independent of w, and thus \(\vert \mathcal{G}\mathrm{w}(t_{2})-\mathcal{G}\mathrm{w}(t_{1}) \vert \to 0\). The equicontinuity of \(\mathcal{G}\) is confirmed.
The implication (2) is proved in the last step:
Let \(\Sigma \subset D_{R}\) be such that \(\Sigma =\overline{\operatorname{conv}}(\mathcal{G}(\Sigma )\cup \{0\})\). Since Σ is equicontinuous and bounded, the mapping \(t\mapsto \mathrm{w}(t)=\kappa (\Sigma (t))\) has the continuity property on \(\mathbb{I}\). From (H2) and some given properties of the Kuratowski MNC κ, for any \(t\in \mathbb{I}\), we get
$$\begin{aligned} \mathrm{w}(t)&\leq \kappa \bigl(\mathcal{G}(\Sigma ) (t)\cup \{0\} \bigr) \leq \kappa \bigl((\mathcal{G}\Sigma ) (t) \bigr) \\ &\leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } {}_{RL} \mathcal{I}_{q}^{\alpha } p \kappa (\Sigma ) \biggr) (t)+ {}_{RL} \mathcal{I}_{q}^{\beta } \biggl(\frac{r}{\rho } \kappa (\Sigma ) \biggr) (t) \\ &\quad {} + {}_{RL}\mathcal{I}_{q}^{\alpha } p(T)\kappa \bigl( \Sigma (T) \bigr) {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t) \\ &\leq p^{*} \Vert \mathrm{w} \Vert \biggl\{ {}_{RL} \mathcal{I}_{q}^{\beta } \biggl(\frac{1}{\rho } {}_{RL}\mathcal{I}_{q}^{\alpha } (1) \biggr) (t) +{}_{RL} \mathcal{I}_{q}^{\alpha } (1) (T) {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t) \biggr\} \\ &\quad {} + \Vert \mathrm{w} \Vert \biggl\{ {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{r}{\rho } (1) \biggr) (t) \biggr\} \\ &\leq p^{*} \Vert \mathrm{w} \Vert \biggl\{ \frac{1}{\rho ^{*}} \biggl\{ \frac{T^{\alpha +\beta }}{\Gamma _{q}(\alpha +\beta +1)} + \frac{T^{\beta }}{\Gamma _{q} (1+\beta )} \frac{T^{\alpha }}{\Gamma _{q}(\alpha +1)} \biggr\} \biggr\} \\ &\quad {} + \Vert \mathrm{w} \Vert \biggl\{ \frac{r^{*}}{\rho ^{*}} \frac{T^{\beta }}{\Gamma _{q}(\beta +1)} \biggr\} \\ &\leq p^{*} \Vert \mathrm{w} \Vert \mu + \Vert \mathrm{w} \Vert \nu . \end{aligned}$$
This means that
$$ \Vert \mathrm{w} \Vert \bigl(1-p^{*}\mu -\nu \bigr)\leq 0. $$
By (9) it follows that \(\Vert \mathrm{w} \Vert =0\), that is, \(\mathrm{w}(t)=0\) for any \(t\in \mathbb{I}\), so \(\kappa (\Sigma )=0\), and then \(\Sigma (t)\) is relatively compact in \(\mathcal{U}\). From the Ascoli–Arzela theorem, Σ has the relative compactness in \(D_{R}\). By Theorem 13, we find out that \(\mathcal{G}\) has a fixed point, which is the same solution of the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1). □
3.2 Uniqueness criterion
Theorem 18
Let:
-
(G1)
\(\sigma : \mathbb{I}\times \mathcal{U}\rightarrow \mathcal{U}\) be continuous.
-
(G2)
There exists the constant \(M>0\) such that
$$ \bigl\vert \sigma (t, \mathrm{w} )-\sigma (t, \mathrm{v} ) \bigr\vert \leq M \Vert \mathrm{w}-\mathrm{v} \Vert , \quad \forall t \in \mathbb{I}, \forall \mathrm{w}, \mathrm{v} \in \mathcal{U}. $$
(15)
Then the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) has a unique solution on \(\mathbb{I}\) such that
$$ {\ell }= \mu M+ \nu < 1, $$
(16)
where μ and ν are given by Equations (10) and (11), respectively.
Proof
In the first place, we show \(\mathcal{G}B_{\omega }\subset B_{\omega }\), where the operator \(\mathcal{G}:\mathcal{U}\rightarrow \mathcal{U}\) is defined by Equation (7), and for \(\omega >0\), \(B_{\omega }= \{ \mathrm{w} \in \mathcal{U}, \Vert \mathrm{w} \Vert \leq \omega \} \) such that
$$ \omega \geq \frac{\mu \sigma _{0}}{1-{\ell }}, $$
and \(\sigma _{0}=\sup_{0\leq t\leq T} \vert \sigma (t, 0) \vert \). For any \(\mathrm{w} \in B_{\omega }\), using (G2), we write
$$\begin{aligned} \bigl\vert \mathcal{G}\mathrm{w}(t) \bigr\vert &\leq \biggl\vert {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } {}_{RL}\mathcal{I}_{q}^{ \alpha } \sigma \biggr) \bigl(t,\mathrm{w}(t) \bigr) \biggr\vert + \biggl\vert {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{r}{\rho } \mathrm{w} \biggr) (t) \biggr\vert \\ &\quad {} + \biggl\vert {}_{RL}\mathcal{I}_{q}^{\alpha } \sigma \bigl(T,\mathrm{w}(T) \bigr) {}_{RL} \mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho } \biggr) (t) \biggr\vert \\ &\leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(t,\mathrm{w}(t) \bigr)-\sigma (t,0) \bigr\vert + \bigl\vert \sigma (t,0) \bigr\vert \biggr) (t)+{}_{RL} \mathcal{I}_{q}^{ \beta } \biggl(\frac{r^{*}}{\rho ^{*}} \bigl\vert \mathrm{w}(t) \bigr\vert \biggr) (t) \\ &\quad {} +\frac{t^{\beta }}{\Gamma _{q} (1+\beta )} \biggl( \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(t, \mathrm{w}(t) \bigr)-\sigma (t,0) \bigr\vert + \bigl\vert \sigma (t,0) \bigr\vert \biggr) (T) \\ &\leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl(M \Vert \mathrm{w} \Vert +\sigma _{0} \bigr) \biggr) (t) + \biggl(\frac{r^{*}}{\rho ^{*}} \biggr){}_{RL} \mathcal{I}_{q}^{\beta } \Vert \mathrm{w} \Vert (t) \\ &\quad {} +\frac{t^{\beta }}{\rho ^{*}\Gamma _{q} (1+\beta )} \bigl({}_{RL}\mathcal{I}_{q}^{\alpha } \bigl(M \Vert \mathrm{w} \Vert +\sigma _{0} \bigr) \bigr) (T) \\ &\leq \frac{1}{\rho ^{*}} \biggl\{ \frac{T^{\alpha +\beta }}{\Gamma _{q}(\alpha +\beta +1)} + \frac{T^{\beta }}{\Gamma _{q} (1+\beta )} \frac{T^{\alpha +1}}{\Gamma _{q}(\alpha +1)} \biggr\} \bigl(M \bigl( \Vert \mathrm{w} \Vert \bigr)+ \sigma _{0} \bigr) \\ &\quad{} + \biggl\{ \frac{r^{*}}{\rho ^{*}}\frac{T^{\beta }}{\Gamma _{q}(\beta +1)} \biggr\} \Vert \mathrm{w} \Vert \\ &\leq \mu \bigl(M \bigl( \Vert \mathrm{w} \Vert \bigr)+\sigma _{0} \bigr) +\nu \Vert \mathrm{w} \Vert \leq \omega , \end{aligned}$$
which implies \(\Vert \mathcal{G}(\mathrm{w}) \Vert \leq \omega \) after taking the supremum on \(\mathbb{I}\). Thus, \(\mathcal{G}\) corresponds \(B_{\omega }\) to itself.
Next, we investigate that \(\mathcal{G}(\mathrm{w})\) is a contraction. For \(\mathrm{w}, \mathrm{v} \in \mathcal{U}\), and by utilizing the notations of (10) and (11), we have
$$\begin{aligned} & \bigl\vert \mathcal{G}\mathrm{w}(t)-\mathcal{G}\mathrm{v}(t) \bigr\vert \\ &\quad \leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{ \vert \rho \vert } {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(t,\mathrm{w}(t) \bigr)-\sigma \bigl(t, \mathrm{v}(t) \bigr) \bigr\vert \biggr) (t) +{}_{RL}\mathcal{I}_{q}^{\beta } \biggl(\frac{ \vert r \vert }{ \vert \rho \vert } \bigl\vert \mathrm{w}(t)- \mathrm{v}(t) \bigr\vert \biggr) (t) \\ &\quad\quad {} + \frac{t^{\beta }}{ \vert \rho \vert \Gamma _{q} (1+\beta )} \bigl({}_{RL}\mathcal{I}_{q}^{\alpha } \bigl\vert \sigma \bigl(t,\mathrm{w}(t) \bigr)- \sigma \bigl(t,\mathrm{v}(t) \bigr) \bigr\vert \bigr) (T) \\ &\quad \leq {}_{RL}\mathcal{I}_{q}^{\beta } \biggl( \frac{1}{\rho ^{*}} {}_{RL} \mathcal{I}_{q}^{\alpha } \bigl(M \bigl\vert \mathrm{w}(t)-\mathrm{v}(t) \bigr\vert \bigr) \biggr) (t) + \biggl(\frac{r^{*}}{\rho ^{*}} \biggr){}_{RL} \mathcal{I}_{q}^{\beta } \bigl( \bigl\vert \mathrm{w}(t)-\mathrm{v}(t) \bigr\vert \bigr) (t) \\ &\quad\quad {} +\frac{T^{\beta }}{\rho ^{*}\Gamma _{q} (1+\beta )} \bigl({}_{RL}\mathcal{I}_{q}^{\alpha } \bigl(M \bigl\vert \mathrm{w}(t)- \mathrm{v}(t) \bigr\vert \bigr) \bigr) (T) \\ &\quad \leq \frac{1}{\rho ^{*}} \biggl\{ \frac{T^{\alpha +\beta }}{\Gamma _{q}(\alpha +\beta +1)} + \frac{T^{\beta }}{\Gamma _{q} (1+\beta )} \frac{T^{\alpha }}{\Gamma _{q}(\alpha +1)} \biggr\} \bigl(M \bigl\vert \mathrm{w}(t)-\mathrm{v}(t) \bigr\vert \bigr) \\ &\quad\quad {} + \biggl\{ \frac{r^{*}}{\rho ^{*}} \frac{T^{\beta }}{\Gamma _{q}(\beta +1)} \biggr\} \bigl\vert \mathrm{w}(t)- \mathrm{v}(t) \bigr\vert \leq (\mu M+\nu ) \Vert \mathrm{w}- \mathrm{v} \Vert . \end{aligned}$$
Consequently, we get
$$ \Vert \mathcal{G}\mathrm{w}-\mathcal{G}\mathrm{v} \Vert \leq (\mu M+\nu ) \Vert \mathrm{w}-\mathrm{v} \Vert = { \ell } \Vert \mathrm{w}-\mathrm{v} \Vert , $$
which states that \(\mathcal{G}\) is a contraction by (16). By the Banach contraction principle, \(\mathcal{G}\) has a unique fixed point, which is the unique solution of the nonlinear generalized Sturm–Liouville–Langevin q-difference FBVP (1) on \(\mathbb{I}\). □