Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053
Article
Google Scholar
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
Article
MathSciNet
Google Scholar
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705
Article
MathSciNet
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
Article
MathSciNet
MATH
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Article
MATH
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Google Scholar
Alqahtani, B., Aydi, H., Karapinar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7(8), 694 (2019). https://doi.org/10.3390/math7080694
Article
Google Scholar
Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
Article
MathSciNet
Google Scholar
Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
Article
MathSciNet
Google Scholar
Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017). https://doi.org/10.1186/s13661-017-0867-9
Article
MathSciNet
MATH
Google Scholar
Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1
Article
MathSciNet
Google Scholar
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a new structure of the pantograph inclusion problem in the Caputo conformable setting. Bound. Value Probl. 2020, 171 (2020). https://doi.org/10.1186/s13661-020-01468-4
Article
MathSciNet
Google Scholar
Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3
Article
MathSciNet
Google Scholar
Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107
Article
MathSciNet
Google Scholar
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
Article
MathSciNet
MATH
Google Scholar
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
MATH
Google Scholar
Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, London (2009)
MATH
Google Scholar
Deimling, K.: Multi-Valued Differential Equations. de Gruyter, Berlin (1992)
Book
Google Scholar
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
Book
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
MATH
Google Scholar
Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
Article
MathSciNet
Google Scholar
Sabetghadam, F., Masiha, H.P., Altun, I.: Fixed-point theorems for integral-type contractions on partial metric spaces. Ukr. Math. J. 68, 940–949 (2016). https://doi.org/10.1007/s11253-016-1267-5
Article
MathSciNet
MATH
Google Scholar
Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl. Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046
Article
MathSciNet
MATH
Google Scholar
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 142, 110472 (2021). https://doi.org/10.1016/j.chaos.2020.110472
Article
MathSciNet
Google Scholar
Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1 < r < 2\) via measure of noncompactness. Chaos Solitons Fractals 139, 110299 (2020). https://doi.org/10.1016/j.chaos.2020.110299
Article
MathSciNet
Google Scholar
Mohan Raja, M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order \(1 < r < 2\) in Hilbert spaces. Chaos Solitons Fractals 141, 110310 (2020). https://doi.org/10.1016/j.chaos.2020.110310
Article
MathSciNet
Google Scholar
Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941
Article
MATH
Google Scholar
Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order \(1 < r < 2\) with infinite delay. Chaos Solitons Fractals 141, 110343 (2020). https://doi.org/10.1016/j.chaos.2020.110343
Article
MathSciNet
Google Scholar
Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution hemivariational inequalities. Results Math. 75, 160 (2020). https://doi.org/10.1007/s00025-020-01293-2
Article
MathSciNet
MATH
Google Scholar
Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1,2]\) in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)
MathSciNet
MATH
Google Scholar
Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\) with infinite delay. Mediterr. J. Math. 13, 2539–2550 (2016). https://doi.org/10.1007/s00009-015-0638-8
Article
MathSciNet
MATH
Google Scholar
Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1,2]\). J. Dyn. Control Syst. 23, 679–691 (2017). https://doi.org/10.1007/s10883-016-9350-7
Article
MathSciNet
MATH
Google Scholar
Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J. Math. 11(6), 1850088 (2018). https://doi.org/10.1142/S1793557118500882
Article
MathSciNet
MATH
Google Scholar
Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order \((1,2]\) stochastic delay differential equations in Banach spaces. Chaos Solitons Fractals 150, 111095 (2021). https://doi.org/10.1016/j.chaos.2021.111095
Article
MathSciNet
Google Scholar
Vijayakumar, V., Udhayakumar, R., Kavitha, K.: On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evol. Equ. Control Theory 10(2), 271–296 (2021). https://doi.org/10.3934/eect.2020066
Article
MathSciNet
Google Scholar
Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay. Numer. Methods Partial Differ. Equ. 37, 750–766 (2021). https://doi.org/10.1002/num.22550
Article
MathSciNet
Google Scholar
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1< r<2\) in Banach spaces. Numer. Methods Partial Differ. Equ. 37(2), 949–961 (2021). https://doi.org/10.1002/num.22560
Article
MathSciNet
Google Scholar
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Book
Google Scholar
Gu, H., Trujillo, J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015). https://doi.org/10.1016/j.amc.2014.10.083
Article
MathSciNet
MATH
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos Solitons Fractals 139, 110035 (2020). https://doi.org/10.1016/j.chaos.2020.110035
Article
MathSciNet
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 44(2), 1438–1455 (2021). https://doi.org/10.1002/mma.6843
Article
MathSciNet
MATH
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44(6), 4428–4447 (2021). https://doi.org/10.1002/mma.7040
Article
MathSciNet
MATH
Google Scholar
Kavitha, K., Vijayakumar, V., Shukla, A., Nisar, K.S., Udhayakumar, R.: Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type. Chaos Solitons Fractals 151, 111264 (2021). https://doi.org/10.1016/j.chaos.2021.111264
Article
MathSciNet
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control (2021). https://doi.org/10.1002/asjc.2549
Article
MATH
Google Scholar
Subashini, R., Jothimani, K., Nisar, K.S., Ravichandran, C.: New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 59(5), 2891–2899 (2020). https://doi.org/10.1016/j.aej.2020.01.055
Article
Google Scholar
Vijayakumar, V., Henriquez, H.R.: Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators. Numer. Funct. Anal. Optim. 39(6), 704–736 (2018). https://doi.org/10.1080/01630563.2017.1414060
Article
MathSciNet
MATH
Google Scholar
Vijayakumar, V., Murugesu, R., Poongodi, R., Dhanalakshmi, S.: Controllability of second order impulsive nonlocal Cauchy problem via measure of noncompactness. Mediterr. J. Math. 14, 3 (2017). https://doi.org/10.1007/s00009-016-0813-6
Article
MathSciNet
MATH
Google Scholar
Yang, M., Wang, Q.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40(4), 1126–1138 (2017). https://doi.org/10.1002/mma.4040
Article
MathSciNet
MATH
Google Scholar
Salim, A., Benchohra, M., Karapinar, E., Lazreg, J.E.: Existence and Ulam stability for impulsive generalized Hilfer-type fractional differential equations. Adv. Differ. Equ. 2020, 601 (2020). https://doi.org/10.1186/s13662-020-03063-4
Article
MathSciNet
Google Scholar
Brill, H.: A semilinear Sobolev evolution equation in Banach space. J. Differ. Equ. 24(3), 412–425 (1997). https://doi.org/10.1016/0022-0396(77)90009-2
Article
MathSciNet
MATH
Google Scholar
Chang, Y.K., Li, W.T.: Controllability of Sobolev type semilinear functional differential and integrodifferential inclusions with an unbounded delay. Georgian Math. J. 13(1), 11–24 (2006). https://doi.org/10.1515/GMJ.2006.11
Article
MathSciNet
MATH
Google Scholar
Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444
Article
Google Scholar
Lightbourne, J.H., Rankin, S.: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93(2), 328–337 (1983). https://doi.org/10.1016/0022-247X(83)90178-6
Article
MathSciNet
MATH
Google Scholar
Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
Article
MathSciNet
Google Scholar
Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7
Article
MathSciNet
Google Scholar
Wang, J., Feckan, M., Zhou, Y.: Controllability of Sobolev type fractional evolution systems. Dyn. Partial Differ. Equ. 11(1), 71–87 (2014). https://doi.org/10.4310/DPDE.2014.v11.n1.a4
Article
MathSciNet
MATH
Google Scholar
Abdelouaheb, A.: Asymptotic stability in Caputo–Hadamard fractional dynamic equations. Results Nonlinear Anal. 4(2), 77–86 (2021)
Article
Google Scholar
Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo–Fabrizio fractional differential equations in b-metric spaces. Open Math. 19(1), 363–372 (2021). https://doi.org/10.1515/math-2021-0040
Article
MathSciNet
Google Scholar
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1< r < 2\). Math. Comput. Simul. 190, 1003–1026 (2021). https://doi.org/10.1016/j.matcom.2021.06.026
Article
MathSciNet
Google Scholar
Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217(16), 6981–6989 (2011). https://doi.org/10.1016/j.amc.2011.01.107
Article
MathSciNet
MATH
Google Scholar
Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7647
Article
Google Scholar
Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154, 292–302 (2012). https://doi.org/10.1007/s10957-012-9999-3
Article
MathSciNet
MATH
Google Scholar
Benchora, M., Alssani, K., Nieto, J.: Controllability for impulsive fractional evolution inclusions with state-dependent delay. Adv. Theory Nonlinear Anal. Appl. 3(1), 18–34 (2019). https://doi.org/10.31197/atnaa.494662
Article
Google Scholar
Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259(1), 94–114 (2001). https://doi.org/10.1006/jmaa.2000.7392
Article
MathSciNet
MATH
Google Scholar
Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010). https://doi.org/10.1016/j.camwa.2009.06.026
Article
MathSciNet
MATH
Google Scholar
Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Dekker, New York (1980)
MATH
Google Scholar
O’Regan, D., Precup, R.: Existence criteria for integral equations in Banach spaces. J. Inequal. Appl. 6(1), 77–97 (2001)
MathSciNet
MATH
Google Scholar
Monch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4(5), 985–999 (1980). https://doi.org/10.1016/0362-546X(80)90010-3
Article
MathSciNet
MATH
Google Scholar
Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162(2), 494–505 (1991). https://doi.org/10.1016/0022-247X(91)90164-U
Article
MathSciNet
MATH
Google Scholar
Byszewski, L., Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10(3), 265–271 (1997). https://doi.org/10.1155/S1048953397000336
Article
MathSciNet
MATH
Google Scholar