In this section, we solve problem (1.1) by using the fractional Tikhonov method. The ideas of this method are based on the work of Hochstenbach in [33] or Yang in [31]. We use two kinds of fractional Tikhonov regularization methods to solve (1.1) as follows:
$$\begin{aligned} \min_{f \in L^{2}(\Omega )} \bigl\{ \Vert P f - \ell \Vert ^{2}_{Y} + \bigl[ \gamma (\epsilon )\bigr] \Vert f \Vert ^{2} \bigr\} , \end{aligned}$$
(4.1)
in which \(\|\cdot \|_{Y}\) is a weighted seminorm as \(\|\sigma \|_{Y} = \| Y^{\frac{1}{2}} \sigma \|\) for any σ. We propose
$$\begin{aligned} Y = \bigl( P^{*} P \bigr)^{\frac{a-1}{2}} . \end{aligned}$$
(4.2)
With the Tikhonov minimization problem (4.1) with Y defined by (4.2) given by
$$\begin{aligned} \bigl( \bigl( P^{*} P \bigr)^{\frac{a+1}{2}} + \bigl[ \gamma (\epsilon )\bigr] I \bigr) f^{[\gamma (\epsilon )]} = \bigl( P^{*}P \bigr)^{\frac{a-1}{2}} P^{*} \ell, \end{aligned}$$
(4.3)
the solution of (4.3) is uniquely determined for any \(\gamma > 0\) and \(a > 0\). It is obvious to see that the formula of \(f^{[\gamma (\epsilon )]_{1}}\) is as follows:
$$\begin{aligned} f^{[\gamma (\epsilon )]_{1}}(x) = \sum_{j=1}^{\infty } \frac{ \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi (z)\,dz ) \,dt \vert ^{a} }{ [\gamma (\epsilon )]_{1} + \vert \int _{0}^{T} ( \int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi (z)\,dz ) \,dt \vert ^{a+1}} \langle \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.4)
We have the fractional Tikhonov regularized solution
$$\begin{aligned} f^{[\gamma (\epsilon )]_{1}}_{\epsilon }(x) = \sum _{j=1}^{ \infty } \frac{ \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi _{\epsilon }(z)\,dz ) \,dt \vert ^{a} }{ [\gamma (\epsilon )]_{1} + \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi _{\epsilon }(z)\,dz ) \,dt \vert ^{a+1}} \langle \ell _{\epsilon },\mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.5)
Refer to [34], another type of fractional Tikhonov regularized solution is given by the following formula:
$$\begin{aligned} f^{[\gamma (\epsilon )]_{2}}(x) = \sum_{j=1}^{\infty } \frac{ \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi (z)\,dz ) \,dt \vert ^{2a-1} }{ [\gamma (\epsilon )]_{2} + \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi (z)\,dz ) \,dt \vert ^{2a}} \langle \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x), \end{aligned}$$
(4.6)
where \([\gamma (\epsilon )]_{2}\) is the regularized parameter, with \(\frac{1}{2} \leq a < 1\). For the noisy data, we get
$$\begin{aligned} f^{[\gamma (\epsilon )]_{2}}_{\epsilon }(x) = \sum _{j=1}^{ \infty } \frac{ \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi _{\epsilon }(z)\,dz ) \,dt \vert ^{2a-1} }{ [\gamma (\epsilon )]_{2} + \vert \int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi _{\epsilon }(z)\,dz ) \,dt \vert ^{2a}} \langle \ell _{\epsilon },\mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.7)
Putting \(|\int _{0}^{T} (\int _{0}^{t} \mathcal{C}_{j}(\beta,t-z)\varphi (z)\,dz ) \,dt | = \mathcal{D}_{j}( \beta,\varphi )\), we have
$$\begin{aligned} f^{[\gamma (\epsilon )]_{1}}(x) = \sum_{j=1}^{\infty } \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a}}{ [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1}} \langle \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x) \end{aligned}$$
(4.8)
and
$$\begin{aligned} f^{[\gamma (\epsilon )]_{2}}(x) = \sum_{j=1}^{\infty } \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a-1} }{ [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a}} \langle \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.9)
Next, we continue to investigate the convergence rates in two various cases.
4.1 The choices of regularization parameter \([\gamma (\epsilon )]_{j},j=1,2\), and convergence results
4.1.1 An a priori parameter choice rule
Theorem 4.1
Let the function f be as in formula (2.5), and assume that condition (1.2) holds. Suppose that a priori condition (3.11) holds. By choosing the parameter regularization as follows:
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )}\quad \textit{is of order } \textstyle\begin{cases} \epsilon ^{\frac{\delta }{\delta +2}}& \textit{if } 0 < \delta < 2a + 2, \\ \epsilon ^{\frac{a+1}{a+2}}& \textit{if } \delta \geq 2a+2. \end{cases}\displaystyle \end{aligned}$$
(4.10)
Proof
We get
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )} \leq \underbrace{ \bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f^{[\gamma (\epsilon )]_{1}} \bigr\Vert _{L^{2}(\Omega )}}_{ \mathcal{K}_{1}} + \underbrace{ \bigl\Vert f^{[\gamma (\epsilon )]_{1}} - f \bigr\Vert _{L^{2}(\Omega )}}_{ \mathcal{K}_{2}} . \end{aligned}$$
Next, we evaluate \(\mathcal{K}_{1}\) for the error assessment:
$$\begin{aligned} &f_{\epsilon }^{[\gamma (\epsilon )]_{1}}(x) - f^{[\gamma (\epsilon )]_{1}}(x) \\ &\quad=\sum _{j=1}^{\infty } \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a} }{ [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1}} \langle \ell _{\epsilon } - \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x) \\ &\qquad{}+ \sum_{j=1}^{\infty } \biggl[ \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a} }{[\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} } - \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a} }{[\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} } \biggr] \langle \ell, \mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.11)
Squaring the two sides, getting the standard in space \(L^{2}(\Omega )\), applying a familiar inequality, we have
$$\begin{aligned} \mathcal{K}_{1}^{2} \leq {}&\frac{2 \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2} } \Vert \ell -\ell _{\epsilon } \Vert ^{2}_{L^{2}(\Omega )} \} { \mathcal{S}_{1}^{2}} \\ &{}+ \frac{4 [\gamma (\epsilon )]^{2}_{1} [ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a} - \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a} ]^{2}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2} \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} \vert ^{2} } \bigl\vert \langle \ell, \mathit{e}_{j} \rangle \bigr\vert ^{2} \} { \mathcal{S}_{2}^{2}} \\ &{}+ \frac{4 \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert \mathcal{D}_{j}(\beta,\varphi - \varphi _{\epsilon }) \vert ^{2} }{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2} \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} \vert ^{2} } \bigl\vert \langle \ell, \mathit{e}_{j} \rangle \bigr\vert ^{2} \} { \mathcal{S}^{2}_{3}}. \end{aligned}$$
(4.12)
Step 1: Estimate \(\mathcal{S}_{1}\) by denoting \(Q(\mathcal{M},T,\beta ) = \frac{\mathcal{M}^{2} T^{2\beta +2} }{2\beta -1}\), and \(\mathcal{B}_{0}^{1}\) is defined in Lemma 2.6. Combining the Holder inequality, we have
$$\begin{aligned} \mathcal{S}_{1}^{2} &\leq 2 \bigl[B_{0}^{1} \bigr]^{2a} \bigl[Q( \mathcal{M},T,\beta ) \bigr]^{2a} \lambda _{j}^{-2a} \biggl\vert \frac{ \lambda _{j}^{a+1} \Vert \ell _{\epsilon }-\ell \Vert _{L^{2}(\Omega )}}{ [\gamma (\epsilon )]_{1} \lambda _{j}^{a+1} + \vert 8^{-1} \mathcal{A}_{0} \vert ^{a+1} \vert T^{2}\widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{a+1} } \biggr\vert ^{2} \\ &\leq 2\epsilon ^{2} \bigl[B_{0}^{1} \bigr]^{2a} \bigl[Q(\mathcal{M},T, \beta ) \bigr]^{2a} \lambda _{j}^{2} \bigl\vert \bigl[\gamma (\epsilon ) \bigr]_{1} \lambda _{j}^{a+1} + \bigl(8^{-1} \mathcal{A}_{0} \bigr)^{a+1} \bigl\vert T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) \bigr\vert ^{a+1} \bigr\vert ^{-2} \\ &\leq 2\epsilon ^{2} \bigl[B_{0}^{1} \bigr]^{2a} \bigl[Q(\mathcal{M},T, \beta ) \bigr]^{2a} \biggl( \frac{8}{\mathcal{A}_{0} T^{2} \widetilde{C}(\tau,\beta,\lambda _{1})} \biggr)^{2a} a^{\frac{2a}{a+1}} \bigl[\gamma (\epsilon )\bigr]^{-\frac{2}{a+1}}. \end{aligned}$$
(4.13)
Step 2: Estimate \(\mathcal{S}_{2}\) as follows. Before going into evaluation \(\mathcal{S}_{2}^{2}\), we have inequality for \(a \in (0,1)\), \(0 < y_{0} < y_{1}\), then \(|y_{1}^{a} - y_{0}^{a} | \leq |y_{1} - y_{0} |^{a}\), this implies that
$$\begin{aligned} \bigl\vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \bigr\vert ^{a} - \bigl\vert \mathcal{D}_{j}(\beta,\varphi ) \bigr\vert ^{a} \leq \bigl\vert \mathcal{D}_{j}( \beta, \varphi _{\epsilon } - \varphi ) \bigr\vert ^{a} \leq \epsilon ^{a} \bigl\vert \mathcal{D}_{j}(\beta ) \bigr\vert ^{a}. \end{aligned}$$
From Lemma 2.10, we denote \(Q_{2}^{2} = \frac{4 \mathcal{A}_{1}}{(8^{-1}\mathcal{A}_{0})^{2a+2}}\), we have
$$\begin{aligned} \mathcal{S}_{2}^{2} &\leq \frac{4 [\gamma (\epsilon )]^{2}_{1} [ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a} - \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a} ]^{2}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2} \times \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} \vert ^{2} } \bigl\vert \langle \ell,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &\leq \epsilon ^{2a} {Q}_{2}^{2} \biggl( \frac{[\gamma (\epsilon )]_{1}\lambda _{j}^{-\frac{\delta }{2}}}{ [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \epsilon ^{2a} {Q}_{2}^{2} \biggl( \frac{[\gamma (\epsilon )]_{1} \lambda _{j}^{a+1-\frac{\delta }{2}}}{ [\gamma (\epsilon )]_{1} \lambda _{j}^{a+1} + \vert (8^{-1}\mathcal{A}_{0})^{a+1} T^{2}\widetilde{C}(\beta,\tau,\lambda _{1}) \vert ^{a+1} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \epsilon ^{2a} {Q}_{2}^{2} \sup _{j \geq 1} \biggl( \frac{[\gamma (\epsilon )]_{1}\lambda _{j}^{a+1-\frac{\delta }{2}}}{ [\gamma (\epsilon )]_{1} \lambda _{j}^{a+1} + \vert (8^{-1}\mathcal{A}_{0} )^{a+1} T^{2}\widetilde{C}(\beta,\tau,\lambda _{1}) \vert ^{a+1} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \epsilon ^{2a} {Q}_{2}^{2}\textstyle\begin{cases} C^{2}_{2} [\gamma (\epsilon )]_{1}^{\frac{2\delta }{2a+2}} R^{2},& 0 < \delta < 2a + 2, \\ C^{2}_{3} [\gamma (\epsilon )]_{1}^{2} R^{2},& \delta \geq 2a+2. \end{cases}\displaystyle \end{aligned}$$
(4.14)
Step 3: Applying Lemma 2.7, \(\mathcal{S}_{3}^{2}\) can be bounded:
$$\begin{aligned} \mathcal{S}_{3}^{2} \leq{}& 4 \bigl\vert \mathcal{D}_{j}(\beta,\varphi - \varphi _{\epsilon }) \bigr\vert ^{2} \\ &{} \times \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2}} \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a+2}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} \vert ^{2}} \frac{ \vert \langle \ell,\mathit{e}_{j} \rangle \vert ^{2}}{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2}} \\ \leq {}&4\epsilon ^{2} \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{a+1} \vert ^{2}} \lambda _{j}^{-\delta } \bigl\vert \mathcal{D}_{j}(\beta ) \bigr\vert ^{2} \frac{\lambda _{j}^{\delta } \vert \langle \ell,\mathit{e}_{j} \rangle \vert ^{2}}{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2}} \\ \leq{}& 4\epsilon ^{2} \bigl[\mathcal{B}_{0}^{1} \bigr]^{2a} \biggl\vert \frac{ [ \vert \mathcal{D}_{j}(\beta ) \vert ^{2} ]^{\frac{a+1}{2}} }{ [\gamma (\epsilon )]_{1} + (8^{-1}\mathcal{A}_{0})^{a+1} \vert \frac{T^{2}\widetilde{C}(\tau,\beta,\lambda _{1})}{\lambda _{j}} \vert ^{a+1} } \biggr\vert ^{2} \lambda _{j}^{\delta } \bigl\vert \langle f, \mathit{e}_{j} \rangle \bigr\vert ^{2}. \end{aligned}$$
(4.15)
From the estimation of (3.3), denoting \({Q}_{3} = \frac{4}{\lambda _{1}^{2+\delta }} [\mathcal{B}_{0}^{1}]^{2a} (\frac{\mathcal{A}_{1}\mathcal{M}T^{2\beta +2}}{2\beta -1} )^{2(a+1)}\), we get
$$\begin{aligned} \mathcal{S}_{3}^{2} &\leq \epsilon ^{2}4 \bigl[ \mathcal{B}_{0}^{1}\bigr]^{2a} \biggl( \frac{\mathcal{A}_{1}\mathcal{M}T^{2\beta +2}}{2\beta -1} \biggr)^{2(a+1)} \biggl( \frac{ \lambda _{j}^{- a - 1 - \frac{\delta }{2} } }{ [\gamma (\epsilon )]_{1} + \vert \frac{(8^{-1}\mathcal{A}_{0})T^{2}\widetilde{C}(\tau,\beta,\lambda _{1})}{\lambda _{j}} \vert ^{a+1} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq Q^{2}_{3} \epsilon ^{2} \sup _{j \geq 1} \biggl( \frac{\lambda _{j} }{ [\gamma (\epsilon )]_{1} \lambda _{j}^{a+1} + \vert (8^{-1}\mathcal{A}_{0})T^{2}\widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{a+1}} \biggr)^{2} \Vert f \Vert _{\mathbb{H}^{\delta }(\Omega )}^{2} \\ &\leq Q^{2}_{3} \epsilon ^{2} \bigl[\gamma ( \epsilon )\bigr]^{-\frac{2}{a+1}} R^{2}. \end{aligned}$$
(4.16)
Combining (4.13), (4.14), and (4.15), we receive
$$\begin{aligned} \mathcal{K}_{1} \leq{}& \sqrt{2}\epsilon \bigl[B_{0}^{1} \bigr]^{a} \bigl[Q( \mathcal{M},T,\beta ) \bigr]^{a} \biggl( \frac{8}{\mathcal{A}_{0} T^{2} \widetilde{C}(\tau,\beta,\lambda _{1})} \biggr)^{a} a^{\frac{a}{a+1}} \bigl[\gamma ( \epsilon )\bigr]^{-\frac{1}{a+1}} + \epsilon Q_{3}R \\ &{} + \epsilon ^{a}Q_{2} \textstyle\begin{cases} C_{2} [\gamma (\epsilon )]_{1}^{\frac{\delta }{2a+2}} R,& 0 < \delta < 2a + 2, \\ C_{3} [\gamma (\epsilon )]_{1} R,& \delta \geq 2a+2. \end{cases}\displaystyle \end{aligned}$$
(4.17)
And we show the error estimation for \(\mathcal{K}_{2}\):
$$\begin{aligned} \mathcal{K}_{2}= \sum_{j=1}^{\infty } \biggl( \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a} }{ [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1}} - \frac{1}{\mathcal{D}_{j}(\beta,\varphi )} \biggr) \langle \ell, \mathit{e}_{j} \rangle\mathit{e}_{j}(x). \end{aligned}$$
(4.18)
Finally, we estimate \(\mathcal{K}_{2}\). Squaring the two sides, using the Cauchy inequality, we get
$$\begin{aligned} \mathcal{K}_{2}^{2} &\leq \sum _{j=1}^{\infty } \biggl( \frac{[\gamma (\epsilon )]_{1}}{ \vert [\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1} \vert } \biggr)^{2} \frac{ \vert \langle \ell,\mathit{e}_{j} \rangle \vert ^{2}}{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2} } \\ &\leq \sum_{j=1}^{\infty } \biggl\vert \frac{[\gamma (\epsilon )]_{1} \lambda _{j}^{-\frac{\delta }{2}}}{[\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{a+1}} \biggr\vert ^{2} \lambda _{j}^{\delta } \bigl\vert \langle f,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &\leq \sup_{j \geq 1} \biggl( \frac{ [\gamma (\epsilon )]_{1} \lambda _{j}^{-\frac{\delta }{2}} }{ [\gamma (\epsilon )]_{1} + \vert \frac{\mathcal{A}_{0}T^{2} \widetilde{C}(\tau,\beta,\lambda _{1})}{2\lambda _{j}} \vert ^{a+1}} \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \sup_{j \geq 1} \biggl( \frac{[\gamma (\epsilon )]_{1} \lambda _{j}^{a+1-\frac{\delta }{2}}}{ [\gamma (\epsilon )]_{1} \lambda _{j}^{a+1} + \vert (2^{-1}\mathcal{A}_{0})T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{a+1} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \textstyle\begin{cases} C^{2}_{2} [\gamma (\epsilon )]_{1}^{\frac{2\delta }{2a+2}} R^{2},& 0 < \delta < 2a + 2, \\ C^{2}_{3} [\gamma (\epsilon )]_{1}^{2} R^{2},& \delta \geq 2a+2. \end{cases}\displaystyle \end{aligned}$$
(4.19)
From estimation for \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\), we conclude the following:
-
(i)
If \(0 < \delta < 2a +2\), then
$$\begin{aligned} &\bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )} \\ &\quad\leq\sqrt{2}\epsilon \bigl[B_{0}^{1} \bigr]^{a} \bigl[Q( \mathcal{M},T,\beta ) \bigr]^{a} \biggl( \frac{8}{\mathcal{A}_{0} T^{2} \widetilde{C}(\tau,\beta,\lambda _{1})} \biggr)^{a} a^{\frac{a}{a+1}} \bigl[\gamma (\epsilon )\bigr]^{-\frac{1}{a+1}} \\ &\qquad {}+ \epsilon R Q_{3} + \bigl(\epsilon ^{a}{Q}_{2}+1 \bigr) C_{2} \bigl[\gamma ( \epsilon )\bigr]_{1}^{\frac{\delta }{2a+2}}R. \end{aligned}$$
(4.20)
-
(ii)
If \(\delta \geq 2 a + 2\), then
$$\begin{aligned} &\bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )} \\ &\quad\leq \sqrt{2}\epsilon \bigl[B_{0}^{1} \bigr]^{a} \bigl[Q( \mathcal{M},T,\beta ) \bigr]^{a} \biggl( \frac{8}{\mathcal{A}_{0} T^{2} \widetilde{C}(\tau,\beta,\lambda _{1})} \biggr)^{a} a^{\frac{a}{a+1}} \bigl[\gamma (\epsilon )\bigr]^{-\frac{1}{a+1}} \\ &\qquad{} + \epsilon R Q_{3} + \bigl(\epsilon ^{a}{Q}_{2}+1 \bigr) C_{3} \bigl[\gamma ( \epsilon )\bigr]_{1} R. \end{aligned}$$
(4.21)
The regularization parameter \([\gamma (\epsilon )]_{1}\) by
$$\begin{aligned} \bigl[\gamma (\epsilon ) \bigr]_{1} = \textstyle\begin{cases} (\frac{\epsilon }{R} )^{\frac{2a+2}{\delta +2}},& 0 < \delta < 2a + 2, \\ (\frac{\epsilon }{R} )^{\frac{a+1}{a+2}},& \delta \geq 2a+2. \end{cases}\displaystyle \end{aligned}$$
(4.22)
Hence, we conclude the following:
-
(i)
If \(0 < \delta < 2a +2\), then
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}(\Omega )} \leq \text{ is of order } \epsilon ^{\frac{\delta }{\delta +2}}. \end{aligned}$$
(4.23)
-
(ii)
If \(\delta \geq 2 a + 2\), then
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{1}}_{\epsilon } - f \bigr\Vert _{L^{2}(\Omega )} \leq \text{is of order } \epsilon ^{\frac{a+1}{a+2}}. \end{aligned}$$
(4.24)
Proof is completed. □
Theorem 4.2
Let f be as (2.5) and \(f^{[\gamma (\epsilon )]_{2}}_{\epsilon }\) be given by (4.7). Suppose that condition (1.2) holds. f satisfies condition (3.11). By choosing
$$\begin{aligned} \bigl[\gamma (\epsilon )\bigr]_{2} = \textstyle\begin{cases} (\frac{\epsilon }{R} )^{\frac{4a}{\delta +2}},& 0 < \delta < 4a, \\ (\frac{\epsilon }{R} )^{\frac{2a}{1+2a}},& \delta \geq 4a, \end{cases}\displaystyle \end{aligned}$$
(4.25)
we have
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )}\quad \textit{is of order } \textstyle\begin{cases} \epsilon ^{\frac{\delta }{\delta +2}}& \textit{if } 0 < \delta < 4a, \\ \epsilon ^{\frac{2a}{1+2a}}& \textit{if } \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
Proof
We have
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )} \leq \bigl\Vert f^{[\gamma (\epsilon )]_{2}}_{\epsilon } - f^{[ \gamma (\epsilon )]_{2}} \bigr\Vert _{L^{2}(\Omega )} + \bigl\Vert f^{[\gamma ( \epsilon )]_{2}} - f \bigr\Vert _{L^{2}(\Omega )}. \end{aligned}$$
(4.26)
First of all, we receive
$$\begin{aligned} & f_{\epsilon }^{[\gamma (\epsilon )]_{2}}(x) - f^{[\gamma (\epsilon )]_{2}}(x) \\ &\quad= \sum _{j=1}^{\infty } \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a-1} }{ [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a}} \langle \ell _{\epsilon } - \ell,\mathit{e}_{j} \rangle \mathit{e}_{j}(x) \\ &\qquad{}+ \sum_{j=1}^{\infty } \biggl( \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a-1} }{[\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} } - \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a-1} }{[\gamma (\epsilon )]_{1} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} } \biggr) \langle \ell, \mathit{e}_{j} \rangle \mathit{e}_{j}(x). \end{aligned}$$
(4.27)
Square the two sides, get the standard in \(L^{2}(\Omega )\) space, it gives
$$\begin{aligned} &\bigl\Vert f_{\epsilon }^{[\gamma (\epsilon )]_{2}} - f^{[\gamma (\epsilon )]_{2}} \bigr\Vert ^{2}_{L^{2}(\Omega )} \\ &\quad\leq \frac{2 \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{4a-2} }{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2} } \Vert \ell _{\epsilon }-\ell \Vert ^{2}_{L^{2}(\Omega )} \} \mathcal{P}_{1}^{2} \\ & \qquad{}+ \frac{4 [\gamma (\epsilon )]^{2}_{2} [ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a-1} - \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a-1} ]^{2}}{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2} \times \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert ^{2} } \bigl\vert \langle \ell,\mathit{e}_{j} \rangle \bigr\vert ^{2} \} \mathcal{P}_{2}^{2} \\ &\qquad {}+ \frac{4 \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{4a-2} \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{4a-2} \vert \mathcal{D}_{j}(\beta,\varphi - \varphi _{\epsilon }) \vert ^{2} }{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2} \times \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert ^{2} } \bigl\vert \langle \ell,\mathit{e}_{j} \rangle \bigr\vert ^{2} \} \mathcal{P}_{3}^{2}. \end{aligned}$$
(4.28)
Step 1. Estimate \(\mathcal{P}^{2}_{1}\) by denoting \({Q}_{4}^{2} = 2 [\mathcal{B}_{0}^{1} ]^{4a-2} [Q( \mathcal{M},T,\beta ) ]^{2a-1} | (8^{-1}\mathcal{A}_{0}) T^{2}\widetilde{C}(\tau,\beta, \lambda _{1}) |^{4a-2} \frac{ (2a-1)^{2-a} }{(2a)^{2}}\), using Lemma 2.9, we get
$$\begin{aligned} \mathcal{P}_{1}^{2} &\leq 2 \epsilon ^{2} \bigl\vert \mathcal{D}_{j}(\beta, \varphi _{\epsilon }) \bigr\vert ^{4a-2} \bigl\vert \bigl[\gamma ( \epsilon )\bigr]_{2} + \bigl\vert \mathcal{D}_{j}(\beta, \varphi _{\epsilon }) \bigr\vert ^{2a} \bigr\vert ^{-2} \\ &\leq \epsilon ^{2} {Q}_{4}^{2} \lambda _{j}^{-4a+2} \biggl\vert \frac{ \lambda _{j}^{2a} }{ [\gamma (\epsilon )]_{2} \lambda _{j}^{2a} + (8^{-1} \mathcal{A}_{0} )^{2a} \vert T^{2}\widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{2a} } \biggr\vert ^{2} \\ &\leq \epsilon ^{2} {Q}_{4}^{2} \lambda _{j}^{2} \bigl\vert \bigl[\gamma ( \epsilon ) \bigr]_{2} \lambda _{j}^{2a} + \bigl(8^{-1} \mathcal{A}_{0} \bigr)^{2a} \bigl\vert T^{2}\widetilde{C}(\tau,\beta,\lambda _{1}) \bigr\vert ^{2a} \bigr\vert ^{-2} \\ &\leq \epsilon ^{2} {Q}_{4}^{2} \bigl[\gamma ( \epsilon )\bigr]_{2}^{- \frac{1}{a}}. \end{aligned}$$
(4.29)
Step 2. Estimate \(\mathcal{P}^{2}_{2}\) by noting \(a \in [\frac{1}{2},1 )\) and \(Q_{5}^{2} = 4 \mathcal{A}_{1}^{2} (4^{-1}\mathcal{A}_{0} )^{4a-2} \lambda _{1}^{-4a} [Q(\mathcal{M},T,\beta ) ]^{2a} \), using Lemma 2.9, we get
$$\begin{aligned} \mathcal{P}^{2}_{2} &\leq \frac{4 [\gamma (\epsilon )]^{2}_{2} [ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a-1} - \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a-1} ]^{2}}{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2} \times \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert ^{2} } \bigl\vert \langle \ell,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &\leq 4\bigl[\gamma (\epsilon )\bigr]^{2}_{2} \frac{|\mathcal{D}_{j}(\beta,\varphi _{\epsilon }|^{4a-2}}{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2}} \frac{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2}}{\lambda _{j}^{\delta }} \frac{ \vert \langle \ell,\mathit{e}_{j} \rangle \vert ^{2}}{ \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2}} \\ &\leq 4 \bigl(4^{-1}\mathcal{A}_{0} \bigr)^{4a-2} \mathcal{A}_{1}^{2} \frac{[\gamma (\epsilon )]^{2}_{2} \vert \mathcal{D}_{j}(\beta ) \vert ^{4a}}{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2}} \lambda _{j}^{-\delta } \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \end{aligned}$$
(4.30)
From (4.30), it gives
$$\begin{aligned} \mathcal{P}_{2}^{2} &\leq Q_{5}^{2} \biggl( \frac{[\gamma (\epsilon )]_{2}\lambda _{j}^{2a-\frac{\delta }{2}}}{ [\gamma (\epsilon )]_{2} \lambda _{j}^{2a} + \vert (8^{-1}\mathcal{A}_{0} ) T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{2a} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq Q^{2}_{5} \sup_{j \geq 1} \biggl( \frac{[\gamma (\epsilon )]_{2} \lambda _{j}^{2a-\frac{\delta }{2}} }{ [\gamma (\epsilon )]_{2} \lambda _{j}^{2a} + (8^{-1}\mathcal{A}_{0} )|T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) ]^{2a} } \biggr)^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq Q^{2}_{5}\textstyle\begin{cases} C_{6}^{2} [\gamma (\epsilon )]^{\frac{\delta }{2a}} R^{2},& 0 < \delta < 4a, \\ C_{7}^{2} [\gamma (\epsilon )]^{2}R^{2},& \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
(4.31)
Step 3. Before estimating \(\mathcal{P}_{3}^{2}\), denoting \(Q_{6}^{2} = \frac{4 (8^{-1}\mathcal{A}_{0} )^{4a-2}}{\lambda _{1}^{2a+\delta +2}} [Q(\mathcal{M},T,\beta )]^{2a} | (8^{-1}\mathcal{A}_{0} )T^{2}\widetilde{C}(\tau, \beta, \lambda _{1}) |^{4a-2} \frac{ (2a-1)^{2-a} }{(2a)^{2}}\), we get
$$\begin{aligned} \mathcal{P}_{3}^{2} \leq{}& \epsilon ^{2} \frac{4 \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{4a-2} \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{4a-2} \vert \mathcal{D}_{j}(\beta,t,T) \vert ^{2} }{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} \vert ^{2} \times \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert ^{2} } \bigl\vert \langle \ell, \mathit{e}_{j} \rangle \bigr\vert ^{2} \\ \leq {}&\epsilon ^{2} 4 \biggl\vert \frac{ \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a-1}}{ [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi _{\epsilon }) \vert ^{2a} } \biggr\vert ^{2} \bigl\vert \mathcal{D}_{j}(\beta ) \bigr\vert ^{2} \bigl\vert \langle f, \mathit{e}_{j} \rangle \bigr\vert ^{2} \\ \leq{}& \epsilon ^{2} 4 \mathcal{A}_{1}^{4a-2} \bigl(4^{-1}\mathcal{A}_{0} \bigr)^{4a-2} \biggl( \frac{\mathcal{M}^{2} T^{2\beta +2}}{2\beta -1} \biggr)^{4a} \frac{1}{\lambda _{j}^{8a+\delta }} \lambda _{j}^{\delta } \bigl\vert \langle f,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ \leq{}& \epsilon ^{2} 4 \bigl(4^{-1}\mathcal{A}_{0} \bigr)^{4a-2} \frac{ [Q(\mathcal{M},T,\beta ) ]^{2a} }{\lambda _{j}^{2a+\delta +2}} \lambda _{j}^{\delta } \bigl\vert \langle f,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &{} \times \lambda _{j}^{2} \bigl\vert \bigl[\gamma ( \epsilon )\bigr]_{2} \lambda _{j}^{2a} + \bigl\vert \bigl(8^{-1}\mathcal{A}_{0} \bigr)T^{2} \widetilde{C}(\tau,\beta, \lambda _{1}) \bigr\vert ^{2a} \bigr\vert ^{-2} \\ \leq{}& \epsilon ^{2} Q_{6}^{2} \bigl[\gamma ( \epsilon )\bigr]_{2}^{-\frac{1}{a}} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )}. \end{aligned}$$
(4.32)
Combining (4.27) to (4.32), we conclude that
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}}_{\epsilon } - f^{[\gamma (\epsilon )]_{2}} \bigr\Vert _{L^{2}(\Omega )} \leq {}&\epsilon \bigl[\gamma (\epsilon ) \bigr]_{2}^{- \frac{1}{2a}} \bigl( {Q}_{4}^{2} +Q_{6}^{2} \Vert f \Vert _{\mathbb{H}^{\delta }( \Omega )}^{2} \bigr)^{\frac{1}{2}} \\ &{}+ Q_{5}\textstyle\begin{cases} C_{6} [\gamma (\epsilon )]^{\frac{\delta }{4a}} R,& 0 < \delta < 4a, \\ C_{7} [\gamma (\epsilon )] R,& \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
(4.33)
Next, we estimate \(\|f^{[\gamma (\epsilon )]_{2}} - f \|_{L^{2}(\Omega )}\):
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}} - f \bigr\Vert _{L^{2}(\Omega )} & \leq \sum_{j=1}^{\infty } \biggl\vert \frac{-[\gamma (\epsilon )]_{2}\lambda _{j}^{\frac{\delta }{2}}}{ \vert [\gamma (\epsilon )]_{2} + \vert \mathcal{D}_{j}(\beta,\varphi ) \vert ^{2a} \vert } \biggr\vert ^{2} \lambda _{j}^{\delta } \bigl\vert \langle f,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &\leq \sum_{j=1}^{\infty } \biggl\vert \frac{[\gamma (\epsilon )]_{2} \lambda _{j}^{2a-\frac{\delta }{2}} }{ [\gamma (\epsilon )]_{2} \lambda _{j}^{2a} + \vert \mathcal{A}_{0}T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{2a} } \biggr\vert ^{2} \lambda _{j}^{\delta } \bigl\vert \langle f,\mathit{e}_{j} \rangle \bigr\vert ^{2} \\ &\leq \sup_{j \geq 1} \biggl\vert \frac{[\gamma (\epsilon )]_{2} \lambda _{j}^{2a-\frac{\delta }{2}} }{ [\gamma (\epsilon )]_{2} \lambda _{j}^{2a} + \vert \mathcal{A}_{0}T^{2} \widetilde{C}(\tau,\beta,\lambda _{1}) \vert ^{2a} } \biggr\vert ^{2} \Vert f \Vert ^{2}_{\mathbb{H}^{\delta }(\Omega )} \\ &\leq \textstyle\begin{cases} C_{6}^{2} [\gamma (\epsilon )]^{\frac{\delta }{2a}} R^{2},& 0 < \delta < 4a, \\ C_{7}^{2} [\gamma (\epsilon )]^{2} R^{2},& \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
(4.34)
Combining (4.33) to (4.34), we conclude that
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}}_{\epsilon } - f \bigr\Vert _{L^{2}( \Omega )} \leq {}&\epsilon \bigl[\gamma (\epsilon )\bigr]_{2}^{-\frac{1}{2a}} \bigl( {Q}_{4}^{2} +Q_{6}^{2} \Vert f \Vert _{\mathbb{H}^{\delta }(\Omega )}^{2} \bigr)^{\frac{1}{2}} \\ &{}+ (Q_{5}+1 )\textstyle\begin{cases} C_{6} [\gamma (\epsilon )]^{\frac{\delta }{4a}} R,& 0 < \delta < 4a, \\ C_{7} [\gamma (\epsilon )] R,& \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
(4.35)
By choosing the parameter regularization
$$\begin{aligned} \bigl[\gamma (\epsilon )\bigr]_{2} = \textstyle\begin{cases} (\frac{\epsilon }{R} )^{\frac{4a}{\delta +2}},& 0 < \delta < 4a, \\ (\frac{\epsilon }{R} )^{\frac{2a}{1+2a}},& \delta \geq 4a. \end{cases}\displaystyle \end{aligned}$$
(4.36)
From (4.35) and (4.36), we conclude the following:
-
(i)
If \(0 < \delta < 4a\), then
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}} - f \bigr\Vert _{L^{2}(\Omega )} &\leq Q_{7} \epsilon ^{\frac{\delta }{\delta +2}} R^{\frac{2}{\delta +2}}, \end{aligned}$$
(4.37)
where \(Q_{7} = ( Q_{5} + 1 ) C_{6} + ( Q_{4}^{2} + Q_{6}^{2} \|f \|_{\mathbb{H}^{\delta }(\Omega )}^{2} )^{\frac{1}{2}} \).
-
(ii)
If \(\delta \geq 4a\), then
$$\begin{aligned} \bigl\Vert f^{[\gamma (\epsilon )]_{2}} - f \bigr\Vert _{L^{2}(\Omega )} &\leq Q_{8} \epsilon ^{\frac{2a}{2a+1}} R^{\frac{1}{2a+1}}, \end{aligned}$$
(4.38)
where \(Q_{8} = ( Q_{5} + 1 ) C_{7} + ( Q_{4}^{2} + Q_{6}^{2} \|f \|_{\mathbb{H}^{\delta }(\Omega )}^{2} )^{\frac{1}{2}} \).
□