- Research
- Open Access
- Published:
New discussion on nonlocal controllability for fractional evolution system of order \(1 < r < 2\)
Advances in Difference Equations volume 2021, Article number: 481 (2021)
Abstract
In this manuscript, we deal with the nonlocal controllability results for the fractional evolution system of \(1< r<2\) in a Banach space. The main results of this article are tested by using fractional calculations, the measure of noncompactness, cosine families, Mainardi’s Wright-type function, and fixed point techniques. First, we investigate the controllability results of a mild solution for the fractional evolution system with nonlocal conditions using the Mönch fixed point theorem. Furthermore, we develop the nonlocal controllability results for fractional integrodifferential evolution system by applying the Banach fixed point theorem. Finally, an application is presented for drawing the theory of the main results.
1 Introduction
Fractional differential equations have arisen as a new branch of applied mathematics that has been utilized to build a variety of mathematical models in science, signal, image processing, biological, control theory, engineering problems, etc. The reason for this is because fractional calculus may be used to create a realistic model of a physical occurrence that is dependent not only on the current instant, but also on the prior time history. Many authors have addressed the theory of the existence of solutions for fractional differential equations. For more specifics, refer to books [1–6] and the research articles [7–29].
In mathematical control theory, the concept of controllability is very important. Under the assumption that the system is controllable, many fundamental problems in control theory can be solved, such as pole assignment, stabilizability, and optimum control. It indicates that an acceptable control can be used to steer any system’s beginning state to any final state in a finite amount of time. Controllability is important in systems described by ordinary differential equations and partial differential equations in both finite and infinite dimensional environments. Significant progress has been achieved in the controllability of linear and nonlinear deterministic systems in recent years [30–41]. Physical issues prompted the concept of nonlocal situations. Byszewski established for the first time mild solutions to nonlocal differential equations for existence and uniqueness results in [42, 43]. In [44, 45] the authors developed the ideas in fractional evolution equations. Recently, the researchers established the nonlocal fractional differential systems with or without delay by referring to the nondense domain, semigroup, cosine families, several fixed point techniques, and a measure of noncompactness. Refer to the articles for more information [46–50].
In addition, integrodifferential equations are used in a variety of scientific fields where an aftereffect or delay must be considered, for example, in biology, control theory, ecology, and medicine. In practice, integrodifferential equations are always used to describe a model that has hereditary features, one can refer to the researcher’s articles [51–55].
In recent years, authors have signified controllability results of Caputo fractional evolution systems with order \(\alpha \in (1,2)\) referring to the cosine families, Laplace transforms, and different fixed point techniques [56]. Likewise, the researchers developed nonlocal conditions in fractional evolution inclusion with order \(\alpha \in (1,2)\) using the measure of noncompactness, condensing multivalued map, and Laplace transform [46]. For fractional evolution equations of order \(r \in (1,2)\) with delay or without delay, numerous researchers have proved their existence, exact and approximate controllability by applying the nonlocal conditions, mixed Volterra–Fredholm type, cosine families, measure of noncompactness, and different fixed point techniques [41, 48, 50, 51, 54]. Furthermore, in [30, 40, 49, 53, 57] the authors used the Sobolev type, hemivariational inequalities, stochastic systems, integrodifferential systems, Clarke’s subdifferential type, and various fixed point techniques to develop approximate controllability results for fractional evolution inclusions with or without delay of order \(1< r<2\).
Controllability results for fractional differential systems with the nonlocal condition of order \(1< r<2\) by referring to the thoughts of Mainardi’s Wright-type function, the measure of noncompactness, Mönch fixed point theorem, and cosine families are still untreated in the area [58]. The preceding facts are based on the current work. Hence, consider that the semilinear fractional evolution system of order \(1< r<2\) with nonlocal conditions has the form
where \({}^{C}D_{t}^{r}\) is the Caputo fractional derivative of order \(1< r<2\); A is the infinitesimal generator of a strongly continuous cosine family \(\{C(t)\}_{t \ge 0}\) in a Banach space Z. Let Y be another Banach space; the state z takes values in Z and the control function x is given in \(L^{2}(V,U)\), with U as a Banach space; B is a bounded linear operator from U into Z; \(g:V \times Z \rightarrow Z\) is a given Z-valued function, and nonlocal term \(F:C(V,Z) \rightarrow Z\) and \(z_{0}\), \(z_{1}\) are elements of space Z.
We partition our article into the following sections: We recall a few fundamental definitions and preparation results in Sect. 2. In Sect. 3, we present the controllability results for system (1.1). Further, we discuss another fixed point theorem for fractional integrodifferential evolution system in Sect. 4. Finally, an application is presented for drawing the law of the main results.
2 Preliminaries
Here, we present well-known essential facts, basic definitions, lemmas, and results.
Throughout this paper, we denote by \(\mathcal{C}\) the Banach space \(C(V,Z):V \rightarrow Z\) equipped with the sup-norm \(\|z\|_{\mathcal{C}}=\sup_{t \in V}\|z(t)\|\) for \(z \in \mathcal{C}\). \(L_{c}(Z,Y)\) stands for the space of all bounded linear operators from Z to Y equipped with \(\|\cdot \|_{L_{c}(Z,Y)}\).
The domain and range of an operator A are defined by \(D(A)\) and \(R(A)\) respectively, the resolvent set of A is denoted by \(\rho ({A})\) and the resolvent of A is defined by
Consider that \(\|g\|_{L^{\nu }(V,\mathbb{R}^{+})}\) denotes the \(L^{\nu }(V,\mathbb{R}^{+})\) norm of g whenever g in \(L^{\nu }(V,\mathbb{R}^{+})\), \(\nu \ge 1\). Let \(L^{\nu }(V,Z)\) denote the Banach space of function \(g: V \rightarrow Z\) is Bochner integrable normed by \(\|g\|_{L^{\nu }(V,Z)}\).
Definition 2.1
([3])
The Riemann–Liouville fractional integral of order γ with the lower limit zero for \(g:[0,\infty )\rightarrow \mathbb{R}\) is given by
if the right-hand side is point-wise defined on \([0,\infty )\).
Definition 2.2
([3])
The Riemann–Liouville derivative of order γ with the lower limit zero for \(g:[0,\infty )\rightarrow \mathbb{R}\) is given by
Definition 2.3
([3])
The Caputo derivative of order γ with the lower limit zero for g is given by
Remark 2.4
- \({\mathbf{(1)}}\) :
-
If \(g(t) \in C^{n}[0,\infty )\), then
$$\begin{aligned} {{}^{C}D^{\gamma }}g(t)=\frac{1}{\Gamma (n-\gamma )} \int _{0}^{t} \frac{g^{(n)}(s)}{(t-s)^{\gamma +1-n}}\,ds=I^{n-\gamma }g^{(n)}(t), \quad (t>0, n-1< \gamma < n). \end{aligned}$$ - \({\mathbf{(2)}}\) :
-
If g is an abstract function with values in Z, then the integrals that appear in Definitions 2.2 and 2.3 are taken in Bochner’s sense.
- \({\mathbf{(3)}}\) :
-
Caputo derivative of a constant function is equal to zero.
Definition 2.5
([59])
A one parameter family \(\{C(t)\}_{t\in \mathbb{R}}\) of bounded linear operators mapping Z into itself is said to be a strongly continuous cosine family if and only if
- \(\mathbf{(a)}\):
-
\(C(0) = I\);
- \(\mathbf{(b)}\):
-
\(C(s + t) + C(s - t) = 2C(s)C(t)\) for all \(s, t \in \mathbb{R}\);
- \(\mathbf{(c)}\):
-
\(C(t)z\) is strongly continuous in t on \(\mathbb{R}\) for each fixed point \(z\in Z\).
The sine family \(\{S(t)\}_{t\in \mathbb{R}}\) is associated with the strongly continuous cosine family \(\{C(t)\}_{t\in \mathbb{R}}\) which is defined by
Further, an operator A is said to be an infinitesimal generator of \(\{C(t)\}_{t\in \mathbb{R}}\) if
where the domain of A is defined by
Denote a set
Clearly, A is a closed, densely-defined operator in Z, there exists \(P\ge 1\) such that \(\|C(t)\|_{L_{c}(Z)}\le P\) for \(t \ge 0\). In the sequel, we always set \(b = \frac{r}{2}\) for \(r\in (1, 2)\), as stated in [5, 46].
Definition 2.6
([60])
Let \(N^{+}\) be the positive cone of an order Banach space \((N,\le )\). A function Θ defined on the set of all bounded subsets of the Banach space Z with values in \(N^{+}\) is said to be a measure of noncompactness on Z iff
for any bounded subsets \(\zeta \subset Z\), where \(\overline{co} \zeta \) denotes the closed convex hull of ζ.
The measure of noncompactness Θ is said to be:
- \(\mathbf{(i)}\):
-
monotone iff for all bounded subsets \(\zeta _{1}\), \(\zeta _{2}\) of Z, we get
$$ (\zeta _{1} \subseteq \zeta _{2})\quad \Rightarrow\quad \bigl(\Theta (\zeta _{1}) \le \Theta (\zeta _{2})\bigr); $$ - \(\mathbf{(ii)}\):
-
nonsigular iff \(\Theta (\{a\}\cup \zeta )=\Theta (\zeta )\) for any \(a \in Z\) and every nonempty subset \(\zeta \subseteq Z\);
- \(\mathbf{(iii)}\):
-
regular iff \(\Theta (\zeta )=0\) iff ζ in Z, where ζ is relatively compact.
One of the most important examples of measure of noncompactness is the noncompactness measure of Hausdorff β defined on each bounded subset ζ of Z by
$$\begin{aligned} \beta (\zeta )&=\inf \{\epsilon >0; \zeta \text{ can be covered by a finite number of balls} \\ &\quad \text{of radii smaller than } \epsilon \}. \end{aligned}$$For any bounded subsets ζ, \(\zeta _{1}\), \(\zeta _{2}\) of Z.
- \(\mathbf{(iv)}\):
-
\(\beta (\zeta _{1}+\zeta _{2}) \le \beta (\zeta _{1})+\beta (\zeta _{2})\), where \(\zeta _{1}+\zeta _{2}=\{z+w:z\in \zeta _{1}, w\in \zeta _{2}\}\);
- \(\mathbf{(v)}\):
-
\(\beta (\zeta _{1} \cup \zeta _{2}) \le \max \{\beta (\zeta _{1}), \beta (\zeta _{2})\}\);
- \(\mathbf{(vi)}\):
-
\(\beta (\wp \zeta ) \le |\wp |\beta (\zeta )\) for any \(\wp \in \mathbb{R}\);
- \(\mathbf{(vii)}\):
-
If the Lipschitz continuous function \(\phi : \mathcal{D}(\phi ) \subseteq Z \rightarrow X\) with constant â„“, then \(\beta _{X}(\phi \zeta )\le \ell \beta (\zeta )\) for any bounded subset \(\zeta \subseteq \mathcal{D}(\phi )\), where X is a Banach space.
Definition 2.7
([46])
\(z \in C(V,Z)\) is said to be a mild solution of system (1.1) if \(z(0)+F(z)=z_{0}\), \(z'(0)=z_{1}\) such that
where \(C_{b}(\cdot )\), \(K_{b}(\cdot )\), and \(T_{b}(\cdot )\) are called the characteristic solution operators and given by
and \(S_{b}(\cdot )\) is the Mainardi’s Wright-type function defined on \((0,\infty )\) such that
Lemma 2.8
([46])
The operators \(C_{b}(t)\), \(K_{b}(t)\), and \(T_{b}(t)\) have the following properties:
- \(\mathbf{(a)}\):
-
For any fixed \(t\ge 0\), the operators \(C_{b}(t)\), \(K_{b}(t)\), and \(T_{b}(t)\) are linear and bounded operators, i.e., for any \(z \in Z\), the following estimates hold:
$$ \bigl\Vert C_{b}(t)z \bigr\Vert \le P \Vert z \Vert ,\qquad \bigl\Vert K_{b}(t)z \bigr\Vert \le P \Vert z \Vert t, \qquad \bigl\Vert T_{b}(t)z \bigr\Vert \le \frac{P}{\Gamma (2b)} \Vert z \Vert t^{b}; $$ - \(\mathbf{(b)}\):
-
\(\{C_{b}(t),t\ge 0\}\), \(\{K_{b}(t),t\ge 0\}\), and \(\{t^{b-1} T_{b}(t),t\ge 0\}\) are strongly continuous.
- \(\mathbf{(c)}\):
-
For any \(t \in V\) and any bounded subsets \(\mathcal{D} \subset Z\), \(t \rightarrow \{C_{b}(t)z:z \in \mathcal{D}\}\), \(t \rightarrow \{K_{b}(t)z:z \in \mathcal{D}\}\) and \(t \rightarrow \{T_{b}(t)z:z \in \mathcal{D}\}\) are equicontinuous if \(\|C(t_{2}^{b}(\xi ))z-C(t_{1}^{b}(\xi ))z\| \rightarrow 0\) with respect to \(z \in \mathcal{D}\) as \(t_{2} \rightarrow t_{1}\) for any fixed \(\xi \in (0,\infty )\) and \(\|K(t_{2}^{b}(\xi ))z-K(t_{1}^{b}(\xi ))z\| \rightarrow 0\) with respect to \(z \in \mathcal{D}\) as \(t_{2} \rightarrow t_{1}\) for any fixed \(\xi \in (0,\infty )\).
Lemma 2.9
([59])
- \(\mathbf{(i)}\) :
-
There exist \(P\ge 1\) and \(\omega \ge 0\) such that \(\|C(t)\|_{L_{c}(Z)}\le Pe^{\omega |t|}\) for all \(t\in \mathbb{R}\);
- \(\mathbf{(ii)}\) :
-
\(\|S(t_{2})-S(t_{1})\|_{L_{c}(Z)}\le P |\int _{t_{1}}^{t_{2}}e^{ \omega |s|}\,ds |\) for all \(t_{2},t_{1} \in \mathbb{R}\).
- \(\mathbf{(iii)}\) :
-
If \(z \in E\), then \(S(t)z \in D(A)\) and \(\frac{d}{dt}C(t)z = A S(t)z\).
Lemma 2.10
Let \(\{C(t)\}_{t \in \mathbb{R}}\) be a strongly continuous cosine family in Z, then
Lemma 2.11
([59])
Let \(\{C(t)\}_{t\in \mathbb{R}}\) be a strongly continuous cosine family in Z satisfying \(\|C(t)\|_{L_{c}(Z)}\le P e^{\omega |t|}\), \(t \in \mathbb{R}\). Then for \(R e \Lambda > \omega \), \(\Lambda ^{2} \in \rho (A)\) and
where A is the infinitesimal generator of \(\{C(t)\}_{t\in \mathbb{R}}\).
Theorem 2.12
([41])
If \(\{x_{n}\}_{n=1}^{\infty }\) is a sequence of Bochner integrable functions from V into Z with the estimation \(\|x_{n}(t)\| \le \delta (t)\) for almost all \(t \in V\) and for every \(n \ge 1\), where \(\delta \in L^{1}(V,\mathbb{R})\), then \(\varphi (t)=\beta (\{x_{n}(t):n \ge 1\})\) in \(L^{1}(V,\mathbb{R})\) and satisfies
Definition 2.13
(Nonlocal controllability)
System (1.1) is called nonlocally controllable on V iff, for every \(z_{0},z_{1},y \in Z\), there exists \(x \in L^{2}(V,U)\) such that a mild solution z of system (1.1) satisfies \(z(c)+F(z)=y\).
Lemma 2.14
([61])
Let \(\mathcal{D}\) be a closed convex set of a Banach space Z and \(0 \in \mathcal{D}\). Consider that \(N:\mathcal{D} \rightarrow Z\) is a continuous map which satisfies Mönch’s condition, i.e., if
Then N has a fixed point in \(\mathcal{D}\).
3 Main results
We propose and demonstrate the requirements for the existence of system (1.1). In order to establish the results, we need the following hypotheses:
- \(\mathbf{(H_{1})}\):
-
- \(\mathbf{(i)}\):
-
\(\{C(t):t \geq 0\}\) in Z;
- \(\mathbf{(ii)}\):
-
For any bounded subsets \(\mathcal{D} \subset Z\) and \(z\in \mathcal{D}\), \(\|C(t_{2}^{b}(\xi ))z-C(t_{1}^{b}(\xi ))z\| \rightarrow 0\) as \(t_{2} \rightarrow t_{1}\) for each fixed \(\xi \in (0,\infty )\).
- \(\mathbf{(H_{2})}\):
-
The function \(g:V \times Z \rightarrow Z\) satisfies:
- \(\mathbf{(i)}\):
-
Carathéodory condition: \(g(\cdot ,z)\) is measurable for every \(z \in Z\) and \(g(t,\cdot )\) is continuous for a.e. \(t \in V\);
- \(\mathbf{(ii)}\):
-
There exist a constant \(b_{1} \in (0,b)\) and \(q \in L^{\frac{1}{b_{1}}}(V,\mathbb{R}^{+})\) and a nondecreasing continuous function \(\zeta :\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}\) such that
$$ \bigl\Vert g(t,z) \bigr\Vert \le q(t)\zeta \bigl( \Vert z \Vert \bigr),\quad z \in Z, t \in V, $$where ζ satisfies \(\lim \inf_{n \rightarrow \infty } \frac{\zeta (n)}{n}=0\).
- \(\mathbf{(iii)}\):
-
There exist a constant \(b_{2} \in (0,b)\) and \(j \in L^{\frac{1}{b_{2}}}(V,\mathbb{R}^{+})\) such that, for any bounded subset \(\mathcal{D} \subset Z\),
$$ \beta \bigl(g(t,\mathcal{D})\bigr) \le j(t) \beta (\mathcal{D}) \quad \text{for a.e. } t \in V, $$where β is the Hausdorff measure of noncompactness.
- \(\mathbf{(H_{3})}\):
-
- \(\mathbf{(i)}\):
-
The linear operator \(B: L^{2}(V,U) \rightarrow L^{1}(V,Z)\) is bounded, \(W: L^{2}(V,U) \rightarrow Z\) defined by
$$\begin{aligned} Wx= \int _{0}^{c} (c-s)^{b-1} T_{b}(c-s) Bx(s)\,ds \end{aligned}$$has an inverse operator \(W^{-1}\) which takes values in \(L^{2}(V,U)/ \ker W\), and there exist \(P_{1},P_{2} \ge 0\) such that \(\|B\|_{L_{c}(U,Z)} \le P_{1}\),
$$ \bigl\Vert W^{-1} \bigr\Vert _{L_{c}(Z,L^{2}(V,U)/ \ker W)} \le P_{2}; $$ - \(\mathbf{(ii)}\):
-
There exist a constant \(b_{0} \in (0,b)\) and \(\mathcal{K}_{W} \in L^{\frac{1}{b_{0}}}(V,\mathbb{R}^{+})\) such that, for any bounded set \(\phi \subset Z\),
$$ \beta \bigl(\bigl(W^{-1} \phi \bigr) (t)\bigr) \le \mathcal{K}_{W}(t)\beta (\phi ). $$
- \(\mathbf{(H_{4})}\):
-
- \(\mathbf{(i)}\):
-
The continuous and compact operator \(F:C(V,Z) \rightarrow Z\);
- \(\mathbf{(ii)}\):
-
F satisfies \(\lim \|v\|_{\mathcal{C} \rightarrow \infty } \frac{\|F(v)\|}{\|v\|_{\mathcal{C}}}=0\).
For our convenience, let us take
Theorem 3.1
If \(\mathbf{(H_{1})}\)–\(\mathbf{(H_{4})}\) are satisfied, then system (1.1) has a mild solution on V if
Proof
Using \(\mathbf{(H_{3})}\mathbf{(i)}\), for an arbitrary function \(z \in \mathcal{C}\), we define the control \(x_{z}(t)\) by
Define the operator \(\Psi :\mathcal{C} \rightarrow \mathcal{C}\) such that
where \(\Pi (g+Bx_{z}) \in \mathcal{C}\) defined by
has a fixed point z, which is a mild solution of system (1.1). Clearly, \((\Psi z)(c)=y-F(z)\); this means that \(x_{z}\) moves system (1.1) from \(z_{0}\) to y in finite time c. This implies that system (1.1) is completely controllable on V.
Now, we introduce the operators \(\Psi _{1}\) and \(\Psi _{2}\) defined by
and
It is clear that
We prove that Ψ satisfies the results of Lemma 2.14.
Step 1: To demonstrate that there is \(\varrho >0\) such that
where \(\mathcal{B}_{\varrho }=\{z \in \mathcal{C}:\|z\|_{\mathcal{C}} \le \varrho \}\). If not, then for each positive number ϱ, there exists \(z^{\varrho }(\cdot )\) in \(\mathcal{B}_{\varrho }\); however, \(\Psi (z^{\varrho }) \notin \mathcal{B}_{\varrho }\), i.e.,
Using Lemma 2.8, \(\mathbf{(H_{2})}\mathbf{(ii)}\), \(\mathbf{(H_{3})}\), and Hölder’s inequality, we have
Then
dividing both sides of the above inequality \(\|z^{\varrho }\|_{\mathcal{C}}\) and taking the limit as \(\|z^{\varrho }\|_{\mathcal{C}}\) tends to ∞, one can obtain \(0 \geq 1\), which is a contradiction. Therefore, \(\varrho >0\), \(\Psi (\mathcal{B}_{\varrho })\subseteq \mathcal{B}_{\varrho }\).
Step 2: We prove that Ψ is continuous on \(\mathcal{B}_{\varrho }\).
Let \(z^{(n)} \rightarrow z\) in \(\mathcal{B}_{\varrho }\). From \(\mathbf{(H_{4})}\mathbf{(i)}\) and Lemma 2.8, we have
Using Lebesgue’s dominated convergence theorem and \(\mathbf{(H_{2})}\mathbf{(i)}\mathbf{(ii)}\), we have
where \(\mathbb{G}_{n}(s)=g(s,z_{n}(s))\) and \(\mathbb{G}(s)=g(s,z(s))\). Then
where
Using (3.4), (3.5), (3.6), (3.7), we easily conclude that
⇒ \(\Psi _{2}\) is continuous on \(\mathcal{B}_{\varrho }\).
Step 3: Mönch’s condition holds.
Let \(\mathcal{D} \subseteq \mathcal{B}_{\varrho }\) be countable and \(\mathcal{D} \subseteq \operatorname{conv} (\{0\} \cup \Psi (\mathcal{D}))\). We prove that \(\beta (\mathcal{D})=0\), where β is the Hausdorff measure of noncompactness. Without loss of generality, let \(\mathcal{D}=\{z_{n}\}_{n=1}^{\infty }\).
Now, we prove that \(\{\Psi z_{n}\}_{n=1}^{\infty }\) is equicontinuous on V, then \(\mathcal{D} \subseteq \operatorname{conv} (\{0\} \cup \Psi (\mathcal{D}))\) is also equicontinuous on V. Lastly, let \(\chi \in \Psi (\mathcal{D})\) and \(0 \le t_{1} < t_{2} \le c\), there is \(z \in \mathcal{D}\) such that
From Lemma 2.8, we may readily deduce that the first, second, and third teams at the RHS of the above inequality tend to zero as \(t_{2} \rightarrow t_{1}\).
Now, we verify that the last team at the RHS of the above inequality tends to 0 as \(t_{2} \rightarrow t_{1}\).
we have
Using Lemma 2.8, one can check that \(\|\mathcal{I}_{n}\| \rightarrow 0\), as \(t_{2} \rightarrow t_{1}\), \(n=1,2,3,4,5\). Hence, \(\Psi (\mathcal{D})\) is equicontinuous on V.
Now, we need to verify \(\Psi (\mathcal{D})(t)\) is relatively compact in Z for every \(t \in V\). From the compactness condition of F, we have
From Theorem 2.12, we have
Further,
Then
where L̂ denotes equation (3.1). Then, from Mönch’s condition, we have
\(\Rightarrow \beta (\mathcal{D})=0\).
Therefore, using Lemma 2.14, Ψ has a fixed point \(z \in \mathcal{B}_{\varrho }\), since z is a mild solution of system (1.1) satisfying \(z(c)+F(z)=y\). □
4 Fractional integro-differential evolution system
The nonlocal controllability results for fractional integro-differential evolution system of \(1< r<2\) under the Banach contraction principle are presented and demonstrated in this section. Consider that the fractional integro-differential evolution system of \(1< r<2\) has the form
where \(g:V \times Z \times Z \rightarrow Z\) and \(h:\mathcal{Q} \times Z \rightarrow Z\) are continuous, where \(\mathcal{Q}=\{(t,s): 0 \le s \le t \le c\}\).
Definition 4.1
([46])
\(z \in C(V,Z)\) is said to be a mild solution of system (4.1) if \(z(0)+F(z)=z_{0}\), \(z'(0)=z_{1}\) such that
Before starting and examining the main results, we assume the following:
- \(\mathbf{(H_{5})}\):
-
The function \(g:V \times Z \times Z \rightarrow Z\) is continuous, and there exist constants \(L_{g} >0\), \(P_{g}>0\) such that
$$\begin{aligned} \bigl\Vert g(t,k_{1},w_{1})-g(t,k_{2},w_{2}) \bigr\Vert \le L_{g}\bigl( \Vert k_{1}-k_{2} \Vert + \Vert w_{1}-w_{2} \Vert \bigr) \quad \text{for all } t \in V, \end{aligned}$$for any \(k_{1},k_{2}, w_{1},w_{2} \in Z\), and \(P_{g}=\max_{t \in V}\|g(t,0,0)\|\).
- \(\mathbf{(H_{6})}\):
-
The function \(h:\mathcal{Q} \times Z \rightarrow Z\) is continuous, and there exist constants \(L_{h} >0\), \(P_{h}>0\) such that
$$\begin{aligned} \bigl\Vert h(t,s,k_{1})-h(t,s,k_{2}) \bigr\Vert \le L_{h}\bigl( \Vert k_{1}-k_{2} \Vert \bigr) \end{aligned}$$for any \(k_{1},k_{2}, \tau _{1},\tau _{2} \in Z\), and \(P_{h}=\max_{t \in V}\|h(t,0,0)\|\).
Theorem 4.2
If \(\mathbf{(H_{1})}\), \(\mathbf{(H_{3})}\)–\(\mathbf{(H_{6})}\) are satisfied, then we assume that the following inequality holds:
Then system (4.1) is controllable V.
Proof
Using \(\mathbf{(H_{3})}\mathbf{(i)}\), for an arbitrary function \(z \in \mathcal{C}\), we define the control \(x_{z}(t)\) by
Define that the operator \(\Phi :C(V,Z) \rightarrow C(V,Z)\) given by
has a fixed point z, which is a mild solution of system (4.1). Clearly, \((\Phi z)(c)=y-F(z)\); this means that \(x_{z}\) moves system (4.1) from \(z_{0}\) to y in finite time c. Therefore, we verify that the operator Φ has a fixed point.
Using Lemma 2.8, \(\mathbf{(H_{3})}\), \(\mathbf{(H_{5})}\), \(\mathbf{(H_{6})}\), and Hölder’s inequality, we have
The operator Φ maps \(\mathcal{B}_{\varrho }\) into \(\mathcal{B}_{\varrho }\). From the definition of the operator Φ and the assumptions, for \(z \in \mathcal{B}_{\varrho }\), we have
Therefore, by inequality (4.3) it follows that \(\|\Phi z\| \le \varrho \) and then \(\Phi (\mathcal{B}_{\varrho }) \subseteq \mathcal{B}_{\varrho }\). Now, for every \(u,v \in \mathcal{B}_{\varrho }\), we have
which implies by inequality (4.3) that \(\|\Phi u-\Phi v\| < \|u-v\|\). Then, we can conclude that Φ is a contraction on \(\mathcal{B}_{\varrho }\). As a result, according to the Banach fixed point theorem, Φ has a unique fixed point z in \(C(V,Z)\). Therefore, we can see that \(z(\cdot )\) is a mild solution of system (4.1), and the proof is complete. □
5 Application
Let \(\mathcal{G} \subset \mathbb{R}^{N}\) be a bounded domain and \(U=Z=L^{2}(\mathcal{G})\). Consider the following nonlocal fractional integrodifferential evolution system:
where \(\frac{\partial ^{r}}{\partial t^{r}}\) denotes Caputo fractional derivative of order \(\frac{3}{2} \le r < 2\), \(j \in L^{1}(V,\mathbb{R}^{+})\), \(l_{0}\) is continuous on \(\mathcal{G}\) and \(l_{1}>0\).
Consider A to be the Laplace operator with Dirichlet boundary conditions given by \(A = \Delta \) and
Clearly, we have \(D(A) = H^{1}_{0}(\mathcal{G}) \cap H^{2}(\mathcal{G})\). A produces \(C(t)\) for \(t \ge 0\) in the view of [62]. Let \(\hbar _{n}=n^{2} \pi ^{2}\) and \(\mu _{n}(\eta )=\sqrt{(2/\pi )}\sin (n\pi \eta )\) for any \(n \in \mathbb{N}\).
Assume that \(\{-\hbar _{n},\mu _{n}\}_{n=1}^{\infty }\) is an eigensystem of the operator A, then \(0<\hbar _{1}\le \hbar _{2} \le \cdots \) , \(\hbar _{n}\rightarrow \infty \) when \(n \rightarrow \infty \), and \(\{\mu _{n}\}_{n=1}^{\infty }\) forms an orthonormal basis of Z. Further
where \((\cdot ,\cdot )\) denotes the inner product in Z. Accordingly, \(C(t)\) is defined by
which is connected with the sine family \(\{S(t), t\ge 0\}\) in Z defined by
and \(\|C(t)\|_{L_{c}(Z)}\le 1\) for any \(t \ge 0\).
Since \(r=\frac{3}{2}\), we know that \(t=\frac{3}{4}\), and then \(\|C_{c}(t)\|_{L_{c}(Z)}\le 1\) for any \(t \ge 0\).
The control operator \(B:U\rightarrow Z\) is defined by
In the above
for N in \(\mathbb{N}\). Denote \(W:L^{2}(V,U)\rightarrow Z\) as follows:
Hence, \(|x|= (\sum_{n=1}^{\infty }(x,\mu _{n})^{2} )^{\frac{1}{2}}\) for \(x \in U\), we have
which implies that there exists \(P_{1}>0\) such that
Let \(x(s,\eta )= z(\eta )\in U\) and z̅ denote \(z_{n}\) if \(n=1,2,\ldots,N\) or 0 if \(n=N+1,\ldots \) . Hence, we have
In [63, 64], assume that \(v=E_{\frac{3}{2},1}(-\frac{1}{10})\), then for every \(n \in \mathbb{N}\), we have \(-1< E_{\frac{3}{2},1}(-\hbar _{n})\le v<1\), which implies
Then, we classify W is surjective since, for every \(z=\sum_{n=1}^{\infty }(z,\mu _{n}) \mu _{n} \in Z\), we illustrate \(W^{-1}:Z \rightarrow L^{2}(V,U)/\ker W\) by
for \(z \in Z\) in such a way
We know that \(W^{-1}z\) is independent of \(t \in V\). Additionally, we obtain
Therefore assumption \(\mathbf{(H_{3})}\) satisfied.
Determine
and F denotes \(F(z)(\eta )=\int _{0}^{c} j(s) \operatorname{In} (1+|z(s,\eta )|^{ \frac{1}{2}})\,ds\) and F is compact and satisfies hypothesis \(\mathbf{(H_{4})}\).
Therefore, every requirement of Theorem 4.2 is satisfied. Hence, using Theorem 4.2, (5.1) is nonlocal controllable on \([0,c]\).
6 Conclusion
The nonlocal controllability results for the fractional differential system of \(1< r<2\) in a Banach space are discussed in this work. Fractional computations, the measure of noncompactness, cosine families, Mainardi’s Wright-type function, and fixed point techniques are all used to test the main conclusions of this article. We begin by applying the Mönch fixed point theorem to analyze nonlocal controllability results of a mild solution for the fractional differential system. In addition, the Banach fixed point theorem is used to develop the controllability results for fractional integrodifferential evolution system with nonlocal conditions. Finally, an application for developing the theory of the key results is offered. We will develop approximate controllability results for Sobolev type fractional delay evolution inclusions of order \(1< r<2\) in the future.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, London (2009)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John-Wiley, New York (1993)
Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)
Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas FÃs. Nat., Ser. AÂ Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941
Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9
Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
Brzdek, J., Karapinar, E., Petrsel, A.: A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 467, 501–520 (2018). https://doi.org/10.1016/j.jmaa.2018.07.022
Alsulami, H.H., Gulyaz, S., Karapinar, E., Erhan, I.: An Ulam stability result on quasi-b-metric-like spaces. Open Math. 14(1), 1087–1103 (2016). https://doi.org/10.1515/math-2016-0097
Hassan, A.M., Karapinar, E., Alsulami, H.H.: Ulam-Hyers stability for MKC mappings via fixed point theory. J. Funct. Spaces 2016, Article ID 9623597, 1–11 (2016). https://doi.org/10.1155/2016/9623597
Bota, M.F., Karapinar, E., Mlesnite, O.: Ulam-Hyers stability results for fixed point problems via α-ψ-contractive mapping in b-metric space. Abstr. Appl. Anal. 2013, Article ID 825293, 1–6 (2013). https://doi.org/10.1155/2013/825293
Karapinar, E., Panda, S.K., Lateef, D.: A new approach to the solution of Fredholm integral equation via fixed point on extended b-metric spaces. Symmetry 10(10), 512 (2018). https://doi.org/10.3390/sym10100512
Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444
Afshari, H., Shojaat, H., Moradi, M.S.: Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions. Results Nonlinear Anal. 4(3), 186–193 (2021). https://doi.org/10.53006/rna.938851
Afshari, H., Gholamyan, H., Zhai, C.B.: New applications of concave operators to existence and uniqueness of solutions for fractional differential equations. Math. Commun. 25(1), 157–169 (2020)
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
Bachir, F.S., Abbas, S., Benbachir, M., Benchora, M.: Hilfer-Hadamard fractional differential equations; existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 5(1), 49–57 (2021). https://doi.org/10.31197/atnaa.848928
Mohammadi, H., Kumar, S., Etemad, S., Rezapour, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705
Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(CD4^{+}\) T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1< r< 2\). Math. Comput. Simul. 190, 1003–1026 (2021). https://doi.org/10.1016/j.matcom.2021.06.026
Adjabi, Y., Samei, M.E., Matar, M.M., Alzabut, J.: Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 6(3), 2796–2843 (2021). https://doi.org/10.3934/math.2021171
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 142, 110472 (2021). https://doi.org/10.1016/j.chaos.2020.110472
Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control (2021). https://doi.org/10.1002/asjc.2650
Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control (2020). https://doi.org/10.1002/asjc.2549
Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos Solitons Fractals 139, 110035 (2020). https://doi.org/10.1016/j.chaos.2020.110035
Zhou, Y., He, J.W.: New results on controllability of fractional evolution systems with order \(\alpha \in (1,2)\). Evol. Equ. Control Theory 10(3), 491–509 (2021). https://doi.org/10.3934/eect.2020077
Zhou, Y., Vijayakumar, V., Ravichandran, C., Murugesu, R.: Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory 18(2), 773–798 (2017). https://doi.org/10.24193/fpt-ro.2017.2.62
Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4(4), 507–524 (2015). https://doi.org/10.3934/eect.2015.4.507
Zufeng, Z., Liu, B.: Controllability results for fractional functional differential equations with nondense domain. Numer. Funct. Anal. Optim. 35(4), 443–460 (2014). https://doi.org/10.1080/01630563.2013.813536
Raja, M.M., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on existence and controllability results for fractional evolution inclusions of order \(1< r<2\) with Clarke’s subdifferential type. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22691
Raja, M.M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1 < r < 2\) via measure of noncompactness. Chaos Solitons Fractals 139, 110299 (2020). https://doi.org/10.1016/j.chaos.2020.110299
Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162(2), 494–505 (1991). https://doi.org/10.1016/0022-247X(91)90164-U
Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40(1), 11–19 (1991). https://doi.org/10.1080/00036819008839989
Mophou, G.M., N’Guerekata, G.M.: Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum 79, 315–322 (2009). https://doi.org/10.1007/s00233-008-9117-x
N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal., Theory Methods Appl. 70(5), 1873–1876 (2009). https://doi.org/10.1016/j.na.2008.02.087
He, J.W., Liang, Y., Ahmad, B., Zhou, Y.: Nonlocal fractional evolution inclusions of order \(\alpha \in (1,2)\). Mathematics 7(2), 209 (2019). https://doi.org/10.3390/math7020209
Mophou, G.M., N’Guerekata, G.M.: On integral solutions of some nonlocal fractional differential equations with nondense domain. Nonlinear Anal., Theory Methods Appl. 71(10), 4668–4675 (2009). https://doi.org/10.1016/j.na.2009.03.029
Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order \(1 < r < 2\) in Hilbert spaces. Chaos Solitons Fractals 141, 110310 (2020). https://doi.org/10.1016/j.chaos.2020.110310
Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order \(1 < r < 2\) with infinite delay. Chaos Solitons Fractals 141, 110343 (2020). https://doi.org/10.1016/j.chaos.2020.110343
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1< r<2\) in Banach spaces. Numer. Funct. Anal. Optim. 37(2), 949–961 (2021). https://doi.org/10.1002/num.22560
Raja, M.M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integro-differential evolution equations of order \(1< r<2\). Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22653
Balachandran, K., Park, J.Y.: Controllability of fractional integro-differential systems in Banach spaces. Nonlinear Anal. Hybrid Syst. 3(4), 363–367 (2009). https://doi.org/10.1016/j.nahs.2009.01.014
Vijayakumar, V., Udhayakumar, R., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order \(1< r<2\). Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22772
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order \(1< r<2\). Numer. Funct. Anal. Optim. (2021). https://doi.org/10.1002/num.22697
Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay. Numer. Methods Partial Differ. Equ. 37, 750–766 (2021). https://doi.org/10.1002/num.22550
Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 25(4), 557–586 (2013). https://doi.org/10.1216/JIE-2013-25-4-557
Raja, M.M., Vijayakumar, V., Huynh, L.N., Udhayakumar, R., Nisar, K.S.: Results on the approximate controllability of fractional hemivariational inequalities of order \(1< r<2\). Adv. Differ. Equ. 2021, 237 (2021). https://doi.org/10.1186/s13662-021-03373-1
Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154, 292–302 (2012). https://doi.org/10.1007/s10957-012-9999-3
Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978). https://doi.org/10.1007/BF01902205
Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Dekker, New York (1980)
Monch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4(5), 985–999 (1980). https://doi.org/10.1016/0362-546X(80)90010-3
Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Berlin (2011)
Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland, Amsterdam (1995)
Hanneken, J.W., Vaught, D.M., Narahari Achar, B.N.: Enumeration of the real zeros of the Mittag-Leffler function \(E_{\alpha }(z)\), \(1 < \alpha < 2\). In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.) Advances in Fractional Calculus, pp. 15–26. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6042-7_2
Acknowledgements
The fifth author was supported by Azarbaijan Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions which improved the final version of this paper.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mohan Raja, M., Vijayakumar, V., Shukla, A. et al. New discussion on nonlocal controllability for fractional evolution system of order \(1 < r < 2\). Adv Differ Equ 2021, 481 (2021). https://doi.org/10.1186/s13662-021-03630-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03630-3
MSC
- 34A08
- 26A33
- 93B05
- 47D09
- 34K30
- 47H10
Keywords
- Fractional derivative
- Nonlocal controllability
- Mild solutions
- Measure of noncompactness
- Integrodifferential system
- Fixed point theorem