Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
MATH
Google Scholar
Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, London (2009)
MATH
Google Scholar
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
MATH
Google Scholar
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John-Wiley, New York (1993)
MATH
Google Scholar
Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
Book
Google Scholar
Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)
Google Scholar
Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686
Article
MATH
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652
Article
MATH
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 2021, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
Article
MathSciNet
MATH
Google Scholar
Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)
Google Scholar
Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
Article
Google Scholar
Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941
Article
MATH
Google Scholar
Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9
Article
MathSciNet
Google Scholar
Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
Article
MathSciNet
Google Scholar
Brzdek, J., Karapinar, E., Petrsel, A.: A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 467, 501–520 (2018). https://doi.org/10.1016/j.jmaa.2018.07.022
Article
MathSciNet
MATH
Google Scholar
Alsulami, H.H., Gulyaz, S., Karapinar, E., Erhan, I.: An Ulam stability result on quasi-b-metric-like spaces. Open Math. 14(1), 1087–1103 (2016). https://doi.org/10.1515/math-2016-0097
Article
MathSciNet
MATH
Google Scholar
Hassan, A.M., Karapinar, E., Alsulami, H.H.: Ulam-Hyers stability for MKC mappings via fixed point theory. J. Funct. Spaces 2016, Article ID 9623597, 1–11 (2016). https://doi.org/10.1155/2016/9623597
Article
MathSciNet
MATH
Google Scholar
Bota, M.F., Karapinar, E., Mlesnite, O.: Ulam-Hyers stability results for fixed point problems via α-ψ-contractive mapping in b-metric space. Abstr. Appl. Anal. 2013, Article ID 825293, 1–6 (2013). https://doi.org/10.1155/2013/825293
Article
MathSciNet
MATH
Google Scholar
Karapinar, E., Panda, S.K., Lateef, D.: A new approach to the solution of Fredholm integral equation via fixed point on extended b-metric spaces. Symmetry 10(10), 512 (2018). https://doi.org/10.3390/sym10100512
Article
Google Scholar
Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444
Article
Google Scholar
Afshari, H., Shojaat, H., Moradi, M.S.: Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions. Results Nonlinear Anal. 4(3), 186–193 (2021). https://doi.org/10.53006/rna.938851
Article
Google Scholar
Afshari, H., Gholamyan, H., Zhai, C.B.: New applications of concave operators to existence and uniqueness of solutions for fractional differential equations. Math. Commun. 25(1), 157–169 (2020)
MathSciNet
MATH
Google Scholar
Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70
Article
MathSciNet
Google Scholar
Bachir, F.S., Abbas, S., Benbachir, M., Benchora, M.: Hilfer-Hadamard fractional differential equations; existence and attractivity. Adv. Theory Nonlinear Anal. Appl. 5(1), 49–57 (2021). https://doi.org/10.31197/atnaa.848928
Article
Google Scholar
Mohammadi, H., Kumar, S., Etemad, S., Rezapour, S.: A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668
Article
MathSciNet
Google Scholar
Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705
Article
MathSciNet
Google Scholar
Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(CD4^{+}\) T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
Article
MathSciNet
Google Scholar
Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
Article
MathSciNet
Google Scholar
Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9
Article
MathSciNet
MATH
Google Scholar
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1< r< 2\). Math. Comput. Simul. 190, 1003–1026 (2021). https://doi.org/10.1016/j.matcom.2021.06.026
Article
MathSciNet
Google Scholar
Adjabi, Y., Samei, M.E., Matar, M.M., Alzabut, J.: Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 6(3), 2796–2843 (2021). https://doi.org/10.3934/math.2021171
Article
MathSciNet
Google Scholar
Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 142, 110472 (2021). https://doi.org/10.1016/j.chaos.2020.110472
Article
MathSciNet
Google Scholar
Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control (2021). https://doi.org/10.1002/asjc.2650
Article
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control (2020). https://doi.org/10.1002/asjc.2549
Article
Google Scholar
Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness. Chaos Solitons Fractals 139, 110035 (2020). https://doi.org/10.1016/j.chaos.2020.110035
Article
MathSciNet
Google Scholar
Zhou, Y., He, J.W.: New results on controllability of fractional evolution systems with order \(\alpha \in (1,2)\). Evol. Equ. Control Theory 10(3), 491–509 (2021). https://doi.org/10.3934/eect.2020077
Article
MathSciNet
MATH
Google Scholar
Zhou, Y., Vijayakumar, V., Ravichandran, C., Murugesu, R.: Controllability results for fractional order neutral functional differential inclusions with infinite delay. Fixed Point Theory 18(2), 773–798 (2017). https://doi.org/10.24193/fpt-ro.2017.2.62
Article
MathSciNet
MATH
Google Scholar
Zhou, Y., Vijayakumar, V., Murugesu, R.: Controllability for fractional evolution inclusions without compactness. Evol. Equ. Control Theory 4(4), 507–524 (2015). https://doi.org/10.3934/eect.2015.4.507
Article
MathSciNet
MATH
Google Scholar
Zufeng, Z., Liu, B.: Controllability results for fractional functional differential equations with nondense domain. Numer. Funct. Anal. Optim. 35(4), 443–460 (2014). https://doi.org/10.1080/01630563.2013.813536
Article
MathSciNet
MATH
Google Scholar
Raja, M.M., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on existence and controllability results for fractional evolution inclusions of order \(1< r<2\) with Clarke’s subdifferential type. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22691
Article
Google Scholar
Raja, M.M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1 < r < 2\) via measure of noncompactness. Chaos Solitons Fractals 139, 110299 (2020). https://doi.org/10.1016/j.chaos.2020.110299
Article
MathSciNet
Google Scholar
Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162(2), 494–505 (1991). https://doi.org/10.1016/0022-247X(91)90164-U
Article
MathSciNet
MATH
Google Scholar
Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40(1), 11–19 (1991). https://doi.org/10.1080/00036819008839989
Article
MathSciNet
MATH
Google Scholar
Mophou, G.M., N’Guerekata, G.M.: Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum 79, 315–322 (2009). https://doi.org/10.1007/s00233-008-9117-x
Article
MathSciNet
MATH
Google Scholar
N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal., Theory Methods Appl. 70(5), 1873–1876 (2009). https://doi.org/10.1016/j.na.2008.02.087
Article
MATH
Google Scholar
He, J.W., Liang, Y., Ahmad, B., Zhou, Y.: Nonlocal fractional evolution inclusions of order \(\alpha \in (1,2)\). Mathematics 7(2), 209 (2019). https://doi.org/10.3390/math7020209
Article
Google Scholar
Mophou, G.M., N’Guerekata, G.M.: On integral solutions of some nonlocal fractional differential equations with nondense domain. Nonlinear Anal., Theory Methods Appl. 71(10), 4668–4675 (2009). https://doi.org/10.1016/j.na.2009.03.029
Article
MathSciNet
MATH
Google Scholar
Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order \(1 < r < 2\) in Hilbert spaces. Chaos Solitons Fractals 141, 110310 (2020). https://doi.org/10.1016/j.chaos.2020.110310
Article
MathSciNet
Google Scholar
Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order \(1 < r < 2\) with infinite delay. Chaos Solitons Fractals 141, 110343 (2020). https://doi.org/10.1016/j.chaos.2020.110343
Article
MathSciNet
Google Scholar
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1< r<2\) in Banach spaces. Numer. Funct. Anal. Optim. 37(2), 949–961 (2021). https://doi.org/10.1002/num.22560
Article
MathSciNet
Google Scholar
Raja, M.M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integro-differential evolution equations of order \(1< r<2\). Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22653
Article
Google Scholar
Balachandran, K., Park, J.Y.: Controllability of fractional integro-differential systems in Banach spaces. Nonlinear Anal. Hybrid Syst. 3(4), 363–367 (2009). https://doi.org/10.1016/j.nahs.2009.01.014
Article
MathSciNet
MATH
Google Scholar
Vijayakumar, V., Udhayakumar, R., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order \(1< r<2\). Numer. Methods Partial Differ. Equ. (2021). https://doi.org/10.1002/num.22772
Article
Google Scholar
Williams, W.K., Vijayakumar, V., Udhayakumar, R., Panda, S.K., Nisar, K.S.: Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order \(1< r<2\). Numer. Funct. Anal. Optim. (2021). https://doi.org/10.1002/num.22697
Article
Google Scholar
Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of Sobolev-type Hilfer fractional neutral integro-differential equations with infinite delay. Numer. Methods Partial Differ. Equ. 37, 750–766 (2021). https://doi.org/10.1002/num.22550
Article
MathSciNet
Google Scholar
Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integral Equ. Appl. 25(4), 557–586 (2013). https://doi.org/10.1216/JIE-2013-25-4-557
Article
MathSciNet
MATH
Google Scholar
Raja, M.M., Vijayakumar, V., Huynh, L.N., Udhayakumar, R., Nisar, K.S.: Results on the approximate controllability of fractional hemivariational inequalities of order \(1< r<2\). Adv. Differ. Equ. 2021, 237 (2021). https://doi.org/10.1186/s13662-021-03373-1
Article
MathSciNet
Google Scholar
Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154, 292–302 (2012). https://doi.org/10.1007/s10957-012-9999-3
Article
MathSciNet
MATH
Google Scholar
Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 75–96 (1978). https://doi.org/10.1007/BF01902205
Article
MathSciNet
MATH
Google Scholar
Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Dekker, New York (1980)
MATH
Google Scholar
Monch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., Theory Methods Appl. 4(5), 985–999 (1980). https://doi.org/10.1016/0362-546X(80)90010-3
Article
MathSciNet
MATH
Google Scholar
Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Berlin (2011)
Book
Google Scholar
Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland, Amsterdam (1995)
Google Scholar
Hanneken, J.W., Vaught, D.M., Narahari Achar, B.N.: Enumeration of the real zeros of the Mittag-Leffler function \(E_{\alpha }(z)\), \(1 < \alpha < 2\). In: Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.) Advances in Fractional Calculus, pp. 15–26. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-6042-7_2
Chapter
Google Scholar