First, we consider the following important lemmas in our article.
Lemma 3.1
Let \(v\in AC (0,1)\) and \(2 < \sigma \leq 3\). The fractional q-differential equation
$$ {}^{C}\mathcal{D}_{q}^{\sigma }[y](t) = v(t) $$
(3)
for \(2 < \sigma \leq 3\) under conditions \(y(0) = y'(0) = 0\), \(y'(1) = a y (e)\), \(e \in J_{0}\) with \(0 \leq a <\frac{1}{e^{2}}\) has a solution
$$ y(t) = \int _{0}^{1} G_{q}(t, \xi ) v(\xi ) \,\mathrm{d}_{q}\xi + \frac{ a t^{2}}{1 - ae^{2}} \int _{0}^{1} G_{q}(e, \xi ) v(\xi ) \,\mathrm{d}_{q}\xi , $$
(4)
where
$$ G_{q}(t, \xi ) = \textstyle\begin{cases} \frac{ ( t - \xi )_{q}^{ (\sigma - 1)} - t^{2} ( 1 - \xi )_{q}^{( \alpha - 1) }}{ \Gamma _{q} ( \sigma ) },& \xi < t, \\ \frac{- t^{2} ( 1 - \xi )_{q}^{ (\sigma - 1)}}{\Gamma _{q} ( \sigma ) }, & t< \xi , \end{cases} $$
(5)
for all \(t, \xi \in \overline{J}_{0}\).
Proof
By Lemma (2.3) the solution of Eq. (3) can be written as
$$ y(t) = \int _{0}^{t} (t - \xi )_{q}^{ (\sigma - 1)} v(\xi ) \,\mathrm{d}_{q}\xi - d_{0} - d_{1}t - d_{2}t^{2}. $$
Since \(y(0) = y'(0 ) = 0 \), a simple calculation gives \(d_{0} - d_{1} = 0\), and from the boundary condition, we get \(\mathcal{I}_{q}^{\sigma }[v](1) -d_{2} = a \mathcal{I}_{q}^{\sigma }[v](e) - d_{2} a e^{2}\). Hence,
$$ d_{2} = \frac{1}{1 - a e^{2}} \bigl( \mathcal{I}_{q}^{\sigma }[v](1) - a \mathcal{I}_{q}^{\sigma }[v](e) \bigr). $$
Thus, the solution of boundary value problem (3) is
$$\begin{aligned} y(t) &= \mathcal{I}_{q}^{\sigma }[v](t) - \frac{t^{2}}{1 - a e^{2}} \bigl( \mathcal{I}_{q}^{\sigma }[v](1) - a \mathcal{I}_{q}^{\sigma }[v](e) \bigr) \\ & = \mathcal{I}_{q}^{\sigma }[v](t) - t^{2} \mathcal{I}_{q}^{\sigma }[v](1) - \frac{ae^{2}t^{2}}{1 - a e^{2}} \mathcal{I}_{q}^{\sigma }[v](1) + \frac{at^{2}}{1 - a e^{2}} \mathcal{I}_{q}^{\sigma }[v](e) \\ & = \frac{1}{\Gamma _{q} ( \sigma )} \int _{0}^{t} \bigl( ( t - \xi )_{q}^{ (\sigma - 1)} - t^{2} (1 - \xi )_{q}^{ (\sigma - 1)} \bigr) v(\xi ) \,\mathrm{d}_{q}\xi \\ &\quad {} - \frac{1}{\Gamma _{q} ( \sigma )} \int _{1}^{t} t^{2} (1 - \xi )_{q}^{( \sigma - 1)} v(\xi ) \,\mathrm{d}_{q}\xi \\ &\quad {} + \frac{a t^{2}}{(1 - a e^{2}) \Gamma _{q} ( \sigma ) } \biggl[ \int _{0}^{e} \bigl( (e - \xi )_{q}^{ (\sigma - 1)} - e^{2} (1 - \xi )_{q}^{ (\sigma - 1)} \bigr) v(\xi ) \,\mathrm{d}_{q}\xi \\ &\quad {} - \int _{e}^{t} e^{2} (1 - \xi )_{q}^{ (\sigma - 1)} v(\xi ) \,\mathrm{d}_{q}\xi \biggr] \\ & = \int _{0}^{1} G_{q}(t, \xi ) v(\xi ) \,\mathrm{d}_{q}\xi + \frac{a t^{2}}{1 - a e^{2}} \int _{0}^{1} G_{q}(e, \xi ) v(\xi ) \,\mathrm{d}_{q}\xi , \end{aligned}$$
where \(G_{q}(t, \xi )\) is defined in Eq. (5). This completes the proof. □
Now, in order to investigate the existence of solutions, we prove some properties of the function \(G_{q}(t, \xi )\).
Lemma 3.2
The functions \(G_{q}(t,\cdot) \) and \(\frac{\partial }{\partial t} G_{q}(t, \cdot)\) are integrable for each \(t \in \overline{J}_{0}\) and have the following properties:
$$ \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \leq \frac{2}{ \Gamma _{q} ( \sigma + 1)}, \int _{0}^{1} \biggl\vert \frac{ \partial }{\partial t} G_{q}(t, \xi ) \biggr\vert \,\mathrm{d}_{q} \xi \leq \frac{3}{ \Gamma _{q} ( \sigma )}. $$
Proof
Let \(t \in \overline{J}_{0}\). Then we have
$$\begin{aligned} \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi &\leq \mathcal{I}_{q}^{\sigma }[I](t) + + t^{2}\mathcal{I}_{q}^{\sigma }[I](1) \\ & \leq \frac{t^{\sigma }}{\Gamma _{q} ( \sigma + 1)} + \frac{t^{2}}{\Gamma _{q} ( \sigma + 1)} \leq \frac{2}{\Gamma _{q} ( \sigma + 1)} \end{aligned}$$
and
$$\begin{aligned} \int _{0}^{1} \biggl\vert \frac{\partial }{ \partial t} G_{q}(t, \xi ) \biggr\vert \,\mathrm{d}_{q}\xi & \leq 2t \mathcal{I}_{q}^{\sigma }[I](1) + + \mathcal{I}_{q}^{\sigma -1}[I](t) \\ & \leq \frac{2t}{\Gamma _{q} ( \sigma + 1)} + \frac{t^{\sigma -1 }}{ \Gamma _{q} ( \sigma ) } \leq \frac{3}{ \Gamma _{q} ( \sigma )}. \end{aligned}$$
Hence, \(G_{q}(t, \cdot) \) and \(\frac{ \partial }{\partial t} G_{q}(t, \cdot)\) are integrable. □
Let \(C^{1} (\overline{J}_{0})\) be the class of all continuous functions. Since \({}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) = \mathcal{I}_{q}^{1 - \varsigma } [y'](t)\) for \(\varsigma \in J_{0}\), the operator \({}^{C}\mathcal{D}_{q}^{\varsigma }\) is continuous for any \(y \in C^{1} (\overline{J}_{0})\). Now, for \(y \in C^{1}(\overline{J}_{0})\), we define the space
$$ \mathcal{A} = \bigl\{ y(t) : y(t) \in C^{1} (\overline{J}_{0}) \bigr\} $$
endowed with the maximum norm
$$ \Vert y \Vert = \max_{t \in \overline{J}_{0} } \bigl\vert y(t) \bigr\vert + \max_{t \in \overline{J}_{0} } \bigl\vert {}^{C}\mathcal{ D}_{q}^{\varsigma }[y](t) \bigr\vert . $$
Lemma 3.3
\((\mathcal{A}, \|\cdot\|)\) is a Banach space.
Proof
Let \(\{y_{n} \}_{n=1}^{\infty }\) be a Cauchy sequence in the space \((\mathcal{A}, \|\cdot\|)\). Obviously, \(\{y_{n} \}_{n=1}^{\infty }\) and \(\{ {}^{C}\mathcal{D}_{q}^{\varsigma }y_{n} \}_{n=1}^{\infty }\) are Cauchy sequences in the space \(C (\overline{J}_{0})\). Since \(C (\overline{J}_{0})\) is compact, \(\{y_{n} \}_{n=1}^{\infty }\) and \(\{ {}^{C}\mathcal{D}_{q}^{\varsigma }y_{n} \}_{n=1}^{\infty }\) uniformly converge to some v, \(v'\) on \(\overline{J}_{0}\). Furthermore, v, \(v'\) belong to \(C(\overline{J}_{0})\). In the following, we need to show that \(v'= {}^{C}\mathcal{D}_{q}^{\varsigma }v\). Now, by the definition of fractional integral,
$$\begin{aligned} \bigl\vert \mathcal{I}_{q}^{\varsigma } \bigl[{}^{C} \mathcal{D}_{q}^{\varsigma }[y_{n}] \bigr](t) - \mathcal{I}_{q}^{\varsigma }v'(t) \bigr\vert & \leq \mathcal{I}_{q}^{\varsigma } \bigl[ \bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }y_{n} - v' \bigr\vert \bigr](t) \\ & \leq \frac{1}{ \Gamma _{q}(\varsigma +1)} \max_{t \in \overline{J}_{0}} \bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }y_{n} - v' \bigr\vert . \end{aligned}$$
Therefore, using the convergence of \(\{ {}^{C}\mathcal{D}_{q}^{\varsigma }y_{n} \}_{n=1}^{\infty }\) implies that
$$ \lim_{n \to \infty } \mathcal{I}_{q}^{\varsigma } \bigl[{}^{C}\mathcal{D}_{q}^{\varsigma }[y_{n}] \bigr](t) = \mathcal{I}_{q}^{\varsigma } \bigl[v' \bigr](t) $$
uniformly on \(\overline{J}_{0}\). On the other hand, we know \(\mathcal{I}_{q}^{\varsigma }[{}^{C}\mathcal{D}_{q}^{\varsigma }[y_{n}]](t) = y_{n} \) for each \(t \in \overline{J}_{0}\) and \(\varsigma \in J_{0}\). Hence, \(\mathcal{I}_{q}^{\varsigma }[v'](t)= v\), and this means \(v'={}^{C}\mathcal{D}_{q}^{\varsigma }v\). This completes the proof. □
Remark 3.1
Lemma (2.3) implies that the solution of problem (1) coincides with the fixed point of the operator \(\mathcal{O}\) defined as
$$\begin{aligned} \mathcal{O} y(t) & = \int _{0}^{1} G_{q}(t, \xi ) w \bigl( y(t), {}^{C} \mathcal{D}_{q}^{\varsigma }[y](t) \bigr) \,\mathrm{d}_{q}\xi \\ &\quad {} + \frac{a t^{2}}{1 - a e^{2}} \int _{0}^{1} G_{q}(e, \xi ) w \bigl( y(t), {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) \bigr) \,\mathrm{d}_{q}\xi . \end{aligned}$$
3.1 Existence and uniqueness
According to the Schauder fixed point theorem, the existence result has been stated.
Theorem 3.4
Suppose that \(w: \mathbb{R}^{2} \to \mathbb{R}\) is a continuous function and there exist constants \(m_{0}, m_{1} \geq 0\), \(\beta _{0}, \beta _{1} \in J_{0}\) such that one of the following conditions is satisfied:
-
(A1)
There exists a nonnegative function \(\mu (t) \in \overline{J}_{0}\) such that
$$ \bigl\vert w(y,z) \bigr\vert \leq \mu (t) + m_{0} \vert y \vert ^{\beta _{0}} + m_{1} \vert z \vert ^{\beta _{1}}. $$
(6)
-
(A2)
The function w satisfies
$$ \bigl\vert w(y,z) \bigr\vert \leq m_{0} \vert y \vert ^{\beta _{0}} + m_{1} \vert z \vert ^{\beta _{1}}. $$
(7)
Then boundary value problem (1) has at least one solution \(y(t)\).
Proof
First, suppose that condition (A1) holds. Define the set \(\mathcal{B}\) by
$$ \mathcal{B} = \bigl\{ y(t) : \bigl\Vert y(t) \bigr\Vert \leq \delta , t \in \overline{J}_{0} \bigr\} , $$
where
$$\begin{aligned} &\delta \geq \max \biggl\{ ( 6\Delta m_{0})^{\frac{1}{1 - \beta _{0}} }, (6\Delta m_{1} )^{ \frac{1}{1 - \beta _{1}}}, 6\Delta M_{1}, \biggl( \frac{ 12 \Delta m_{0} }{ \Gamma _{q} (2 - \varsigma )} \biggr)^{ \frac{1}{1 - \beta _{0}} }, \\ &\hphantom{\delta \geq{}} \biggl( \frac{ 12 \Delta m_{1}}{ \Gamma _{q} (2 - \varsigma )} \biggr)^{\frac{1}{1 - \beta _{1}}}, \frac{ 16 a M_{1}}{ \Gamma _{q} (2 - \varsigma )( 1 - a e^{2})}, \frac{ 8 M_{2}}{ \Gamma _{q} (2 - \varsigma ) } \biggr\} , \\ &\Delta = \biggl( 1 + \frac{a}{ 1 - ae^{2}} \biggr) \frac{2}{\Gamma _{q} ( \sigma + 1 )}, \end{aligned}$$
(8)
and
$$\begin{aligned}& M_{1} = \max_{t \in \overline{J}_{0}} \biggl\{ \frac{1}{\Gamma _{q} (\sigma )} \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \mu ( \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \biggr\} \\& M_{2} = \max_{t \in \overline{J}_{0} } \biggl\{ \frac{1}{\Gamma _{q} (\sigma )} \int _{0}^{1} \biggl\vert \frac{\partial }{\partial t} G_{q}(t, \xi ) \mu (\xi ) \biggr\vert \,\mathrm{d}_{q}\xi \biggr\} . \end{aligned}$$
(9)
It is clear that \(\mathcal{B}\) is a closed, bounded, and convex subset of Banach space \({}\mathcal{A}\). Here, we prove that \(\mathcal{O} : \mathcal{B} \to \mathcal{B}\). For any \(y \in \mathcal{B}\), we obtain
$$\begin{aligned} \bigl\vert \mathcal{O} y(t) \bigr\vert & \leq \int _{0}^{1} \bigl\vert G_{q} (t, \xi ) w \bigl( y(t), {}^{C}\mathcal{D}_{q}^{\varsigma }[y] (t) \bigr) \bigr\vert \,\mathrm{d}_{q}\xi \\ &\quad{} + \frac{a t^{2}}{1 - ae^{2}} \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) w \bigl( y(t), {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) \bigr) \bigr\vert \,\mathrm{d}_{q}\xi \\ & \leq \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \mu (\xi ) \bigr\vert \,\mathrm{d}_{q} \xi + \bigl[ m_{0} \delta ^{\beta _{0} } + m_{1} \delta ^{\beta _{1}} \bigr] \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \\ &\quad{} + \frac{a}{1 - a e^{2}} \biggl[ \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) \mu (\xi ) \bigr\vert \,\mathrm{d}_{q}\xi \\ &\quad{} + \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \biggr] \\ & \leq \biggl( 1+ \frac{a}{1 - a e^{2}} \biggr) \biggl[ M_{1} + \frac{2}{\Gamma _{q} (\sigma + 1 ) } \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr] \\ & \leq \Delta \bigl[ M_{1} + \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \bigr] \leq \frac{1}{2} \delta . \end{aligned}$$
Thus, for almost all \(\varsigma \in J_{0}\), we have
$$\begin{aligned} \bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[ \mathcal{O}y](t) \bigr\vert & = \bigl\vert \mathcal{I}_{q}^{1 - \varsigma } \bigl[\mathcal{O}y' \bigr](t) \bigr\vert \\ & \leq \frac{1}{\Gamma _{q} ( 1 - \varsigma )} \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \biggl\vert \frac{ \partial }{\partial \xi } G_{q}(\xi , \tau ) w \bigl( \tau , y ( \tau ), {}^{C} \mathcal{ D}_{q}^{\varsigma }[y] (\tau ) \bigr) \biggr\vert \,\mathrm{d}_{q}\tau \\ &\quad{} + \frac{2a \xi }{(1 - a e^{2}) } \int _{0}^{1} \bigl\vert G_{q}(e, \tau ) w \bigl( \tau , y( \tau ), {}^{C}\mathcal{ D}_{q}^{\varsigma }[y] ( \tau ) \bigr) \bigr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q}\xi \\ & \leq \frac{1}{\Gamma _{q} ( 1 - \varsigma ) } \int _{0}^{t} ( t - q \xi )^{(-\varsigma )} \biggl[ \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) \mu (\tau ) \biggr\vert \\ &\quad{} + \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) \biggr\vert \,\mathrm{d}_{q}\tau \\ &\quad{} + \frac{2a\xi }{1 - ae^{2}} \biggl( \int _{0}^{1} \bigl\vert G_{q} ( \xi , \tau )\mu (\tau ) \bigr\vert {\,\mathrm{d}}_{q}\tau \\ &\quad{} + \bigl( m_{0} \delta ^{\beta _{0}} + m_{0} \delta ^{\beta _{1}} \bigr) \int _{0}^{1} \bigl\vert G_{q}(e, \tau ) \bigr\vert { \,\mathrm{d}}_{q}\tau \biggr) \biggr] { \,\mathrm{d}}_{q}\xi \\ & \leq \frac{1}{\Gamma _{q} ( 1 - \varsigma ) } \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \biggl( M_{2} + \frac{3 }{\Gamma _{q} (\sigma )} \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \,\mathrm{d}_{q}\xi \\ &\quad{} + \frac{2a}{ (1 - ae^{2}) \Gamma _{q} (1 - \varsigma ) } \int _{0}^{t} \xi (t-\xi )_{q}^{(-\varsigma )} \\ &\quad{} \times \biggl( M_{1} + \frac{2}{\Gamma _{q} (\sigma + 1) } \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \,\mathrm{d}_{q}\xi \\ & \leq \frac{1}{\Gamma _{q} ( 1 - \varsigma ) } \biggl( M_{2} + \frac{3 }{\Gamma _{q} (\sigma )} \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \frac{t^{1 - \varsigma }}{1 - \varsigma } \\ &\quad{} + \frac{2a}{ (1 - ae^{2}) \Gamma _{q} (1 - \varsigma ) } \biggl( M_{1} + \frac{2}{\Gamma _{q} (\sigma + 1) } \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \\ &\quad{} \times \frac{t^{2 - \varsigma }}{(1 - \varsigma ) \Gamma _{q}(2 - \varsigma )} \\ & \leq \frac{1}{\Gamma _{q} ( 2 - \varsigma ) } \biggl( M_{2} + \frac{3 }{\Gamma _{q} (\sigma )} \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \\ &\quad{} + \frac{2a}{ (1 - ae^{2}) \Gamma _{q} (3 - \varsigma ) } \biggl( M_{1} + \frac{2}{\Gamma _{q} (\sigma + 1) } \bigl( m_{0} \delta ^{\beta _{0}} + m_{1} \delta ^{\beta _{1}} \bigr) \biggr) \\ & \leq \frac{3 \Delta }{\Gamma _{q} ( 2 - \varsigma )} \bigl( m_{0} \delta ^{\beta _{0}} \bigr) + \frac{2a M_{1} }{(1 - ae^{2})\Gamma _{q} ( 2 - \varsigma ) } + \frac{M_{2}}{\Gamma _{q} ( 2 - \varsigma ) } \\ & \leq \frac{1}{2} \delta . \end{aligned}$$
Clearly, \(\mathcal{O}y(t)\) and \({}^{C}\mathcal{D}_{q}^{\varsigma }[\mathcal{O}y](t)\) are continuous in \(\overline{J}_{0}\). Therefore \(\mathcal{O} : \mathcal{B} \to \mathcal{B}\). In the second case, suppose that condition (A2) holds. Choose
$$ 0 < \delta \leq \min \biggl\{ \biggl( \frac{1}{4\Delta m_{0}} \biggr)^{ \frac{1}{1 - \beta _{0}}}, \biggl( \frac{1}{4\Delta m_{1}} \biggr)^{ \frac{1}{1 - \beta _{1}}}, \biggl( \frac{ \Gamma _{q} (2 - \varsigma ) }{6\Delta m_{0}} \biggr)^{ \frac{1}{1 - \beta _{0}}}, \biggl( \frac{\Gamma _{q} (2 - \varsigma ) }{6\Delta m_{1}} \biggr)^{ \frac{1}{1 - \beta _{1}} } \biggr\} . $$
Again, by a similar way, we get \(\| \mathcal{O}y \| \leq \delta \), and therefore, in this case, \(\mathcal{O} : \mathcal{B} \to \mathcal{B}\). Here, we need to show that \(\mathcal{O}\) is a completely continuous operator. First, the equicontinuity of \(\mathcal{O}\) will be shown as follows. Suppose that \(s_{1}, s_{2} \in \overline{J}_{0}\) with \(s_{1} < s_{2} \) and
$$ N_{0} = 1+\max_{ t \in \overline{J}_{0}} \bigl\{ \bigl\vert w \bigl( t, y(t), {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) \bigr) \bigr\vert : y \in \mathcal{B} \bigr\} . $$
Then
$$\begin{aligned} &\bigl\vert \mathcal{O}y (s_{1}) - \mathcal{O}y (s_{2}) \bigr\vert \\ &\quad = \biggl\vert \int _{0}^{1} \bigl( G_{q}(s_{2}, \xi ) - G_{q}(s_{1}, \xi ) \bigr) w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \frac{a( s_{2}^{2} - s_{1}^{2} ) }{ 1 - ae^{2}} \int _{0}^{1} G_{q}(e, \xi ) w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \leq N_{0} \int _{0}^{1} \bigl\vert G_{q}(s_{2}, \xi ) - G_{q}(s_{1}, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi + \frac{2 a N_{0} }{1 - a e^{2}} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) \\ &\quad \leq \frac{2 a N_{0} }{1 - a e^{2}} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) + \frac{N_{0}}{\Gamma _{q} ( \sigma ) } \biggl[ \int _{0}^{s_{1}} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) (1 -\xi )_{q}^{(\sigma - 1)} \\ &\quad \quad{} + (s_{2} - \xi )_{q}^{(\sigma - 1)} + (s_{1} -\xi )_{q}^{( \sigma - 1)} \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \int _{s_{1}}^{s_{2}} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) (1 - \xi )_{q}^{( \sigma - 1)} + (s_{2} - \xi )_{q}^{(\sigma - 1)} \,\mathrm{d}_{q} \xi \\ &\quad \quad{} + \int _{s_{2}}^{1} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) (1 - \xi )_{q}^{( \sigma - 1)} \,\mathrm{d}_{q}\xi \biggr] \\ &\quad \leq \frac{ 2 a N_{0} }{1 - ae^{2})} \bigl( s_{2}^{2} - s_{1}^{2} \bigr) + \frac{N_{0}}{\Gamma _{q} ( \alpha )} \biggl[ \bigl( s_{2}^{2} - s_{1}^{2} \bigr) \int _{0}^{1} (1 - \xi )_{q}^{(\sigma - 1)} \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \int _{0}^{s_{2}} \bigl(s_{2}^{2} - \xi \bigr)_{q}^{(\sigma - 1)} \,\mathrm{d}_{q}\xi - \int _{0}^{s_{1}} \bigl(s_{1}^{2} - \xi \bigr)_{q}^{( \sigma - 1)} \,\mathrm{d}_{q}\xi \biggr] \\ & \quad \leq \frac{N_{0}}{\Gamma _{q} ( \alpha + 1)} \biggl[ s_{2}^{2} - s_{1}^{2} + s_{2}^{\sigma }- s_{1}^{\sigma }+ \frac{ 2 a(s_{2}^{2} - s_{1}^{2} )}{1- a e^{2} } \biggr] \\ &\quad \leq N_{0} \biggl[ \Delta \bigl( s_{2}^{2} - s_{1}^{2} \bigr) + \frac{ s_{2}^{\sigma }- s_{1}^{\sigma }}{ \Gamma _{q} ( \sigma + 1) } \biggr], \end{aligned}$$
and
$$\begin{aligned} &\bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[ \mathcal{O}y](s_{2}) - {}^{C} \mathcal{D}_{q}^{\varsigma }[ \mathcal{O}y ] (s_{2}) \bigr\vert \\ &\quad = \frac{1}{ \Gamma _{q} ( 1 - \varsigma ) } \biggl\vert \int _{0}^{s_{2}} (s_{2} - \xi )_{q}^{(-\varsigma )} \biggl( \int _{0}^{1} \frac{\partial }{ \partial \xi } G_{q}( \xi , \tau ) w \bigl( y (\tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[y]( \tau ) \bigr) \,\mathrm{d}_{q}\tau \\ &\quad \quad{} + \frac{ 2 a\xi }{1 - ae^{2}} \int _{0}^{1} G_{q}(e, \tau ) w \bigl( y(\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y] (\tau ) \bigr) \biggr) \,\mathrm{d}_{q}\xi \\ &\quad \quad{} - \int _{0}^{s_{1}} (s_{1} - \xi )_{q}^{(-\varsigma )} \biggl( \int _{0}^{1} \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) w \bigl( y(\tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[y] (\tau ) \bigr) \,\mathrm{d}_{q}\tau \\ &\quad \quad{} + \frac{ 2 a \xi }{ 1 - ae^{2} } \int _{0}^{1} G_{q}(e, \tau ) w \bigl( y(\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y] ( \tau ) \bigr) \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q} \xi \biggr\vert \\ &\quad \leq \frac{3N_{0} }{ \Gamma _{q} ( 1 - \varsigma ) \Gamma _{q} ( \sigma )} \biggl\vert \int _{0}^{s_{2}} (s_{2} - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi - \int _{0}^{s_{1}} (s_{1} - \xi )_{q}^{(- \varsigma )} \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \quad{} + \frac{6 a N_{0} }{\Gamma _{q} ( 1 - \varsigma ) \Gamma _{q} ( \sigma ) ( 1 - ae^{2}) } \\ &\quad \quad{} \times \biggl\vert \int _{0}^{s_{2}} \xi (s_{2} - \xi )_{q}^{(- \varsigma )} \,\mathrm{d}_{q}\xi - \int _{0}^{s_{1}} \xi (s_{1} - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \leq \frac{3N_{0}}{\Gamma _{q} ( 1 - \varsigma ) \Gamma _{q} ( \sigma )} \biggl\vert \int _{0}^{s_{1}} \bigl( (s_{2} - \xi )_{q}^{(-\varsigma )} - (s_{1} - \xi )_{q}^{(-\varsigma )} \bigr) \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \int _{s_{1}}^{s_{2}} (s_{2} - q\xi )^{(-\varsigma )} \,\mathrm{d}_{q}\xi \biggr\vert + \frac{6 aN_{0} }{ \Gamma _{q} ( 1 - \varsigma ) \Gamma _{q} ( \sigma )(1 - ae^{2})} \\ &\quad \quad{} \times \biggl\vert \int _{0}^{s_{1}} \bigl( \xi (s_{2} - \xi )_{q}^{(- \varsigma )} - \xi (S_{1} - \xi )_{q}^{(-\varsigma )} \bigr) \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \int _{s_{1}}^{s_{2}} \xi ( s_{2} - q\xi )^{(-\varsigma )} \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \leq \frac{3N_{0} }{\Gamma _{q} ( 1 - \varsigma ) \Gamma _{q} ( \sigma ) } \bigl( s_{2}^{1 - \varsigma } - s_{1}^{ 1 - \varsigma } + 2 ( s_{2} - s_{1} )_{q}^{(1 - \varsigma )} \bigr) \\ &\quad \quad{} + \frac{6 a N_{0} }{ \Gamma _{q} ( \sigma ) ( 1 - ae^{2})} \\ &\quad \quad{} \times \biggl( \frac{ 2 s_{1} ( s_{2} - s_{1} )_{q}^{(1 - \varsigma )} }{ \Gamma _{q} ( 2 - \varsigma )} + \frac{ s_{2}^{2}- s_{1}^{1} }{ \Gamma _{q} ( 3 - \varsigma )} + \frac{2 ( s_{2} - s_{1} )_{q}^{(2 - \varsigma )} }{ \Gamma _{q} ( 3 - \varsigma ) } \biggr). \end{aligned}$$
Since the functions \(s_{2}^{2} -s_{1}^{2} \), \(d_{2}^{\sigma }- s_{1}^{\sigma }\), \(( s_{2} - s_{1} )_{q}^{(2 - \varsigma )}\), and \(s_{1} ( s_{2} - s_{1} )^{1 - \varsigma }\) are continuous, we conclude that \(\mathcal{O}y\) is an equicontinuous set. Obviously, \(\mathcal{O}y \) is uniformly bounded because \(\mathcal{O} (\mathcal{B}) \subseteq \mathcal{B}\). By means of the Arzelá–Ascoli theorem, \(\mathcal{O}\) is a compact operator. Therefore, from the Schauder fixed point theorem, the operator \(\mathcal{O}\) has a fixed point, i.e., the q-fractional boundary value problem (1) has a solution. □
In what follows, we prove the uniqueness of solution for Eq. (1) based on application of the Banach fixed point theorem.
Theorem 3.5
Let \(w : \mathbb{R}^{2} \to \mathbb{R}\) be a continuous function and let it fulfill a Lipschitz condition with respect to the first and second variables with Lipschitz constant
$$ 0 < \ell < \frac{\Gamma _{q} ( 2 - \varsigma )}{\Delta [ 3 + \Gamma _{q} ( 2 - \varsigma )] }, $$
(10)
i.e.,
$$ \bigl\vert w(y_{1},z_{1}) - w(y_{2}, z_{2}) \bigr\vert \leq \ell \bigl( \vert y_{1} - y_{2} \vert + \vert z_{1} - z_{2} \vert \bigr). $$
Then problem (1) has a unique solution.
Proof
In Theorem 3.4, we have shown that \(\mathcal{O}\) is a continuous operator and \(\mathcal{O} : \mathcal{B} \to \mathcal{B}\). Therefore, using the Banach fixed point theorem, it is sufficient to show that \(\mathcal{O}\) is a contraction mapping. For any \(y_{1}, y_{2} \in \mathcal{A}\),
$$\begin{aligned} &\bigl\vert \mathcal{O}y_{1} (t) - \mathcal{O} y_{2}(t) \bigr\vert \\ &\quad \leq \biggl\vert \int _{0}^{1} G_{q}(t, \xi ) \bigl( w \bigl( y_{1}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{1}]( \xi ) \bigr) \\ &\quad \quad{} - w \bigl( y_{2}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{2}]( \xi ) \bigr) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \quad{} + \frac{at^{2} }{1 - a e^{2}} \biggl\vert \int _{0}^{1} G_{q}(e, \xi ) \bigl( w \bigl( y_{1}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{1}]( \xi ) \bigr) \\ &\quad \quad{} - w \bigl( y_{2} (\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{2}] (\xi ) \bigr) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad \leq \ell \Vert y_{1} - y_{2} \Vert \biggl( \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi + \frac{at^{2} }{1 - a e^{2}} \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \biggr) \\ &\quad \leq \ell \Delta \Vert y_{1} - y_{2} \Vert , \\ &\bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[ \mathcal{O}y](s_{2}) - {}^{C} \mathcal{D}_{q}^{\varsigma }[ \mathcal{O}y](s_{2}) \bigr\vert \\ &\quad = \biggl\vert \frac{1}{\Gamma _{q} ( 1 - \varsigma ) } \int _{0}^{t} (t - \xi )_{q}^{(-\varsigma )} \bigl( \mathcal{O}'y_{1} ( \xi ) - \mathcal{O}'y_{1} (\xi ) \bigr) \,\mathrm{d}_{q} \xi \biggr\vert \\ &\quad \leq \frac{1}{\Gamma _{q} ( 1 - \varsigma )} \biggl\vert \int _{0}^{t} (t - \xi )_{q}^{(-\varsigma )} \\ &\quad \quad{} \times \biggl( \int _{0}^{1} \frac{ \partial }{ \partial \xi } G_{q} (\xi , \tau ) \bigl( w \bigl( y_{1}(\tau ), {}^{C}\mathcal{D }_{q}^{\varsigma }[y_{1}]( \tau ) \bigr) \\ &\quad \quad{} - w \bigl( y_{2}(\tau ) , {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{2}] (\tau ) \bigr) \bigr) \,\mathrm{d}_{q}\tau \\ &\quad \quad{} + \frac{2a\xi }{1 - a e^{2}} \int _{0}^{1} G_{q}(e, \tau ) \bigl( w \bigl( y_{1}(\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{1}]( \tau ) \bigr) \\ &\quad \quad{} - w \bigl( y_{2}(\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y_{2}]( \tau ) \bigr) \bigr) \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q} \xi \biggr\vert \\ &\quad \leq \frac{3\ell }{\Gamma _{q} ( 1 - \varsigma )\Gamma _{q} ( \sigma ) } \Vert y_{1} - y_{2} \Vert \\ &\quad \quad{} \times \biggl( \int _{0}^{t} (t - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi + \frac{2a }{1 - ae^{2}} \int _{0}^{t} \xi (t - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi \biggr) \\ &\quad \leq \frac{3 \ell \Delta }{\Gamma _{q} ( 2 - \varsigma ) } \Vert y_{1} - y_{2} \Vert . \end{aligned}$$
Therefore
$$ \Vert \mathcal{O}y_{1} - \mathcal{O}y_{2} \Vert \leq \biggl[ \Delta \ell + \frac{3 \ell \Delta }{\Gamma _{q} ( 2 - \varsigma ) } \biggr] \Vert y_{1} - y_{2} \Vert . $$
Hence, by the Banach fixed point theorem, \(\mathcal{O}\) has a unique fixed point which is a solution of problem (1). □
3.2 Stability of solution
In this section, we study the stability analysis of problem (1) under various perturbations. Dependence solution on the boundary value condition is discussed in Theorem 3.6. Stability of the solution with respect to the perturbation of w is analyzed in Theorem 3.7. Finally, the perturbation effect of fractional order derivative on the solution is studied in Lemma 3.8 and Theorem 3.9.
Theorem 3.6
Suppose that function w fulfills the conditions of Theorem 3.5, and let \(\hat{v}(t)\) be the solution of the following perturbed problem:
$$ {}^{C}\mathcal{D}_{q}^{\sigma }[y](t) = w \bigl( y(t), {}^{C} \mathcal{D}_{q}^{\varsigma }[y](t) \bigr) $$
(11)
for each \(2 < \alpha \leq 3\), \(\varsigma \in J_{0}\), on the boundary value conditions \(y(0) = \epsilon _{1}\), \(y'(0) = \epsilon _{2}\), and
$$ y(1) = a y(e) + \epsilon _{3} $$
for \(e \in J_{0}\) with \(0 \leq a < \frac{1}{e^{2}}\). Then \(\| y - \hat{v} \| = O(\epsilon )\), here \(\epsilon = \max \{ \epsilon _{1}, \epsilon _{2}, \epsilon _{3}\}\).
Proof
Similar to Lemma 2.3 the solution of problem (11) is
$$\begin{aligned} \hat{v}(t) & = \int _{0}^{1} G_{q}(t, q\xi ) w \bigl( \hat{v}(\xi ), {}^{C} \mathcal{D}_{q}^{\varsigma } \bigl[\hat{v}(\xi ) \bigr] \bigr) \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{at^{2} }{1 - a e^{2}} \int _{0}^{1} G_{q}(e, q\xi ) w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \,\mathrm{d}_{q}\xi + h(t), \end{aligned}$$
(12)
where
$$ h(t) = \frac{ t^{2} }{1 - ae^{2}} \bigl( \epsilon _{1} ( a- 1 ) + \epsilon _{2} ( ae - 1 ) \bigr) + \epsilon _{2} t + \epsilon _{1}. $$
Thus,
$$\begin{aligned} \vert y - \hat{v} \vert & \leq \biggl\vert \int _{0}^{1} G_{q}(t, \xi ) \bigl[ w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) - w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \bigr] \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \frac{ a t^{2} }{1 - ae^{2}} \biggl\vert \int _{0}^{1} G_{q}(e, \xi ) \bigl[ w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \\ &\quad{} - w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \bigr] \,\mathrm{d}_{q}\xi \biggr\vert + \bigl\vert h(t) \bigr\vert \\ & \leq \ell \Vert y - \hat{v} \Vert \biggl( \int _{0}^{1} G_{q}(t, \xi ) { \,\mathrm{d}}_{q}\xi + \frac{ a t^{2} }{1 - ae^{2}} \int _{0}^{1} G_{q}(t, \xi ) { \,\mathrm{d}}_{q}\xi \biggr) + \bigl\vert h(t) \bigr\vert \\ & \leq \ell \Delta \Vert y - \hat{v} \Vert + \bigl\vert h(t) \bigr\vert , \end{aligned}$$
and
$$\begin{aligned} &\bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) - {}^{C}\mathcal{D}_{q}^{\varsigma }[\hat{v}](t) \bigr\vert \\ &\quad = \frac{ 1 }{\Gamma _{q} ( 1 - \varsigma )} \biggl\vert \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \\ &\qquad {}\times \biggl( \int _{0}^{1} \frac{ \partial }{\partial \xi } G_{q}( \xi , \tau ) \bigl( w \bigl( y(\tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[y](\tau ) \bigr) - w \bigl( \hat{v}( \tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[\hat{v}]( \tau ) \bigr) \bigr) \,\mathrm{d}_{q}\tau \\ &\quad \quad{} + \frac{ 2 a\xi }{1 - ae^{2} } \int _{0}^{1} G_{q}(e, \tau ) \bigl( w \bigl( y(\tau ), {}^{C}\mathcal{D }_{q}^{\varsigma }[y]( \tau ) \bigr) \\ &\quad \quad{} - w \bigl( \hat{v}(\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\tau ) \bigr) \bigr) \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q}\xi \biggr\vert + \bigl\vert {}^{C} \mathcal{D}_{q}^{\varsigma }[h](t) \bigr\vert \\ &\quad \leq \frac{3 \ell }{ \Gamma _{q} ( 1 - \varsigma )\Gamma _{q} (\sigma )} \Vert y - \hat{v} \Vert \biggl( \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi \\ &\quad \quad{} + \frac{ 2 a\xi }{1 - ae^{2} } \int _{0}^{t} \xi ( t - \xi )_{q}^{(- \varsigma )} \,\mathrm{d}_{q}\xi \biggr)+ \bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[h](t) \bigr\vert \\ &\quad \leq \frac{3 \ell \Delta }{ \Gamma _{q} ( 1 - \varsigma )} \Vert y - \hat{v} \Vert + \bigl\vert {}^{C} \mathcal{D}_{q}^{\varsigma }[h](t) \bigr\vert . \end{aligned}$$
Therefore,
$$\begin{aligned} \Vert y - \hat{v} \Vert & \leq \frac{1}{ 1 - ( \ell \Delta + \frac{3 \ell \Delta }{\Gamma _{q} ( 2 - \varsigma )} ) } \\ &\quad{} \times \biggl( \biggl\vert \frac{ at^{2} }{1 - ae^{2}} \bigl( \epsilon _{1} ( a- 1 ) + \epsilon _{2}( ae - 1 ) \bigr) +\epsilon _{2} t + \epsilon _{1} \biggr\vert \\ &\quad{} + \biggl\vert \frac{2t^{2-\varsigma }}{(1-ae^{2}) \Gamma _{q}(3-\varsigma )} \bigl( \epsilon _{1} ( a- 1 ) + \epsilon _{2}( ae - 1 ) \bigr)+ \frac{ \epsilon _{2}}{\Gamma _{q} ( 2 - \varsigma )} t^{ 1 - \varsigma } \biggr\vert \biggr) \\ & \leq \frac{\epsilon }{1 - (\ell \Delta + \frac{3 \ell \Delta }{\Gamma _{q} ( 2 - \varsigma )} )} \\ &\quad{} \times \biggl\vert \frac{ 1 }{1 - ae^{2}} \biggl[ 1 + \frac{2}{\Gamma _{q} ( 3 - \varsigma )} \biggr] ( a+ 2ae) + 2 + \frac{1}{\Gamma _{q} ( 2 - \varsigma )} \biggr\vert . \end{aligned}$$
This completes the proof. □
Theorem 3.7
Suppose that the conditions of Theorem 3.5hold, and let \(\hat{v}(t)\) be the solution of the following perturbed problem on function w:
$$ {}^{C}\mathcal{D}_{q}^{\alpha }[y](t) = w \bigl( y(t), {}^{C} \mathcal{D}_{q}^{\varsigma }[y](t) \bigr) + \epsilon $$
(13)
for \(t \in \overline{J}_{0}\), \(2 < \alpha \leq 3\), and \(\varsigma \in J_{0}\), with the boundary conditions \(y_{0} = y'_{0} = 0\), \(y_{1} = a y(e)\) for \(e \in J_{0}\) with \(0 \leq a < \frac{1}{e^{2}}\). Then \(\| y - \hat{v} \| = O(\epsilon )\).
Proof
The solution of problem (13) is
$$\begin{aligned} \hat{v} (t)&= \int _{0}^{1} G_{q}(t, \xi ) \bigl( w \bigl( \hat{v}( \xi ), {}^{C}\mathcal{D}_{q}^{\varsigma } \bigr) + \epsilon \bigr) \,\mathrm{d}_{q}\xi \\ &\quad{} + \frac{a t^{2} }{1 - ae^{2}} \int _{0}^{1} G_{q}(e, \xi ) \bigl( w \bigl(\hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) + \epsilon \bigr) \,\mathrm{d}_{q}\xi . \end{aligned}$$
(14)
Then, similar to the proof of the previous theorem
$$\begin{aligned} \vert y - \hat{v} \vert & \leq \ell \Delta \Vert y - \hat{v} \Vert + \epsilon \biggl( \int _{0}^{1} G_{q}(t, \xi ) \,\mathrm{d}_{q}\xi + \frac{ a t^{2} }{1 - ae^{2}} \int _{0}^{1} G_{q}(t, \xi ) \,\mathrm{d}_{q}\xi \biggr) \\ & \leq \Delta \Vert y - \hat{v} \Vert + \epsilon \Delta \end{aligned}$$
and
$$\begin{aligned} \bigl| {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t)- {}^{C}\mathcal{D}_{q}^{\varsigma }[\hat{v}](t)\bigr| &\leq \frac{3\ell \Delta }{\Gamma _{q} ( 2 - \varsigma ) \Gamma _{q} ( \sigma )} \Vert y - \hat{v} \Vert \\ &\quad{} + \epsilon \biggl( \int _{0}^{t} ( t - \xi )_{q}^{(- \varsigma )} \,\mathrm{d}_{q}\xi + \frac{ 2 a}{1 - ae^{2}} \int _{0}^{t} \xi ( t - \xi )_{q}^{(-\varsigma )} \,\mathrm{d}_{q}\xi \biggr) \\ & \leq \frac{3\ell \Delta }{\Gamma _{q} ( 2 - \varsigma )} \Vert y - \hat{v} \Vert + \frac{3 \epsilon \Delta }{\Gamma _{q} ( 2 - \varsigma )}. \end{aligned}$$
Indeed,
$$ \Vert y - \hat{v} \Vert \leq \frac{\epsilon }{1 - (\ell \Delta + \frac{3 \epsilon \Delta }{ \Gamma _{q} ( 2 - \varsigma )} )} \biggl[ \Delta + \frac{3\Delta }{ \Gamma _{q} ( 2 - \varsigma )} \biggr]. $$
This completes the proof. □
For perturbation analysis on the fractional order of the q-derivative, we first state and prove the following lemma and then the main theorem will be discussed.
Lemma 3.8
Let \(s,t \in \overline{J}_{0}\) and \(2 < \sigma - \epsilon < \sigma \), then
$$ \int _{0}^{t} \biggl\vert \frac{s^{\sigma - 1}}{ \Gamma _{q} (\sigma )} - \frac{s^{ \sigma - \epsilon - 1}}{ \Gamma _{q} (\sigma - \epsilon )} \biggr\vert \,\mathrm{d}_{q}s = O (\epsilon ). $$
Proof
We estimate the integral as follows:
$$\begin{aligned} \int _{0}^{t} \biggl\vert \frac{s^{\sigma - 1}}{ \Gamma _{q} (\sigma ) } - \frac{s^{\sigma - \epsilon - 1} }{ \Gamma _{q} (\sigma - \epsilon )} \biggr\vert \,\mathrm{d}_{q}s &\leq \int _{0}^{t} \biggl\vert \frac{s^{\sigma - 1}}{ \Gamma _{q} (\sigma )} - \frac{ s^{\sigma - \epsilon - 1}}{ \Gamma _{q} (\sigma - \epsilon )} \biggr\vert \,\mathrm{d}_{q}s \\ &\quad{} + \int _{0}^{t} \biggl\vert \frac{s^{\sigma - \epsilon - 1}}{ \Gamma _{q} (\sigma )} - \frac{ s^{\sigma - \epsilon - 1}}{\Gamma _{q} (\sigma - \epsilon )} \biggr\vert \,\mathrm{d}_{q}s \\ & \leq \frac{1}{\Gamma _{q} (\sigma ) } \biggl[ \frac{1}{\sigma } - \frac{1}{ \alpha - \epsilon } \biggr] + \frac{1}{\sigma - \epsilon } \biggl[ \frac{1}{\Gamma _{q}(\sigma )} - \frac{1}{\Gamma _{q}(\sigma - \epsilon ) } \biggr] \\ & \leq \epsilon \biggl[ \frac{1}{ \sigma (\sigma - \epsilon ) \Gamma _{q}(\sigma )} + \frac{ \vert \Gamma _{q}(\alpha ) \vert }{ (\sigma - \epsilon ) \Gamma _{q} (\sigma ) (\sigma - \epsilon )} \biggr], \end{aligned}$$
where \(\sigma - \epsilon < \alpha <\sigma \). □
Theorem 3.9
Suppose that the conditions of Theorem 3.5hold, and let \(\hat{v}(t)\) be the solution of the following perturbed problem on fractional order derivative σ:
$$ {}^{C}\mathcal{D}_{q}^{\sigma - \epsilon } [y](t) = w \bigl( y(t), {}^{C} \mathcal{D}_{q}^{\varsigma }[y](t) \bigr), $$
(15)
for \(t \in \overline{J}_{0}\), \(2 < \sigma \leq 3\), \(\varsigma \in J_{0}\), under the boundary conditions \(y_{0} = y'_{0} = 0\), \(y_{1} = a y(e)\), \(e \in J_{0}\) with \(0 \leq a < \frac{1}{e^{2}}\) and \(2 < \sigma - \epsilon < \sigma \leq 3\). Then \(\| y - \hat{v} \| = O (\epsilon )\).
Proof
According to the above discussion, the solution of problem (15) is given by
$$\begin{aligned} \hat{v}(t) &= \int _{0}^{1} \hat{G}_{q}( t, \xi ) w \bigl( \hat{v}( \xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \,\mathrm{d}_{q}\xi \\ &\quad{} + \frac{ a t^{2} }{1 - ae^{2}} \int _{0}^{1} \hat{G}_{q}( t, \xi ) w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \,\mathrm{d}_{q}\xi , \end{aligned}$$
(16)
where
$$ \hat{G}_{q}(t, \xi ) = \textstyle\begin{cases} \frac{( t - \xi )_{q}^{( \sigma - \epsilon - 1)} - t^{2} ( 1 - \xi )_{q}^{( \sigma - \epsilon - 1)}}{ \Gamma _{q} (\sigma )}, & \xi < t, \\ \frac{- t^{2} ( 1 - \xi )_{q}^{( \sigma - \epsilon - 1)} }{ \Gamma _{q} ( \sigma )},& t < \xi , \end{cases} $$
(17)
for \(t, \xi \in \overline{J}_{0}\). Then
$$\begin{aligned} \vert y - \hat{v} \vert & \leq \biggl\vert \int _{0}^{1} G_{q}(t, \xi ) w \bigl( y( \xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \,\mathrm{d}_{q}\xi \\ &\quad{} - \int _{0}^{1} \hat{G}_{q}( t, \xi ) w \bigl( \hat{v}(\xi ), {}^{C} \mathcal{D}_{q}^{\varsigma }[ \hat{v}](\varsigma ) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \frac{ at^{2} }{1 - ae^{2}} \biggl\vert \int _{0}^{1} G_{q}(e, \xi ) w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \,\mathrm{d}_{q}\xi \\ &\quad{} - \int _{0}^{1} \hat{G}_{q}(e, \xi ) w \bigl( \hat{v}(\xi ), {}^{C} \mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \,\mathrm{d}_{q} \xi \biggr\vert \\ & \leq \biggl| \int _{0}^{1} G_{q}(t, \xi ) \bigl( w \bigl( y(\xi ), {}^{C} \mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) - w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}] \bigr) (\xi ) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \biggl\vert \int _{0}^{1} \bigl( G_{q}(e, \xi ) - \hat{G}_{q}( e, \xi ) \bigr) w \bigl(\hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[\hat{v}] (\xi ) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \frac{ at^{2} }{1 - ae^{2}} \biggl( \biggl\vert \int _{0}^{1} G_{q}(e, \xi ) \bigl( w \bigl( y(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \xi ) \bigr) \\ &\quad{} - w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\xi ) \bigr) \bigr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \biggl\vert \int _{0}^{1} \bigl( G_{q}(e, \xi ) - \hat{G}_{q}(e, \xi ) \bigr) w \bigl( \hat{v}(\xi ), {}^{C}\mathcal{D}_{q}^{\varsigma }[\hat{v}](\xi ) \bigr) \biggr\vert \biggr) \\ & \leq \ell \Vert y - \hat{v} \Vert \int _{0}^{1} | G_{q}(t, \xi ) \,\mathrm{d}_{q}\xi + \Vert w \Vert _{\epsilon } \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) - \hat{G}_{q}( t, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{a}{1 - ae^{2}} \biggl( \ell \Vert y - \hat{v} \Vert \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) \bigr\vert \,\mathrm{d}_{q}\xi \\ &\quad{} + \Vert w \Vert _{\epsilon } \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) - \hat{G}_{q}( e, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \biggr) \\ & \leq \ell \Delta \Vert y - \hat{v} \Vert + \Vert w \Vert _{\epsilon } \biggl( \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) - \hat{G}_{q}( t, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{ a}{1 - ae^{2}} \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) - \hat{G}_{q}( e, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \biggr), \end{aligned}$$
where
$$ \Vert w \Vert _{\epsilon }= \sup_{ 0 < \epsilon < \sigma - 2} \bigl\vert w \bigl( \hat{v}(t), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}] (t) \bigr) \bigr\vert . $$
Also, we have
$$\begin{aligned} \bigl\vert {}^{C}\mathcal{D}_{q}^{\varsigma }[y](t) - {}^{C} \mathcal{ D}_{q}^{\varsigma }[\hat{v}] (t) \bigr\vert &\leq \frac{1}{\Gamma _{q} ( 1 - \varsigma )} \biggl\vert \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \frac{\partial }{\partial \xi } G_{q}( \xi , \tau ) w \bigl( y(\tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[y] ( \tau ) \bigr) \\ &\quad{} - \int _{0}^{1} \frac{ \partial }{ \partial \xi } \hat{G}_{q}( \xi , \tau ) w \bigl( \hat{v}(\tau ), {}^{C} \mathcal{D}_{q}^{\varsigma }[\hat{v}](\tau ) \bigr) \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q}\xi \biggr\vert \\ &\quad{} + \frac{2 a }{\Gamma _{q}( 1 - \varsigma ) ( 1 - ae^{2})} \biggl\vert \int _{0}^{t} (t - \xi )_{q}^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \xi G_{q}(e, \tau ) w \bigl( y( \tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[y]( \tau ) \bigr) \\ &\quad{} - \int _{0}^{1} \xi \hat{G}(e, \tau ) w \bigl( \hat{v} (\tau ), {}^{C}\mathcal{D}_{q}^{\varsigma }[ \hat{v}](\tau ) \bigr) \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q}\xi \biggr\vert \\ & \leq \frac{\ell \Vert y - \hat{v} \Vert }{ \Gamma _{q}( 1 -\varsigma )} \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \biggl( \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) \biggr\vert \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q}\xi \\ &\quad{} + \Vert w \Vert _{\epsilon }\frac{1}{ \Gamma _{q} (1-\varsigma )} \int _{0}^{t} ( t - \xi )_{q}^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) - \frac{ \partial }{\partial \xi } \hat{G}_{q}( \xi , \tau ) \biggr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{ 2 a }{\Gamma _{q} ( 1-\varsigma ) ( 1 - ae^{2}) } \biggl[ \ell \Vert y - \hat{v} \Vert \\ &\quad{} \times \int _{0}^{t} \xi ( t - \xi )_{q}^{(-\varsigma )} \biggl( \int _{0}^{1} \bigl\vert G_{q}(e, \tau ) \bigr\vert \,\mathrm{d}_{q}\tau \biggr) \,\mathrm{d}_{q} \xi \\ &\quad{} + \Vert w \Vert _{\epsilon } \int _{0}^{t} \xi (t- \xi )_{q}^{(- \varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \bigl\vert G_{q}(e, \tau ) - \hat{G}_{q}(e, \tau ) \bigr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q}\xi \biggr] \\ & \leq \frac{3 \ell \Delta }{\Gamma _{q} ( 2 - \varsigma )} \Vert y - \hat{v} \Vert + \Vert \ell \Vert _{\epsilon } \frac{1}{\Gamma _{q} ( 1 - \varsigma )} \int _{0}^{t} \xi ( t - \xi )_{q}^{(- \varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) - \frac{ \partial }{\partial \xi } \hat{G}_{q}( \xi , \tau ) \biggr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{2 a}{\Gamma _{q} ( 1 - \varsigma ) ( 1 - ae^{2})} \Vert w \Vert _{\epsilon } \\ &\quad{} \times \int _{0}^{t} \xi ( t - \xi )_{q}^{(-\varsigma )} \biggl( \int _{0}^{1} \bigl\vert G_{q}(e, \tau ) - \hat{G}_{q}(e, \tau ) \bigr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q}\xi . \end{aligned}$$
Therefore,
$$\begin{aligned} \Vert y - \hat{v} \Vert & \leq \frac{1}{1 - (\ell \Delta + \frac{3 \ell \Delta }{\Gamma _{q} ( 2 -\varsigma )} ) } \biggl[ \int _{0}^{t} \bigl\vert G_{q}(t, \xi ) - \hat{G}_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{a}{1 - a e^{2}} \int _{0}^{1} \bigl\vert G_{q}(e, \xi ) - \hat{G}_{q}(e, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{1}{\Gamma _{q} ( 1 - \varsigma )} \int _{0}^{t} \xi ( t - q\xi )^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(\xi , \tau ) - \frac{ \partial }{\partial \xi } \hat{G}_{q}( \xi , \tau ) \biggr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q} \xi \\ &\quad{} + \frac{2 a}{\Gamma _{q} ( 1 - \varsigma ) ( 1 - ae^{2})} \int _{0}^{t} \xi ( t - q\xi )^{(-\varsigma )} \\ &\quad{} \times \biggl( \int _{0}^{t} \bigl\vert G_{q}(e, \tau ) - \hat{G}_{q}(e, \tau ) \bigr\vert \,\mathrm{d}_{q} \tau \biggr) \,\mathrm{d}_{q}\xi \biggr]. \end{aligned}$$
According to the structure of \(G_{q}(t, \xi ) \), we know that every term of \(| G_{q}(t, \xi ) - \hat{G}_{q}(t, \xi ) |\) and
$$ \biggl\vert \frac{ \partial }{\partial \xi } G_{q}(t, \xi ) - \frac{\partial }{\partial \xi } \hat{G}_{q}(t, \xi ) \biggr\vert $$
is in the form of Eq. (15). Hence, Lemma 3.8 implies
$$\begin{aligned} & \int _{0}^{1} \bigl\vert G_{q}(t, \xi ) - \hat{G}_{q}(t, \xi ) \bigr\vert \,\mathrm{d}_{q} \xi = O (\epsilon ), \\ & \int _{0}^{1} \biggl\vert \frac{\partial }{\partial \xi } G_{q}(t, \xi ) - \frac{\partial }{\partial \xi } \hat{G}_{q}(t, \xi ) \biggr\vert = O( \epsilon ). \end{aligned}$$
Therefore, \(\| y - \hat{v} \| = O (\epsilon ) \) and the proof is complete. □