To establish our results on Ulam type stability outlined in (1.1), we need the following assumptions:
- (A1):
-
\(f:[t_{0},t_{f}]\times \mathbb{R} ^{3}\rightarrow \mathbb{R} \), \(g:[t_{0},t_{f}]\times {}[ t_{0},t_{f}]\times \mathbb{R} ^{2}\rightarrow \mathbb{R} \) are continuous with the Lipschitz condition:
$$\begin{aligned}& \bigl\vert f(t,\eta _{1},\eta _{2},\eta _{3})-f(t,\varrho _{1}, \varrho _{2},\varrho _{3}) \bigr\vert \leq \sum_{k=1}^{3}L_{f} \vert \eta _{i}-\varrho _{i} \vert ; \\& \bigl\vert g(t,s,\eta _{1},\eta _{2})-g(t,s,\varrho _{1},\varrho _{2}) \bigr\vert \leq \sum _{k=1}^{2}L_{g} \vert \eta _{i}- \varrho _{i} \vert ; \end{aligned}$$
\(L_{f}, L_{g} >0\), for all \(t,s\in I^{\prime }\) and \(\eta _{i},\varrho _{i}\in \mathbb{R} \) (\(i=1,2,3\)).
- (A2):
-
\(U_{k}:\mathbb{R} \rightarrow \mathbb{R} \) is such that \(\vert U_{k}(\eta _{1})-U_{k}(\eta _{2}) \vert \leq M_{k} \vert \eta _{1}-\eta _{2} \vert \), \(M_{l}>0\), for all \(k \in \{1,2,\ldots,m\}\) and \(\eta _{1},\eta _{2}\in \mathbb{R} \).
- (A3):
-
\(( \frac{2L_{f}}{\Gamma (\alpha +1)} [ 1+ \frac{L_{g} ( t_{f}-t_{0} ) }{\alpha +1} ] ( t_{f}-t_{0} ) ^{\alpha }+\sum_{j=1}^{m}M_{j}\beta _{j} ( \tau _{k}-\theta _{k} ) ) <1\).
- (A4):
-
There exists an increasing function \(\varphi :[t_{0}-\lambda ,t_{0}]\rightarrow \mathbb{R} \) such that, for some \(\rho >0\),
$$ \int _{t_{0}}^{t}\varphi (r)\,dr\leq \rho \varphi (t). $$
Theorem 3.1
Suppose that (A1)–(A4) hold. Then
-
(i)
there exists a unique solution of (1.1) in \(\operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\);
-
(ii)
Eq. (1.1) has Ulam–Hyers–Rassias stability on I.
Proof
i) Consider an operator \(\Lambda :\operatorname{PC}[t_{0}-\lambda ,t_{f}]\rightarrow \operatorname{PC}[t_{0}-\lambda ,t_{f}]\) defined as
$$\begin{aligned} (\Lambda \eta ) (t)= \textstyle\begin{cases} \phi (t),\quad t\in {}[ t_{0}-\lambda ,t_{0}], \\ \phi (t_{0})+I_{t_{0},t}^{\alpha }f ( s_{i},\eta (s_{i}),\eta (h(s_{i})), \int _{t_{0}}^{t}g(s_{i},\tau ,\eta (\tau ),\eta (h(\tau )))\,d \tau ) , \quad t\in {}[ t_{0},t_{1}], \\ \phi (t_{0})+\beta _{1}\int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}}U_{1} ( \eta (s) ) \,ds \\ \quad{} +I_{t_{0},t}^{\alpha }f ( s_{i},\eta (s_{i}), \eta (h(s_{i})),\int _{t_{1}}^{t}g(s_{i},\tau ,\eta (\tau ), \eta (h(\tau )))\,d\tau ) , \\ \quad t\in {}[ t_{1},t_{2}], \\ \phi (t_{0})+\sum_{j=1}^{2}\beta _{j}\int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}U_{j} ( y(s) ) \,ds \\ \quad{} +I_{t_{0},t}^{ \alpha }f ( s_{i},\eta (s_{i}),\eta (h(s_{i})),\int _{t_{2}}^{t}g(s_{i}, \tau ,\eta (\tau ),\eta (h(\tau )))\,d\tau ) , \\ \quad t\in {}[ t_{2},t_{3}], \\ \vdots \\ \phi (t_{0})+\sum_{j=1}^{m}\beta _{j}\int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}U_{j} ( \eta (s) ) \,ds \\ \quad{} +I_{t_{0},t}^{ \alpha }f ( s_{i},\eta (s_{i}),\eta (h(s_{i})),\int _{t_{m}}^{t}g(s_{i}, \tau ,\eta (\tau ),\eta (h(\tau )))\,d\tau ) , \\ \quad t \in {}[ t_{m},t_{m+1}].\end{cases}\displaystyle \end{aligned}$$
(3.1)
It is clear that the mapping Λ is well defined on the given function space domain. Moreover, in order to verify that it is a Picard operator on \(\operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\), we consider two functions \(\eta ,\varrho \in \operatorname{PC}[t_{0}-\lambda ,t_{f}]\). Then
$$\begin{aligned} \bigl\vert (\Lambda \eta ) (t)-(\Lambda \varrho ) (t) \bigr\vert \leq & \biggl\vert I_{t_{0},t}^{\alpha }f \biggl( s_{i},\eta (s_{i}), \eta \bigl(h(s_{i}) \bigr), \int _{t_{0}}^{t}g \bigl(s_{i},\tau ,\eta ( \tau ), \eta \bigl(h(\tau ) \bigr) \bigr)\,d\tau \biggr) \\ &{}\times I_{t_{0},t}^{\alpha }f \biggl( s_{i},\varrho (s_{i}), \varrho \bigl(h(s_{i}) \bigr), \int _{t_{0}}^{t}g \bigl(s_{i},\tau ,\varrho ( \tau ),\varrho \bigl(h(\tau ) \bigr) \bigr)\,d\tau \biggr) \biggr\vert \\ & {} +\sum_{j=1}^{k}\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}- \theta _{k}} \bigl\vert U_{j} \bigl( \eta (s_{j}) \bigr) -U_{j} \bigl( \varrho (s_{j}) \bigr) \bigr\vert \,ds. \end{aligned}$$
Thus in the light of the Lipschitz condition, it is clear by (1.2) that
$$\begin{aligned} \bigl\vert (\Lambda \eta ) (t)-(\Lambda \varrho ) (t) \bigr\vert \leq & \frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{\alpha -1} \biggl\{ \sup _{t\in {}[ t_{0}-\lambda ,t_{f}]}2 \bigl\vert \eta (s)- \varrho (s) \bigr\vert \\ & {} +2 \int _{t_{0}}^{s}L_{g}\sup _{t\in {}[ t_{0}- \lambda ,t_{f}]_{i}} \bigl\vert \eta (\tau )-\varrho (\tau ) \bigr\vert \,d \tau \biggr\} \,ds \\ & {} +\sum_{j=1}^{k}M_{j}\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}- \theta _{k}} \bigl\vert \eta (s)-\varrho (s)) \bigr\vert \,ds \\ \leq &\frac{ \vert \eta (s)-\varrho (s) \vert L_{f}}{\Gamma (\alpha )}\int _{t_{0}}^{t}(t-s)^{\alpha -1} \bigl\{ 2+2L_{g} ( s-t_{0} ) \bigr\} \,ds \\ & {} +\sum_{j=1}^{m}M_{j}\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}- \theta _{k}} \bigl\vert \eta (s)-\varrho (s)) \bigr\vert \,ds \\ \leq & \Biggl( \frac{2L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{\alpha -1} \bigl\{ 1+L_{g} ( s-t_{0} ) \bigr\} \,ds \\ & {} +\sum_{j=1}^{m}M_{j}\beta _{j} ( \tau _{k}- \theta _{k} ) \Biggr) \bigl\vert \eta (s)-\varrho (s) \bigr\vert . \\ \leq & \Biggl( \frac{2L_{f}}{\Gamma (\alpha +1)} \biggl[ 1+ \frac{L_{g} ( t_{f}-t_{0} ) }{\alpha +1} \biggr] ( t_{f}-t_{0} ) ^{ \alpha } \\ & {} +\sum_{j=1}^{m}M_{j}\beta _{j} ( \tau _{k}- \theta _{k} ) \Biggr) \bigl\vert \varrho (s)-\varrho (s) \bigr\vert . \end{aligned}$$
But since by (A3) it follows that the operator is strictly contraction on \((t_{k},t_{k+1}]\), and hence a Picard operator on \(\operatorname{PC}[t_{0}-\lambda ,t_{f}]\). Moreover, it follows from (3.1) that the unique fixed point of the operator Λ is the unique solution of (1.1) in \(\operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\).
ii) The unique solution \(\eta \in \operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\) of (1.1) is given by
$$\begin{aligned} \eta (t)= \textstyle\begin{cases} \phi (t),\quad t\in {}[ t_{0}-\lambda ,t_{0}], \\ \phi (t_{0})+I_{t_{0},t}^{\alpha }f ( t,\eta (t),\eta (h(t)), \int _{t_{0}}^{t}g(t,\tau ,\eta (\tau ),\eta (h(\tau )))\,d \tau ) ,\quad t\in {}[ t_{0},t_{1}], \\ \phi (t_{0})+\int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}} \beta _{1}U_{1} ( \eta (s) ) \,ds+I_{t_{0},t}^{\alpha }f ( t,\eta (t),\eta (h(t)),\int _{t_{1}}^{t}g(t,\tau , \eta (\tau ),\eta (h(\tau )))\,d\tau ) , \\ \quad t\in {}[ t_{1},t_{2}], \\ \phi (t_{0})+\sum_{j=1}^{2}\beta _{j}\int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}U_{j} ( \eta (s) ) \,ds \\ \quad{} +I_{t_{0},t}^{ \alpha }f ( t,\eta (t),\eta (h(t)),\int _{t_{2}}^{t}g(t, \tau ,\eta (\tau ),\eta (h(\tau )))\,d\tau ) , \\ \quad t\in {}[ t_{2},t_{3}], \\ \vdots \\ \phi (t_{0})+\sum_{j=1}^{m}\beta _{j}\int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}U_{j} ( \eta (s) ) \,ds \\ \quad{} +I_{t_{0},t}^{ \alpha }f ( t,\eta (t),\eta (h(t)),\int _{t_{m}}^{t}g(t, \tau ,\eta (\tau ),\eta (h(\tau )))\,d\tau ) , \\ \quad t\in {}[ t_{m},t_{m+1}].\end{cases}\displaystyle \end{aligned}$$
If \(\varrho \in \operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\) satisfies inequality (2.2), then by (A4) and Remark 2.4, it follows that
$$\begin{aligned}& \Biggl\vert \varrho (t)-\phi (t_{0})-\sum _{j=1}^{m}\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}}U_{j} \bigl( \varrho (s) \bigr) \,ds \\& \quad \quad {} -I_{t_{0},t}^{\alpha }f \biggl( t,\varrho (t), \varrho \bigl(h(t) \bigr), \int _{t_{0}}^{t}g \bigl(t,\tau ,\varrho (\tau ), \varrho \bigl(h(\tau ) \bigr) \bigr)\,d\tau \biggr) \Biggr\vert \\& \quad \leq \int _{t_{0}}^{t} \bigl\vert g(s) \bigr\vert \,ds+ \sum_{j=1}^{m} \vert g_{j} \vert \leq \int _{t_{0}}^{t}\epsilon \varphi (s)\,ds+mK\leq \rho \epsilon \varphi (t)+mK\leq \lambda \epsilon \varphi (t). \end{aligned}$$
For all \(\lambda >0\), we note that \(\vert \varrho (t)-\eta (t) \vert =0\) for all \(t\in {}[ t_{0}-\lambda ,t_{0}]\). Now, for \(t\in {}[ t_{k} ,t_{k+1}]\), we have
$$\begin{aligned} \bigl\vert \varrho (t)-\eta (t) \bigr\vert =& \Biggl\vert \varrho (t)- \phi (t_{0})-\sum_{j=1}^{k}\beta _{j} \int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}U_{j} \bigl( \eta (s) \bigr) \,ds \\ & {} -I_{t_{0},t}^{\alpha }g_{i} \biggl( t,\eta (t),\eta \bigl(h(t) \bigr), \int _{t_{0}}^{t}g \bigl(\tau ,s,\eta (\tau ),\eta \bigl(h(\tau ) \bigr) \bigr)\,d \tau \biggr) \Biggr\vert \\ \leq & \Biggl\vert \varrho (t)-\phi (t_{0})-\sum _{j=1}^{k} \beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}}U_{j} \bigl( \varrho (s) \bigr) \,ds \\ & {} -I_{t_{0},t}^{\alpha }g_{i} \biggl( t,\varrho (t), \varrho \bigl(h(t) \bigr), \int _{t_{0}}^{t}g \bigl(\tau ,s,\varrho (\tau ),\varrho \bigl(h(\tau ) \bigr) \bigr)\,d \tau \biggr) \Biggr\vert \\ & {} +\sum_{j=1}^{k}\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}- \theta _{k}} \bigl\vert U_{j} \bigl( \varrho (s_{j}) \bigr) -U_{j} \bigl( \eta (s) \bigr) \bigr\vert \,ds \\ & {} + \biggl\vert I_{t_{0},t}^{\alpha }g_{i} \biggl( t, \varrho (t), \varrho \bigl(h(t) \bigr), \int _{t_{0}}^{t}g \bigl(\tau ,s,\varrho (\tau ), \varrho \bigl(h(\tau ) \bigr) \bigr)\,d\tau \biggr) \\ & {} -I_{t_{0},t}^{\alpha }g_{i} \biggl( t,\eta (t),\eta \bigl(h(t) \bigr), \int _{t_{0}}^{t}g \bigl(\tau ,s,\eta (\tau ),\eta \bigl(h(\tau ) \bigr) \bigr)\,d \tau \biggr) \biggr\vert \\ \leq &\lambda \epsilon \varphi (t)+\sum_{j=1}^{k}M_{j} \beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}} \bigl\vert \eta (s)-\varrho (s)) \bigr\vert \,ds \\ & {} +\frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{s_{i}}(s_{i}-s)^{\alpha -1} \biggl\{ \bigl\vert \eta (s)-\varrho (s) \bigr\vert + \bigl\vert \eta \bigl(h(s) \bigr)-\varrho \bigl(h(s) \bigr) \bigr\vert \\ & {} + \int _{t_{0}}^{s}L_{h} \bigl[ \bigl\vert \eta ( \tau )-\varrho (\tau ) \bigr\vert + \bigl\vert \eta \bigl(h(\tau ) \bigr)- \varrho \bigl(h(\tau ) \bigr) \bigr\vert \bigr] \,d\tau \biggr\} \,ds. \end{aligned}$$
Now we are going to show that the operator \(T:\operatorname{PC}[t_{0}-\lambda ,t_{f}]\rightarrow \operatorname{PC}[t_{0}-\lambda ,t_{f}]\), which is given below, is an increasing Picard operator.
$$\begin{aligned}& \bigl\vert T(m) (t)-T(n) (t) \bigr\vert \\& \quad \leq \sum_{j=1}^{k}M_{j} \beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}} \bigl\vert m(s)-n(s)) \bigr\vert \,ds \\& \quad \quad {} +\frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{ \alpha -1} \biggl\{ \bigl\vert m(s)-n(s) \bigr\vert + \bigl\vert m \bigl(h(s) \bigr)-n \bigl(h(s) \bigr) \bigr\vert \\& \quad \quad {} + \int _{t_{0}}^{t}L_{g} \bigl[ \bigl\vert m( \tau )-n(\tau ) \bigr\vert + \bigl\vert m \bigl(h(\tau ) \bigr)-n \bigl(h( \tau ) \bigr) \bigr\vert \bigr] \,d\tau \biggr\} \,ds \\& \quad \leq \sum_{j=1}^{m}M_{j} \beta _{j} \int _{t_{k}- \tau _{k}}^{t_{k}-\theta _{k}}\sup_{t\in {}[ t_{0}-\lambda ,t_{f}]} \bigl\vert m(s)-n(s)) \bigr\vert \,ds \\& \quad \quad {} +\frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{ \alpha -1} \biggl\{ \sup _{t\in {}[ t_{0}-\lambda ,t_{f}]}2 \bigl\vert m(s)-n(s) \bigr\vert \\& \quad \quad {} +2 \int _{t_{0}}^{s}L_{g}\sup _{t\in {}[ t_{0}- \lambda ,t_{f}]} \bigl\vert m(\tau )-n(\tau ) \bigr\vert \,d\tau \biggr\} \,ds \\& \quad \leq \Biggl( \sum_{j=1}^{m}M_{j} \beta _{j} ( \tau _{k}- \theta _{k} ) + \frac{2L_{f}}{\Gamma (\alpha +1)} \biggl[ 1+ \frac{L_{g} ( t_{f}-t_{0} ) }{\alpha +1} \biggr] ( t_{f}-t_{0} ) ^{ \alpha } \Biggr) \vert m-n \vert . \end{aligned}$$
Again by (A3), the operator is contractive on \(t\in {}[ t_{0}-\lambda ,t_{f}]\) and hence a Picard operator on \(\operatorname{PC}[t_{0}-\lambda ,t_{f}]\cap \operatorname{PC}^{1}[t_{0},t_{f}]\). Then, by the Banach contraction principle, we conclude that T is a Picard operator and \(f_{T}=\{m^{\ast }\}\), and
$$\begin{aligned} m^{\ast }(t) =&\lambda \epsilon \varphi (t)+\sum _{j=1}^{k}M_{j} \beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}}m^{\ast }(s)\,ds \\ & {} +\frac{L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{ \alpha -1} \biggl\{ m^{\ast }(s)+m^{\ast } \bigl(h(s) \bigr) \\ & {} + \int _{t_{0}}^{s}L_{g} \bigl[ m^{\ast }( \tau )+m^{\ast } \bigl(h(\tau ) \bigr) \bigr] \,d\tau \biggr\} \,ds. \end{aligned}$$
But since \(m^{\ast }\) is an increasing function and \(h(t)\leq t\), then clearly \(m^{\ast }(h(t))\leq m^{\ast }(t)\), and so we can write
$$\begin{aligned} m^{\ast }(t) \leq &\lambda \epsilon \varphi (t)+\sum _{j=1}^{k}M_{j} \beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}-\theta _{k}}m^{\ast }(s)\,ds \\ & {} +\frac{2L_{f}}{\Gamma (\alpha )} \int _{t_{0}}^{t}(t-s)^{ \alpha -1} \biggl\{ m^{\ast }(s)+L_{g} \int _{t_{0}}^{s}m^{ \ast } \bigl(h(\tau ) \bigr) \,d \tau \biggr\} \,ds. \end{aligned}$$
Thus, by applying Pachpatte’s inequality given in Theorem 2.6, we have
$$\begin{aligned}& m^{\ast }(t)\leq \lambda \epsilon \varphi (t)\prod _{t_{0}< t_{k}< t}C_{k} \exp \biggl( \int _{t_{0}}^{t}\frac{2L_{f}}{\Gamma (\alpha )}(t-s)^{\alpha -1} \biggl[ 1+ \int _{t_{0}}^{s}L_{g}\,d\tau \biggr] \biggr) \,ds, \end{aligned}$$
where
$$\begin{aligned} C_{k}&=\exp \biggl( \int _{t_{k-1}}^{t_{k}} \frac{2L_{f}}{\Gamma (\alpha )}(t-s)^{\alpha -1} \biggl[ 1+ \int _{t_{0}}^{s}L_{g}\,d\tau \biggr] \,ds \biggr) \\ &\quad {} +\beta _{j} \int _{t_{k}-\tau _{k}}^{t_{k}- \theta _{k}}\exp \biggl( \int _{t_{k-1}}^{t} \frac{2L_{f}}{\Gamma (\alpha )}(t-\tau )^{\alpha -1} \biggl[ 1+ \int _{t_{0}}^{ \zeta }L_{g}\,d\xi \biggr] \,d\tau \biggr) \,ds. \end{aligned}$$
Taking \(c_{\varphi }=\lambda \prod_{0< t_{k}< t}C_{k}\exp ( \int _{t_{0}}^{t}\frac{2L_{f}}{\Gamma (\alpha )}(t-s)^{ \alpha -1} [ 1+\int _{t_{0}}^{s}L_{g}\,d\tau ] ) \,ds\), we get \(m^{\ast }(t)\leq c_{\varphi }\epsilon \varphi (t)\), \(t\in {}[ t_{0}-\lambda ,t_{f}]\).
Now setting \(m= \vert \varrho (t)-\eta (t) \vert \), then \(m(t)\leq (Tm)(t)\) from which by using the abstract Gronwall lemma (Lemma 2.5) it follows that \(m(t)\leq m^{\ast }\). Therefore
$$ \bigl\vert \varrho (t)-\eta (t) \bigr\vert \leq c_{\varphi } \epsilon \varphi (t), \quad t\in {}[ t_{0}-\lambda ,t_{f}]. $$
(3.2)
Consequently, Eq. (1.1) is Ulam–Hyers–Rassias stable, and the proof is completed. □
Corollary 3.2
Suppose that (A1)–(A4) hold. Then (1.1) has a unique solution and is Ulam–Hyers stable.
Proof
Putting \(\varphi (t)=1\) for all \(t\in {}[ t_{0}-\lambda ,t_{f}]\) in the proof of Theorem 3.1, we get
$$ \bigl\vert \varrho (t)-\eta (t) \bigr\vert \leq c\epsilon , \quad t \in {}[ t_{0}-\lambda ,t_{f}], $$
and the result follows. □
Remark 3.3
Choosing \(\psi (\epsilon )=c\epsilon \) in Corollary 3.2, it follows that (1.1) has a unique solution and is generalized Ulam–Hyers stable.