Desch, W., Grimmer, R., Schappacher, W.: Some considerations for linear integro-differential equations. J. Math. Anal. Appl. **104**(1), 219–234 (1984). https://doi.org/10.1016/0022-247X(84)90044-1

Article
MathSciNet
MATH
Google Scholar

Murugesu, R., Vijayakumar, V., dos Santos, J.P.C.: Existence of mild solutions for nonlocal Cauchy problem for fractional neutral integro-differential equation with unbounded delay. Commun. Math. Anal. **14**(1), 59–71 (2013)

MathSciNet
MATH
Google Scholar

Henriquez, H.R., Pozo, J.C.: Existence of solutions of abstract non-autonomous second order integro-differential equations. Bound. Value Probl. **2016**, 168 (2016). https://doi.org/10.1186/s13661-016-0675-7

Article
MathSciNet
MATH
Google Scholar

Vijayakumar, V.: Approximate controllability results for analytic resolvent integro-differential inclusions in Hilbert spaces. Int. J. Control **91**(1), 204–214 (2018). https://doi.org/10.1080/00207179.2016.1276633

Article
MathSciNet
MATH
Google Scholar

Vijayakumar, V., Selvakumar, A., Murugesu, R.: Controllability for a class of fractional neutral integro-differential equations with unbounded delay. Appl. Math. Comput. **232**, 303–312 (2014). https://doi.org/10.1016/j.amc.2014.01.029

Article
MathSciNet
MATH
Google Scholar

Vijayakumar, V., Ravichandran, C., Murugesu, R., Trujillo, J.J.: Controllability results for a class of fractional semilinear integro-differential inclusions via resolvent operators. Appl. Math. Comput. **247**(4), 152–161 (2014). https://doi.org/10.1016/j.amc.2014.08.080

Article
MathSciNet
MATH
Google Scholar

Sivasankaran, S., Arjunan, M.M., Vijayakumar, V.: Existence of global solutions for second order impulsive abstract partial differential equations. Nonlinear Anal., Theory Methods Appl. **74**(17), 6747–6757 (2011). https://doi.org/10.1016/j.na.2011.06.054

Article
MathSciNet
MATH
Google Scholar

Grimmer, R.: Resolvent operators for integral equations in a Banach space. Trans. Am. Math. Soc. **273**(1), 333–349 (1982). https://doi.org/10.2307/1999209

Article
MathSciNet
MATH
Google Scholar

Grimmer, R., Pritchard, A.J.: Analytic resolvent operators for integral equations in a Banach space. J. Differ. Equ. **50**(2), 234–259 (1983). https://doi.org/10.1016/0022-0396(83)90076-1

Article
MathSciNet
MATH
Google Scholar

Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry **11**(5), 686 (2019). https://doi.org/10.3390/sym11050686

Article
MATH
Google Scholar

Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

Article
MATH
Google Scholar

Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. **2021**, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3

Article
MathSciNet
MATH
Google Scholar

Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. **20**(2), 313–333 (2021)

Google Scholar

Karapinar, E., Fulga, A.: An admissible hybrid contraction with an Ulam type stability. Demonstr. Math. **52**, 428–436 (2019). https://doi.org/10.1515/dema-2019-0037

Article
MathSciNet
MATH
Google Scholar

Alqahtani, B., Fulga, A., Karapinar, E.: Fixed point results on *δ*-symmetric quasi-metric space via simulation function with an application to Ulam stability. Mathematics **6**(10), 208 (2018). https://doi.org/10.3390/math6100208

Article
Google Scholar

Brzdek, J., Karapinar, E., Petrsel, A.: A fixed point theorem and the Ulam stability in generalized *dq*-metric spaces. J. Math. Anal. Appl. **467**, 501–520 (2018). https://doi.org/10.1016/j.jmaa.2018.07.022

Article
MathSciNet
MATH
Google Scholar

Hassan, A.M., Karapinar, E., Alsulami, H.H.: Ulam-Hyers stability for MKC mappings via fixed point theory. J. Funct. Spaces **2016**, Article ID 9623597 (2016). https://doi.org/10.1155/2016/9623597

Article
MathSciNet
MATH
Google Scholar

Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces **2021**, Article ID 6022941 (2021). https://doi.org/10.1155/2021/6022941

Article
MATH
Google Scholar

Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl. Math. Lett. **25**(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046

Article
MathSciNet
MATH
Google Scholar

Masiha, H.P., Sabetghadam, F., Shahzad, N.: Fixed point theorems in partial metric spaces with an application. Filomat **27**(4), 617–624 (2013)

Article
MathSciNet
Google Scholar

Sabetghadam, F., Masiha, H.P.: Common fixed points for generalized *φ*-pair mappings on cone metric spaces. Fixed Point Theory Appl. **2010**, Article ID 718340 (2010). https://doi.org/10.1155/2010/718340

Article
MathSciNet
MATH
Google Scholar

Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals **134**, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

Article
MathSciNet
Google Scholar

Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4^{+} T-cell with a new approach of fractional derivative. Adv. Differ. Equ. **2020**, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

Article
MathSciNet
Google Scholar

Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals **142**, 110472 (2021). https://doi.org/10.1016/j.chaos.2020.110472

Article
MathSciNet
Google Scholar

Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order \(1< r< 2\). Math. Comput. Simul. **190**, 1003–1026 (2021). https://doi.org/10.1016/j.matcom.2021.06.026

Article
MathSciNet
Google Scholar

Kim, I.S.: Semilinear problems involving nonlinear operators of monotone type. Results Nonlinear Anal. **2**(1), 25–35 (2019)

Google Scholar

Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces. Open Math. **19**(1), 363–372 (2021). https://doi.org/10.1515/math-2021-0040

Article
MathSciNet
Google Scholar

Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ. **2020**, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7

Article
MathSciNet
Google Scholar

Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals **144**, 110668 (2021). https://doi.org/10.1016/j.chaos.2021.110668

Article
MathSciNet
Google Scholar

Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry **13**(3), 469 (2021). https://doi.org/10.3390/sym13030469

Article
Google Scholar

Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. **2021**, 68 (2021). https://doi.org/10.1186/s13662-021-03228-9

Article
MathSciNet
Google Scholar

Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. **45**(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

Article
MathSciNet
Google Scholar

Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. **2020**, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0

Article
MathSciNet
Google Scholar

Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. **59**(5), 3019–3027 (2020). https://doi.org/10.1016/j.aej.2020.04.053

Article
Google Scholar

Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Bound. Value Probl. **2019**, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0

Article
MathSciNet
Google Scholar

Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. Bound. Value Probl. **2018**, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

Article
MathSciNet
MATH
Google Scholar

Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Bound. Value Probl. **2020**, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3

Article
MathSciNet
Google Scholar

Fawziah, A.S., Ghadle, K.P.: Solving nonlinear Fredholm integro-differential equations via modifications of some numerical methods. Adv. Theory Nonlinear Anal. Appl. **5**(2), 260–276 (2021). https://doi.org/10.31197/atnaa.872432

Article
Google Scholar

Nashine, H.K., Ibrahim, R.W., Can, N.H.: Solution of a fractal energy integral operator without body force using measure of noncompactness. Alex. Eng. J. **59**(6), 4101–4106 (2020). https://doi.org/10.1016/j.aej.2020.07.015

Article
Google Scholar

Raja, M.M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of fractional differential evolution equations of order \(1 < r < 2\) in Hilbert spaces. Chaos Solitons Fractals **141**, 110310 (2020). https://doi.org/10.1016/j.chaos.2020.110310

Article
MathSciNet
Google Scholar

Raja, M.M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional evolution inclusions of order \(1 < r < 2\) with infinite delay. Chaos Solitons Fractals **141**, 110343 (2020). https://doi.org/10.1016/j.chaos.2020.110343

Article
MathSciNet
Google Scholar

Rezapour, S., Henriquez, H.R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on existence of mild solutions for second-order neutral integro-differential evolution equations with state-dependent delay. Fractal Fract. **5**(3), 126 (2021). https://doi.org/10.3390/fractalfract5030126

Article
Google Scholar

Duraisamy, S.R., Sundararajan, P., Karthikeyan, K.: Controllability problem for fractional impulsive integrodifferential evolution systems of mixed type with the measure of noncompactness. Results Nonlinear Anal. **3**(2), 85–99 (2020)

Google Scholar

Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Int. J. Control **73**(2), 144–151 (2000). https://doi.org/10.1080/002071700219849

Article
MathSciNet
MATH
Google Scholar

Mahmudov, N.I.: Approximate controllability of evolution systems with nonlocal conditions. Int. J. Control **68**(3), 536–546 (2008). https://doi.org/10.1016/j.na.2006.11.018

Article
MathSciNet
MATH
Google Scholar

Mahmudov, N.I., Vijayakumar, V., Murugesu, R.: Approximate controllability of second-order evolution differential inclusions in Hilbert spaces. Mediterr. J. Math. **13**, 3433–3454 (2016). https://doi.org/10.1007/s00009-016-0695-7

Article
MathSciNet
MATH
Google Scholar

Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution hemivariational inequalities. Results Math. **75**, 160 (2020). https://doi.org/10.1007/s00025-020-01293-2

Article
MathSciNet
MATH
Google Scholar

Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. **25**(3), 715–722 (1987). https://doi.org/10.1137/0325040

Article
MathSciNet
MATH
Google Scholar

Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7647

Article
Google Scholar

Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. **225**(1), 708–717 (2013). https://doi.org/10.1016/j.amc.2013.09.068

Article
MathSciNet
MATH
Google Scholar

Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1,2]\) in Hilbert spaces. Nonlinear Stud. **22**(1), 131–138 (2015)

MathSciNet
MATH
Google Scholar

Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\) with infinite delay. Mediterr. J. Math. **13**, 2539–2550 (2016). https://doi.org/10.1007/s00009-015-0638-8

Article
MathSciNet
MATH
Google Scholar

Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1,2]\). J. Dyn. Control Syst. **23**, 679–691 (2017). https://doi.org/10.1007/s10883-016-9350-7

Article
MathSciNet
MATH
Google Scholar

Shukla, A., Sukavanam, N., Pandey, D.N., Arora, U.: Approximate controllability of second-order semilinear control system. Circuits Syst. Signal Process. **35**, 3339–3354 (2016). https://doi.org/10.1007/s00034-015-0191-5

Article
MathSciNet
MATH
Google Scholar

Shukla, A., Patel, R.: Existence and optimal control results for second-order semilinear system in Hilbert spaces. Circuits Syst. Signal Process. **40**, 4246–4258 (2021). https://doi.org/10.1007/s00034-021-01680-2

Article
Google Scholar

Shukla, A., Patel, R.: Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. **65**(1–2), 861–875 (2021). https://doi.org/10.1007/s12190-020-01418-4

Article
MathSciNet
Google Scholar

Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J. Math. **11**(6), 1850088 (2018). https://doi.org/10.1142/S1793557118500882

Article
MathSciNet
MATH
Google Scholar

Vijayakumar, V., Henriquez, H.R.: Existence of global solutions for a class of abstract second order nonlocal Cauchy problem with impulsive conditions in Banach spaces. Numer. Funct. Anal. Optim. **39**(6), 704–736 (2018). https://doi.org/10.1080/01630563.2017.1414060

Article
MathSciNet
MATH
Google Scholar

Vijayakumar, V., Murugesu, R., Poongodi, R., Dhanalakshmi, S.: Controllability of second order impulsive nonlocal Cauchy problem via measure of noncompactness. Mediterr. J. Math. **14**(3), 1–23 (2017). https://doi.org/10.1007/s00009-016-0813-6

Article
MathSciNet
MATH
Google Scholar

Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal fractional delay differential systems of order \(1< r<2\) in Banach spaces. Numer. Methods Partial Differ. Equ. **37**(2), 949–961 (2021). https://doi.org/10.1002/num.22560

Article
MathSciNet
Google Scholar

Batty, C.J.K., Chill, R., Srivastava, S.: Maximal regularity for second order non-autonomous Cauchy problems. Stud. Math. **189**(3), 205–223 (2008). https://doi.org/10.4064/sm189-3-1

Article
MathSciNet
MATH
Google Scholar

Henriquez, H.R., Castillo, G.: The Kneser property for the second order functional abstract Cauchy problem. Integral Equ. Oper. Theory **52**, 505–525 (2005). https://doi.org/10.1007/s00020-002-1266-9

Article
MathSciNet
MATH
Google Scholar

Kisynski, J.: On cosine operator functions and one parameter group of operators. Stud. Math. **44**(1), 93–105 (1972)

Article
MathSciNet
Google Scholar

Kozak, M.: A fundamental solution of a second order differential equation in a Banach space. Universitatis Lagellonicae Acta Mathematica **32**, 275–289 (1995)

MathSciNet
MATH
Google Scholar

Travis, C.C., Webb, G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houst. J. Math. **3**(4), 555–567 (1977)

MathSciNet
MATH
Google Scholar

Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. **32**, 75–96 (1978). https://doi.org/10.1007/BF01902205

Article
MathSciNet
MATH
Google Scholar

Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control (2020). https://doi.org/10.1002/asjc.2549

Article
Google Scholar

Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. **44**(6), 4428–4447 (2021). https://doi.org/10.1002/mma.7040

Article
MathSciNet
MATH
Google Scholar

Henriquez, H.R.: Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear Anal., Theory Methods Appl. **74**(10), 3333–3352 (2011). https://doi.org/10.1016/j.na.2011.02.010

Article
MathSciNet
MATH
Google Scholar