In this section, we consider the existence of at least one or two positive solutions or no positive solution for the BVP (1.1).
Let the Banach space \(E=C_{q}[0,1]\) be endowed with norm \(\|u\|=\max_{0\leq t\leq 1}|u(t)|\). Define the cone
$$\begin{aligned} P=\bigl\{ u\in E\mid u(t)\geq k(t) \Vert u \Vert , t\in [0,1]\bigr\} \subset E . \end{aligned}$$
Let \(T_{\lambda }:P\rightarrow P\) be the operator defined by
$$\begin{aligned} T_{\lambda }u(t):= \int _{0}^{1}G(t,qs)\phi ^{-1} \biggl(\lambda \int ^{1}_{0}H(s,q \tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s. \end{aligned}$$
Lemma 3.1
Assume that (A2) holds. Then \(T_{\lambda }:P\rightarrow P\) is completely continuous.
Proof
By Lemma 2.6 we have
$$\begin{aligned} (T_{\lambda }u) (t) \geq &t^{\alpha -1} \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl( \lambda \int ^{1}_{0}H(s,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s = k(t) \bigl\Vert T_{\lambda }u(t) \bigr\Vert . \end{aligned}$$
Thus \(T_{\lambda }(P)\subset P\). In view of the nonnegativeness and continuity of \(G(t,qs)\), \(H(s,q\tau )\), and \(f(u(\tau ))\), we have that \(T_{\lambda }:P\rightarrow P\) is continuous.
Next, we prove that \(T_{\lambda }\) is uniformly bounded.
Let \(\Omega \subset P\) be bounded, that is, there exists a positive constant \(M>0\) such that \(\| u\| \leq M\) for all \(u\in \Omega \). Set \(L=\max_{0\leq u\leq M}|f(u)|+1\). Then, for \(u\in \Omega \) and all \(t\in [0,1]\), we have
$$\begin{aligned} \bigl\vert T_{\lambda }u(t) \bigr\vert =& \biggl\vert \int _{0}^{1}G(t,qs)\phi ^{-1} \biggl(\lambda \int ^{1}_{0}H(s,q \tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \biggr\vert \\ \leq& \psi ^{-1}_{1}(\lambda L) \int ^{1}_{0}G(t,qs)\phi ^{-1} \biggl( \int ^{1}_{0}H(s,q \tau )\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \psi ^{-1}_{1}(\lambda L) \int ^{1}_{0}G(1,qs)\phi ^{-1} \biggl( \int ^{1}_{0}H(q \tau ,q\tau )\,d_{q}\tau \biggr)\,d_{q}s \\ < &+\infty . \end{aligned}$$
Hence \(T_{\lambda }(\Omega )\) is uniformly bounded.
On the other hand, we prove that \(T_{\lambda }\) is equicontinuous.
Since \(G(t,qs)\) is continuous on \([0,1]\times [0,1]\), it is uniformly continuous on \([0,1]\times [0,1]\). Thus, for any \(\varepsilon >0\), there exists a constant \(\delta >0\) such that \(t_{1},t_{2}\in [0,1]\) with \(| t_{1}-t_{2}| <\delta \) imply
$$\begin{aligned} \bigl\vert G(t_{2},qs)-G(t_{1},qs) \bigr\vert < \frac{\varepsilon }{\psi ^{-1}_{1}(\lambda L)\phi ^{-1}(\int ^{1}_{0}H(q\tau ,q\tau )\,d_{q}\tau )}. \end{aligned}$$
Then, for all \(u\in \Omega \),
$$\begin{aligned} \bigl\vert T_{\lambda }u(t_{2})-T_{\lambda }u(t_{1}) \bigr\vert \leq& \int ^{1}_{0} \bigl\vert G(t_{2},qs)-G(t_{1},qs) \bigr\vert \phi ^{-1}\biggl(\lambda \int ^{1}_{0}H(s,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s~ \\ \leq &\psi ^{-1}_{1}(\lambda L) \int ^{1}_{0} \bigl\vert G(t_{2},qs)-G(t_{1},qs) \bigr\vert \phi ^{-1}\biggl( \int ^{1}_{0}H(q\tau ,q\tau )\,d_{q} \tau \biggr)\,d_{q}s \\ =&\psi ^{-1}_{1}(\lambda L)\phi ^{-1}\biggl( \int ^{1}_{0}H(q\tau ,q\tau )\,d_{q} \tau \biggr) \int ^{1}_{0} \bigl\vert G(t_{2},qs)-G(t_{1},qs) \bigr\vert \,d_{q}s \\ < &\varepsilon . \end{aligned}$$
Hence \(T_{\lambda }(\Omega )\) is equicontinuous. By the Arzelà–Ascoli theorem we have that \(T_{\lambda }:P\rightarrow P\) is completely continuous. The proof is completed. □
For convenience, we denote
$$\begin{aligned}& F_{0}=\lim_{u\rightarrow 0^{+}}\sup \frac{f(u)}{\phi (u)}, \qquad F_{ \infty }=\lim_{u\rightarrow +\infty }\sup \frac{f(u)}{\phi (u)}, \\& f_{0}= \lim_{u\rightarrow 0^{+}}\inf \frac{f(u)}{\phi (u)},\qquad f_{\infty }= \lim_{u\rightarrow +\infty }\inf \frac{f(u)}{\phi (u)}, \\& A_{1}= \int ^{1}_{0}G(1,qs)\psi ^{-1}_{1} \biggl( \int ^{1}_{0}H(q\tau ,q\tau )\,d_{q} \tau \biggr)\,d_{q}s, \\& A_{2}=k(\delta ) \int ^{1}_{0}\psi _{2}^{-1} \bigl(s^{\beta -1}\bigr)G(1,qs)\psi ^{-1}_{2} \biggl( \int ^{1}_{0}\psi _{1}\bigl(\tau ^{\alpha -1}\bigr)H(1,q\tau )\,d_{q}\tau \biggr)\,d_{q}s, \\& A_{3}=k(\delta ) \int ^{1}_{0}\psi _{2}^{-1} \bigl(s^{\beta -1}\bigr)G(1,qs)\psi ^{-1}_{2} \biggl( \int ^{1}_{0}H(1,q\tau )\,d_{q}\tau \biggr)\,d_{q}s. \end{aligned}$$
Theorem 3.1
Assume that (A1), (A2), and \(f_{\infty }\psi _{1}(A_{1}^{-1})>F_{0}\psi _{2}(A_{2}^{-1})\) hold. Then for each
$$\begin{aligned} \lambda \in \bigl(\psi _{2}\bigl(A_{2}^{-1} \bigr)f_{\infty }^{-1},\psi _{1} \bigl(A_{1}^{-1}\bigr)F_{0}^{-1} \bigr), \end{aligned}$$
(3.1)
the BVP of fractional q-difference Eq. (1.1) has at least one positive solution. Here we impose that \(f_{\infty }^{-1}=0\) if \(f_{\infty }=+\infty \) and \(F_{0}^{-1}=+\infty \) if \(F_{0}=0\).
Proof
Let λ satisfy (3.1), and let \(\varepsilon >0\) be such that
$$\begin{aligned} \psi _{2}\bigl(A_{2}^{-1} \bigr) (f_{\infty }-\varepsilon )^{-1}\leq \lambda \leq \psi _{1}\bigl(A_{1}^{-1}\bigr) (F_{0}+\varepsilon )^{-1}. \end{aligned}$$
(3.2)
We separate the proof into two steps.
(1) By the definition of \(F_{0}\) there exists \(r_{1}>0\) such that
$$\begin{aligned} f(u)\leq (F_{0}+\varepsilon )\phi (u),\quad 0< u< r_{1}. \end{aligned}$$
(3.3)
If \(u\in P\) with \(\| u\| =r_{1}\), then from (3.2) and (3.3) we obtain
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \leq& \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl( \lambda \int _{0}^{1}H(q\tau ,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq & \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q\tau ,q \tau ) (F_{0}+\varepsilon )\phi (r_{1})\biggr)\,d_{q} \tau )\,d_{q}s \\ \leq& \psi _{1}^{-1}\bigl(\lambda (F_{0}+ \varepsilon )\bigr) \int _{0}^{1}G(1,qs) \phi ^{-1} \biggl( \int _{0}^{1}H(q\tau ,q\tau )\phi (r_{1})\biggr)\,d_{q}\tau )\,d_{q}s \\ \leq& \psi _{1}^{-1}\bigl(\lambda (F_{0}+ \varepsilon )\bigr)r_{1} \int _{0}^{1}G(1,qs) \psi _{1}^{-1} \biggl( \int _{0}^{1}H(q\tau ,q\tau )\,d_{q} \tau \biggr)\,d_{q}s \\ =&\psi _{1}^{-1}\bigl(\lambda (F_{0}+ \varepsilon )\bigr)A_{1}r_{1}\leq r_{1}= \Vert u \Vert . \end{aligned}$$
Let \(\Omega _{1}=\{u\in E\mid \| u\| < r_{1}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \leq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{1}. \end{aligned}$$
(3.4)
(2) By the definition of \(f_{\infty }\) there exists \(r_{3}>0\) such that
$$\begin{aligned} f(u)\geq (f_{\infty }-\varepsilon )\phi (u),\quad u>r_{3}. \end{aligned}$$
(3.5)
If \(u\in P\) with \(\| u\| =r_{2}=\max \{2r_{1},r_{3}\}\), then from (3.2) and (3.5) we obtain
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \geq & \int _{0}^{1}k(\delta )G(1,qs) \phi ^{-1}\biggl(\lambda \int _{0}^{1}H(s,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \int _{0}^{1}k(\delta )G(1,qs)\phi ^{-1}\biggl(\lambda \int _{0}^{1}s^{ \beta -1}H(1,q\tau ) (f_{\infty }-\varepsilon )\phi \bigl(\tau ^{\alpha -1} \Vert u \Vert \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \int _{0}^{1}k(\delta )G(1,qs)\phi ^{-1}\biggl(\lambda \int _{0}^{1}s^{ \beta -1}H(1,q\tau ) (f_{\infty }-\varepsilon )\psi _{1}\bigl(\tau ^{\alpha -1}\bigr) \phi (r_{2})\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \psi _{2}^{-1}\bigl(\lambda (f_{\infty }- \varepsilon )\bigr)r_{2}k(\delta )\\ &{}\times \int _{0}^{1}\psi _{2}^{-1} \bigl(s^{\beta -1}\bigr)G(1,qs)\psi _{2}^{-1} \biggl( \int _{0}^{1}H(1,q \tau )\psi _{1} \bigl(\tau ^{\alpha -1}\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ =&\psi _{2}^{-1}\bigl(\lambda (f_{\infty }- \varepsilon )\bigr)A_{2}r_{2}\geq r_{2}= \Vert u \Vert . \end{aligned}$$
Let \(\Omega _{2}=\{u\in E\mid \| u\| < r_{2}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \geq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{2}. \end{aligned}$$
(3.6)
From (3.4) and (3.6) and from Theorem 2.1 we have that \(T_{\lambda }\) has a fixed point \(u\in P\cap (\overline{\Omega }_{2}\setminus \Omega _{1})\) with \(r_{1}\leq \| u\| \leq r_{2}\) and that u is a positive solution for the BVP of fractional q-difference Eq. (1.1). The proof is completed. □
Theorem 3.2
Assume that (A1), (A2), and \(f_{0}\psi _{1}(A_{1}^{-1})>F_{\infty }\psi _{2}(A_{2}^{-1})\) hold. Then for each
$$\begin{aligned} \lambda \in \bigl(\psi _{2}\bigl(A_{2}^{-1} \bigr)f_{0}^{-1},\psi _{1} \bigl(A_{1}^{-1}\bigr)F_{ \infty }^{-1} \bigr), \end{aligned}$$
(3.7)
the BVP of fractional q-difference Eq. (1.1) has at least one positive solution. Here we impose that \(f_{0}^{-1}=0\) if \(f_{0}=+\infty \) and \(F_{\infty }^{-1}=+\infty \) if \(F_{\infty }=0\).
Proof
Let λ satisfy (3.7), and let \(\varepsilon >0\) be such that
$$\begin{aligned} \psi _{2}\bigl(A_{2}^{-1} \bigr) (f_{0}-\varepsilon )^{-1}\leq \lambda \leq \psi _{1}\bigl(A_{1}^{-1}\bigr) (F_{ \infty }+\varepsilon )^{-1}. \end{aligned}$$
(3.8)
We separate the proof into two steps.
(1) By the definition of \(f_{0}\) there exists \(r_{1}>0\) such that
$$\begin{aligned} f(u)\geq (f_{0}-\varepsilon )\phi (u),\quad 0< u \leq r_{1}. \end{aligned}$$
(3.9)
If \(u\in P\) with \(\| u\| =r_{1}\), then similarly to the second part of the proof of Theorem 3.1, let \(\Omega _{1}=\{u\in E\mid \| u\| < r_{1}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \geq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{1}. \end{aligned}$$
(3.10)
(2) By the definition \(F_{\infty }\) there exists \(R_{1}>0\) such that
$$\begin{aligned} f(u)\leq (F_{\infty }+\varepsilon )\phi (u),\quad u> R_{1}. \end{aligned}$$
(3.11)
We consider two cases:
Case 1: When f is bounded, then there exists \(N>0\), such that \(|f(u)|\leq N\) for \(u\in (0,+\infty )\). If \(u\in P\) with \(\|u\|=r_{3}\), where \(r_{3}=\max \{2r_{1},\phi ^{-1}(\lambda N)A_{1}\}\), then
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \leq& \int ^{1}_{0}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q \tau ,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \phi ^{-1}(\lambda N) \int ^{1}_{0}G(1,qs)\psi _{1}^{-1} \biggl( \int _{0}^{1}H(q \tau ,q\tau )\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \phi ^{-1}(\lambda N)A_{1} \\ \leq& r_{3}= \Vert u \Vert . \end{aligned}$$
So let \(\Omega _{3}=\{u\in E\mid \| u\| < r_{3}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \leq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{3}. \end{aligned}$$
(3.12)
Case 2: Suppose f is unbounded. Then there exists \(r_{4}>\max \{2r_{1},R_{1}\}\) such that \(f(u)\leq f(r_{4})\) for \(0< u< r_{4}\). If \(u\in P\) with \(\| u\| =r_{4}\), then by (3.7) and (3.11) we have
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \leq& \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl( \lambda \int _{0}^{1}H(q\tau ,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q\tau ,q \tau ) (F_{\infty }+\varepsilon )\phi (r_{4})\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \psi _{1}^{-1}\bigl(\lambda (F_{\infty }+ \varepsilon )\bigr)A_{1}r_{4} \\ \leq& r_{4}= \Vert u \Vert . \end{aligned}$$
Thus we suppose \(\Omega _{4}=\{u\in E\mid \| u\| < r_{4}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \leq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{4}. \end{aligned}$$
(3.13)
In view of Cases 1 and 2, we let \(\Omega _{2}=\{u\in E\mid \| u\| < r_{2}\}\), where \(r_{2}=\max \{r_{3},r_{4}\}\). Then
$$\begin{aligned} \Vert T_{\lambda }u \Vert \leq \Vert u \Vert , \quad u\in P \cap \partial \Omega _{2}. \end{aligned}$$
(3.14)
From (3.10) and (3.14) and from Theorem 2.1 we obtain that \(T_{\lambda }\) has a fixed point \(u\in P\cap (\overline{\Omega }_{2}\backslash \Omega _{1})\) with \(r_{1}\leq \| u\| \leq r_{2}\). Obviously, u is a positive solution of the BVP of fractional q-difference Eq. (1.1). The proof is completed. □
Theorem 3.3
Assume that (A1) and (A2) hold and there exist \(r_{2}>r_{1}>0\) such that
$$\begin{aligned} \lambda \min_{k(\delta )r_{1}\leq u\leq r_{1}}f(u)\geq \phi \biggl( \frac{r_{1}}{A_{3}}\biggr),\qquad \lambda \max_{0\leq u\leq r_{2}}f(u)\leq \phi \biggl(\frac{r_{2}}{A_{1}}\biggr). \end{aligned}$$
Then the BVP of fractional q-difference Eq. (1.1) has a positive solution \(u\in P\) with \(r_{1}\leq \| u\| \leq r_{2}\).
Proof
Let \(\Omega _{1}=\{u\in E|\|u\|< r_{1}\}\). Then for \(u\in P\cap \partial \Omega _{1}\), we obtain
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \geq& T_{\lambda }u( \delta ) \\ =& \int _{0}^{1}G(\delta ,qs)\phi ^{-1}\biggl(\lambda \int _{0}^{1}H(s,q\tau )f\bigl(u( \tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \int _{0}^{1}k(\delta )G(1,qs)\phi ^{-1}\biggl(\lambda \int _{0}^{1}s^{ \beta -1}H(1,q\tau )\min _{k(\delta )r_{1}\leq u\leq r_{1}}f\bigl(u(\tau )\bigr)\,d_{q} \tau \biggr)\,d_{q}s \\ \geq& \int _{0}^{1}k(\delta )G(1,qs)\psi _{2}^{-1}\bigl(s^{\beta -1}\bigr)\phi ^{-1}\biggl( \lambda \int _{0}^{1}H(1,q\tau )\min _{k(\delta )r_{1}\leq u\leq r_{1}}f\bigl(u( \tau )\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \phi ^{-1}\Bigl(\lambda \min_{k(\delta )r_{1}\leq u\leq r_{1}}f(u) \Bigr)A_{3} \\ \geq& r_{1}= \Vert u \Vert . \end{aligned}$$
Suppose \(\Omega _{2}=\{u\in E\mid \| u\| < r_{2}\}\). Then for \(u\in P\cap \partial \Omega _{2}\), we have
$$\begin{aligned} \bigl\Vert T_{\lambda }u(t) \bigr\Vert \leq& \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl( \lambda \int _{0}^{1}H(q\tau ,q\tau )f\bigl(u(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq & \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q\tau ,q \tau )\max _{0\leq u\leq r_{2}}f\bigl(u(\tau )\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq &\phi ^{-1}\Bigl(\lambda \max_{0\leq u\leq r_{2}}f \bigl(u(\tau )\bigr)\Bigr)A_{1} \\ \leq &r_{2}= \Vert u \Vert . \end{aligned}$$
Thus by Theorem 2.1 the BVP of fractional q-difference Eq. (1.1) has a positive solution \(u\in P\) with \(r_{1}\leq \| u\| \leq r_{2}\). The proof is completed. □
Theorem 3.4
Assume that (A1) and (A2) hold. Let \(\lambda _{1}=\sup_{r>0} \frac{\phi (r)}{\phi (A_{1})\max_{0\leq u\leq r}f(u)}\). If \(f_{0}=+\infty \) and \(f_{\infty }=+\infty \), then the BVP of fractional q-difference Eq. (1.1) has at least two positive solutions for each \(\lambda \in (0,\lambda _{1})\).
Proof
We define \(x(r)=\frac{\phi (r)}{\psi _{2}(A_{1})\max_{0\leq u\leq r}f(u)}\). In view of the continuity of \(f,~f_{0}=+\infty \), and \(f_{\infty }=+\infty \), we obtain that \(x(r):(0,+\infty )\rightarrow (0,+\infty )\) is continuous and \(\lim_{r\rightarrow 0^{+}}x(r)=\lim_{r\rightarrow +\infty }x(r)=0\). So there exists \(r_{0}\in (0,+\infty )\) such that \(x(r_{0})=\sup_{r>0}x(r)=\lambda _{1}\). For all \(\lambda \in (0,\lambda _{1})\), there exist constants \(a_{1},~a_{2}>0\) such that \(x(a_{1})=x(a_{2})=\lambda \), where \(0< a_{1}< r_{0}< a_{2}<+\infty \). Thus
$$\begin{aligned}& \lambda f(u)\leq \frac{\phi (a_{1})}{\psi _{2}(A_{1})}\leq \phi \biggl( \frac{a_{1}}{A_{1}}\biggr),\quad u\in [0,a_{1}], \end{aligned}$$
(3.15)
$$\begin{aligned}& \lambda f(u)\leq \frac{\phi (a_{2})}{\psi _{2}(A_{1})}\leq \phi \biggl( \frac{a_{2}}{A_{1}}\biggr),\quad u\in [0,a_{2}], \end{aligned}$$
(3.16)
By the conditions \(f_{0}=+\infty \) and \(f_{\infty }=+\infty \) there exist constants \(b_{1},~b_{2}>0\), where \(0< b_{1}< a_{1}< r_{0}< a_{2}< b_{2}<+\infty \), such that
$$\begin{aligned} \frac{f(u)}{\phi (u)}\geq \frac{1}{\lambda \psi _{1}(k(\delta ))\phi (A_{3})},\quad u\in (0,b_{1}) \cup \bigl(k(\delta )b_{2},+\infty \bigr), \end{aligned}$$
so that
$$\begin{aligned}& \lambda \min_{k(\delta )b_{1}\leq u\leq b_{1}}f(u)\geq \phi \biggl( \frac{b_{1}}{A_{3}}\biggr), \end{aligned}$$
(3.17)
$$\begin{aligned}& \lambda \min_{k(\delta )b_{2}\leq u\leq b_{2}}f(u)\geq \phi \biggl( \frac{b_{2}}{A_{3}}\biggr). \end{aligned}$$
(3.18)
By (3.15), (3.17), (3.16), and (3.18), combined with Theorems 2.1 and 3.3, the BVP of fractional q-difference Eq. (1.1) has at least two positive solutions for each \(\lambda \in (0,\lambda _{1})\). The proof is completed. □
Theorem 3.5
Assume that (A1) and (A2) hold. If \(F_{0}<+\infty \) and \(F_{\infty }<+\infty \), then there exists \(\lambda _{0}>0\) such that for all \(0<\lambda <\lambda _{0}\), the BVP of fractional q-difference Eq. (1.1) has no positive solution.
Proof
Since \(F_{0}<+\infty \) and \(F_{\infty }<+\infty \), there exist \(M_{1},M_{2}, r_{1},r_{2}>0\), such that \(r_{1}< r_{2}\) and
$$\begin{aligned}& f(u)\leq M_{1}\phi (u),\quad u\in [0,r_{1}], \\& f(u)\leq M_{2}\phi (u),\quad u\in [r_{2},+\infty ). \end{aligned}$$
Let \(M_{0}=\max \{M_{1},M_{2},\max_{r_{1}\leq u\leq r_{2}}{ \frac{f(u)}{\phi (u)}}\}\). Then we have
$$\begin{aligned} f(u)\leq M_{0}\phi (u),\quad u\in [0,+\infty ). \end{aligned}$$
Let v be a positive solution of the fractional q-difference equation boundary value problem (1.1). We will show that this leads to a contradiction for \(0<\lambda <\lambda _{0}\), where \(\lambda _{0}:=M_{0}^{-1}\psi _{1}(A_{1}^{-1})\). Indeed, since \(T_{\lambda }v(t)=v(t)\) for \(t\in [0,1]\), we have
$$\begin{aligned} \Vert v \Vert =& \Vert T_{\lambda }v \Vert \leq \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q\tau ,q\tau )f\bigl(v(\tau ) \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \int _{0}^{1}G(1,qs)\phi ^{-1} \biggl(\lambda \int _{0}^{1}H(q\tau ,q \tau )M_{0}\phi \bigl(v(\tau )\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \leq& \psi _{1}^{-1}(\lambda M_{0}) \Vert v \Vert A_{1}< \Vert v \Vert , \end{aligned}$$
a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive solution. The proof is completed. □
Theorem 3.6
Assume that (A1) and (A2) hold. If \(f_{0}>0\) and \(f_{\infty }>0\), then there exists \(\lambda _{0}'>0\) such that for all \(\lambda >\lambda _{0}'\), the BVP of fractional q-difference Eq. (1.1) has no positive solution.
Proof
Since \(f_{0}>0\) and \(f_{\infty }>0\), there exist \(m_{1},m_{2},r_{3},r_{4}>0\) such that \(r_{3}< r_{4}\) and
$$\begin{aligned}& f(u)\geq m_{1}\phi (u),\quad u\in [0,r_{3}], \\& f(u)\geq m_{2}\phi (u),\quad u\in [r_{4},+\infty ). \end{aligned}$$
Let \(m_{0}=\max \{m_{1},m_{2},\max_{r_{3}\leq u\leq r_{4}}{ \frac{f(u)}{\phi (u)}}\}\). Then we have
$$\begin{aligned} f(u)\geq m_{0}\phi (u),\quad u\in [0,+\infty ). \end{aligned}$$
Let v be a positive solution of the fractional q-difference equation BVP (1.1). We will show that this leads to a contradiction for \(\lambda >\lambda _{0}'\), where \(\lambda _{0}':=m_{0}^{-1}\psi _{2}(A_{2}^{-1})\). Indeed, since \(T_{\lambda }v(t)=v(t)\) for \(t\in [0,1]\), we have
$$\begin{aligned} \Vert v \Vert =& \Vert T_{\lambda }v \Vert \geq \int _{0}^{1}k(\delta )G(1,qs)\phi ^{-1}\biggl( \lambda \int _{0}^{1}s^{\beta -1}H(1,q\tau )f \bigl(v(\tau )\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \int _{0}^{1}k(\delta )G(1,qs)\phi ^{-1}\biggl(\lambda \int _{0}^{1}s^{ \beta -1}H(1,q\tau )m_{0}\phi \bigl(v(\tau )\bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq & \int _{0}^{1}k(\delta )\psi _{2}^{-1}\bigl(s^{\beta -1}\bigr)G(1,qs)\phi ^{-1}\biggl( \lambda \int _{0}^{1}H(1,q\tau )m_{0}\phi \bigl(\tau ^{\alpha -1} \Vert v \Vert \bigr)\,d_{q}\tau \biggr)\,d_{q}s \\ \geq& \psi _{2}^{-1}(\lambda m_{0}) \Vert v \Vert A_{2}> \Vert v \Vert , \end{aligned}$$
a contradiction. Therefore the BVP of fractional q-difference Eq. (1.1) has no positive solution. The proof is completed. □