In this section, we want to prove Theorem 2.4. Let us first consider the following Cauchy–Dirichlet problem:
$$\begin{aligned}& \begin{aligned} &u_{\varepsilon t} -\operatorname{div} \bigl( \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{ \frac{p - 2}{2}}\nabla u_{\varepsilon }+ \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q - 2}{2}} \nabla u_{\varepsilon } \bigr) \\ &\qquad {}- \sum_{i = 1}^{N} \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}} \\ &\quad =0, (x,t)\in {Q_{T}}, \end{aligned} \end{aligned}$$
(3.1)
$$\begin{aligned}& {u_{\varepsilon }}(x,t)= 0,\quad (x,t) \in \partial \Omega \times (0,T), \end{aligned}$$
(3.2)
$$\begin{aligned}& {u_{\varepsilon }}(x,0) = {u_{\varepsilon 0}}(x),\quad x\in \Omega , \end{aligned}$$
(3.3)
where \(u_{\varepsilon 0} \in C^{\infty }_{0}(\Omega )\), \(\|u_{\varepsilon 0}\|_{L^{\infty }(\Omega )}\leq \|u_{0}\|_{L^{\infty }( \Omega )}\), \(\vert \nabla u_{\varepsilon 0} \vert \) converges to \(|\nabla u_{0}(x)|\) in \(L^{q}(\Omega )\).
Since the convection function \(f_{i}(s,x,t)\) is a \(C^{1}\) function on \(\mathbb{R}\times \overline{Q}_{T}\), \(i=1, 2, \ldots , N\), by the classical existence theory for parabolic equations [17], similar to [8], we know there is a unique weak solution \(u_{\varepsilon }\in C^{0}([0,T];L^{2}(\Omega ))\cap L^{q}(0,T; W_{0}^{1,q}( \Omega ))\) with \(\partial _{t} u_{\varepsilon }\in L^{q'}(0,T;W^{-1,q'}(\Omega ))\). Now, let us show that
$$ \Vert u_{\varepsilon } \Vert _{L^{\infty }(Q_{T})} \leqslant c. $$
Lemma 3.1
Assume that \(a_{1}\), \(b_{1}\), λ are positive constants, where \(\lambda >\frac{1}{2}+\frac{b_{1}}{a_{1}}\). Define
$$ \varphi (s)= \textstyle\begin{cases} e^{\lambda s-1}& s \geqslant 0, \\ -e^{-\lambda s}+1 &s \leqslant 0. \end{cases} $$
(3.4)
Then the following properties hold:
1. For any \(s\in \mathbb{R}\), we have
$$ \bigl\vert \varphi (s) \bigr\vert \geqslant \lambda \vert s \vert , \qquad a_{1} \varphi ^{\prime }(s) - b_{1} \bigl\vert \varphi (s) \bigr\vert \geqslant \frac{a_{1}}{2}e^{\lambda \vert s \vert }. $$
(3.5)
2. For any \(s\geq d\), there hold constants \(d\geq 0\), \(M>1\), we have
$$ \varphi ^{\prime }(s) \leqslant \lambda M \biggl[\varphi \biggl(\frac{s}{l} \biggr) \biggr]^{l}, \qquad \varphi (s) \leqslant M \biggl[\varphi \biggl(\frac{s}{l} \biggr) \biggr]^{l}, $$
(3.6)
where \(l>1\).
3. Let \(\Phi (s)=\int _{0}^{s}\varphi (\sigma )\,d\sigma \). For any \(s\geq 0\), if \(l>2\), here holds constant \(c^{\ast }>0\), we have
$$ \Phi (s)\geqslant c^{\ast } \biggl[\varphi \biggl( \frac{s}{l} \biggr) \biggr]^{l}. $$
(3.7)
If \(1< l<2\), then there exist \(d\geq 0\) and \(c^{*}=c^{*}(q,d)\) such that
$$ \textstyle\begin{cases} \Phi (s)\geq c^{*} [\varphi (\frac{s}{l} ) ]^{l}, \quad \forall s\geq d, \\ \Phi (s)\geq c^{*} [\varphi (\frac{s}{l} ) ]^{2}, \quad \forall 0\leq s\leq d. \end{cases}$$
(3.8)
Lemma 3.1 can be found in [16].
Lemma 3.2
Assume that \(u_{\varepsilon }\) is a weak solution of (3.1), then there is a constant c (which is independent of ε) such that
$$ \Vert u_{\varepsilon } \Vert _{L^{\infty }({Q_{T}})} \leqslant \Vert {u_{0}} \Vert _{L^{\infty }(\Omega )} + c. $$
(3.9)
Proof
We only give the proof provided that condition (2.10) is true. When condition (2.11) is true, this lemma can be verified in a similar way. Let k be a real number and \(\Vert u_{0} \Vert _{L^{\infty }( \Omega )}\leq k\), the function φ be defined as (3.4). Define
$$ G_{k}(u_{\varepsilon })= \textstyle\begin{cases} u_{\varepsilon }-k, & u_{\varepsilon }> k, \\ u_{\varepsilon }+k, & u_{\varepsilon }< -k, \\ 0, & \vert u_{\varepsilon } \vert \leqslant k. \end{cases} $$
We can see \(\varphi (G_{k}(u_{\varepsilon }))\in V\cap L^{\infty }(Q_{T})\). So, for any \(\tau \in [0,T]\), we can choose \(v= \varphi (G_{k}(u_{\varepsilon }))\chi _{[0,\tau ]}\) as a test function (where \(\chi _{A}\) is an eigenfunction on the set A). At the same time, we know that \(v_{x_{i}}=\chi _{[0,\tau ]}\chi \{\vert u_{\varepsilon }\vert >k\} \varphi ^{\prime }(G_{k}(u_{\varepsilon }))u_{\varepsilon x_{i}}\) and \(\nabla v=\chi _{[0,\tau ]}\chi \{\vert u_{\varepsilon }\vert >k\} \varphi ^{\prime }(G_{k}(u_{\varepsilon }))\nabla u_{\varepsilon }\). Since \(f_{i}(u_{\varepsilon },x,t)\) satisfies (2.8), we have
$$ \begin{aligned}[b] & \int _{0}^{\tau }\bigl\langle u_{\varepsilon t},\varphi \bigl(G_{k}(u_{\varepsilon }) \bigr)\bigr\rangle \, dt \\ &\qquad {}+ \int _{0}^{\tau } \int _{\Omega } \bigl[ \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q- 2}{2}} \vert \nabla {u_{\varepsilon }} \vert ^{2} \\ &\qquad {}+ \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{p- 2}{2}} \vert \nabla {u_{\varepsilon }} \vert ^{2} \bigr] \\ &\qquad {}\cdot\varphi ^{\prime } \bigl(G_{k}(u_{\varepsilon }) \bigr) \chi \bigl\{ \vert u_{\varepsilon } \vert >k \bigr\} \,dx\,dt \\ &\quad =-\sum_{i=1}^{N} \int _{0}^{\tau } \int _{\Omega }f_{i}(u_{\varepsilon },x,t) \chi \bigl\{ \vert u_{\varepsilon } \vert >k \bigr\} \varphi ^{\prime } \bigl(G_{k}(u_{\varepsilon }) \bigr)u_{\varepsilon x_{i}}\,dx\,dt \\ &\quad \leq \int _{0}^{\tau } \int _{\Omega } \biggl[\frac{1}{p}a(x) \vert \nabla u_{ \varepsilon } \vert ^{p}+\frac{1}{q}a(x) \biggr]\chi \bigl\{ \vert u_{\varepsilon } \vert >k \bigr\} \varphi ^{\prime } \bigl(G_{k}(u_{\varepsilon }) \bigr)\,dx\,dt, \end{aligned} $$
(3.10)
where \(\langle u_{\varepsilon t},\varphi (G_{k}(u_{\varepsilon }))\rangle \) is the dyadic interaction between \(L^{p}(0,T; W_{0}^{1,p}(\Omega ))\) and \(L^{p'}(0,T;W^{-1,p'}(\Omega ))\).
Let \(A_{k}(t)=\{x\in \Omega :\vert u_{\varepsilon }(x,t)\vert >k\}\) depend on k. We have
$$ \begin{aligned} \int _{0}^{\tau }\bigl\langle u_{\varepsilon t},\varphi \bigl(G_{k}(u_{\varepsilon }) \bigr)\bigr\rangle \,dt&= \int _{\Omega }\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx - \int _{\Omega }\Phi \bigl(G_{k}(u_{\varepsilon 0}) \bigr)\,dx \\ &= \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx - \int _{A_{k}(0)} \Phi \bigl(G_{k}(u_{\varepsilon 0}) \bigr)\,dx \\ &= \int _{A_{k}(\tau )} \Phi (G_{k}(u_{\varepsilon }) (\tau ) \,dx. \end{aligned} $$
(3.11)
Substituting (3.11) into (3.10), using Lemma 2.1, we can deduce that
$$ \begin{aligned} & \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx + \int _{0}^{\tau } \int _{A_{k}(t)} \vert \nabla u_{\varepsilon } \vert ^{p} \varphi ^{\prime }\,dx\,dt \\ &\quad \leq \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx + \int _{0}^{\tau } \int _{A_{k}(t)}a(x) \vert \nabla u_{\varepsilon } \vert ^{p} \varphi ^{\prime }\,dx\,dt \\ &\qquad {} + \int _{0}^{\tau } \int _{A_{k}(t)}b(x) \vert \nabla u_{\varepsilon } \vert ^{q}\varphi ^{\prime }\,dx\,dt \\ &\quad \leq c \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx \\ &\qquad {}+c \int _{0}^{\tau } \int _{A_{k}(t)} \bigl[ \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q- 2}{2}} \vert \nabla {u_{\varepsilon }} \vert ^{2} \\ &\qquad {}+ \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{p- 2}{2}} \vert \nabla {u_{\varepsilon }} \vert ^{2} \bigr]\varphi ^{\prime }\,dx\,dt \\ &\quad \leq c \int _{0}^{\tau } \int _{A_{k}(t)} a(x)\varphi ^{\prime } \bigl(G_{k}(u_{\varepsilon }) \bigr)\,dx\,dt. \end{aligned} $$
(3.12)
Let \(\omega _{k}=\varphi (\frac{\vert G_{k}(u_{\varepsilon })\vert }{p})\). Then
$$ \begin{aligned} \int _{0}^{\tau } \int _{A_{k}(t)} \vert \nabla u_{\varepsilon } \vert ^{p}\varphi ^{\prime }\,dx\,dt &\geqslant \frac{1}{2} \int _{0}^{\tau } \int _{A_{k}(t)} \bigl\vert e^{\lambda \frac{ \vert G_{k}(u_{\varepsilon }) \vert }{p}} \nabla u \bigr\vert ^{p}\,dx\,dt \\ &=\frac{1}{2} \int _{0}^{\tau } \int _{A_{k}(t)} \biggl\vert \frac{p}{\lambda } \biggr\vert ^{p} \vert \nabla \omega _{k} \vert ^{p}\,dx \,dt \\ &\geqslant \frac{1}{2} \biggl(\frac{1}{\lambda } \biggr)^{p} \int _{0}^{\tau } \int _{A_{k}(t)} \vert \nabla \omega _{k} \vert ^{p}\,dx\,dt. \end{aligned} $$
(3.13)
By definition we know that \(A_{k}(t)\backslash A_{k+d}(t)=\{x\in \Omega :k<\vert u_{\varepsilon }(x,t) \vert \leqslant k+d\}\). So, in the set of \(A_{k}(t)\backslash A_{k+d}(t)\), we get \(0<\vert G_{k}(u_{\varepsilon })\vert \leqslant d\), \(\varphi ^{\prime }(G_{k}(u_{\varepsilon }))=\lambda e^{\lambda \vert G_{k}(u_{\varepsilon })\vert }\leqslant \lambda e^{\lambda d}\). Combining (3.6) with (3.12) and (3.13), we have
$$ \begin{aligned} & \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx+ \frac{1}{2} \biggl(\frac{1}{\lambda } \biggr)^{p} \int _{0}^{\tau } \int _{A_{k}(t)} \vert \nabla \omega _{k} \vert ^{p}\,dx\,dt \\ &\quad \leq c\lambda \int _{0}^{\tau } \int _{A_{k+d}(t)} \vert w_{k} \vert ^{p} \,dx\,dt+c \lambda e^{\lambda d} \int _{0}^{\tau } \int _{A_{k}(t) A_{k+d}(t)}\,dx\,dt. \end{aligned} $$
(3.14)
Since \(p\geq 2\), by (3.7), then
$$ \int _{A_{k}(\tau )}\Phi \bigl(G_{k}(u_{\varepsilon }) \bigr) (\tau )\,dx\geq c^{*} \int _{A_{k}(\tau )} \vert \omega _{k} \vert ^{p^{-}}\,dx. $$
(3.15)
Plugging (3.15) into (3.14) and taking the supremum for \(\tau \in [0,t_{1}]\), with \(t_{1}\leq T\) to be determined later, we have
$$ \begin{aligned} &\sup_{\tau \in [0,t_{1}]} \int _{A_{k}(\tau )} \vert \omega _{k} \vert ^{p^{-}}\,dx+ \frac{1}{2} \biggl(\frac{1}{\lambda } \biggr)^{p} \int _{0}^{t_{1}} \int _{A_{k}(t)} \vert \nabla \omega _{k} \vert ^{p}\,dx\,dt \\ &\quad \leq c\lambda \int _{0}^{\tau } \int _{A_{k+d}(t)} \vert w_{k} \vert ^{p} \,dx\,dt+c_{1} \lambda e^{\lambda d} \int _{0}^{\tau } \int _{A_{k}(t) A_{k+d}(t)}\,dx\,dt. \end{aligned} $$
(3.16)
Let \(\psi _{k}=\int _{0}^{t_{1}}\mu (A_{k}(t))\,dt\). By choosing
$$ c_{1} \bigl(t_{1}\mu (\Omega ) \bigr)^{\frac{p}{N+p}}\leq \frac{1}{2}, $$
(3.17)
where \(\mu (\Omega )\) is the Lebesgue measure of Ω. Now, using the embedding inequality [16, 24], we can deduce that
$$ \biggl( \int _{0}^{t_{1}} \int _{A_{k}(t)} \vert \omega _{k} \vert ^{p\frac{N+p}{N}}\,dx\,dt \biggr)^{\frac{N}{N+p}} \leq \gamma \biggl(\sup _{\tau \in [0,t_{1}]} \int _{A_{k}(\tau )} \vert \omega _{k} \vert ^{p}\,dx+ \int _{0}^{t_{1}} \int _{A_{k}(t)} \vert \nabla \omega \vert ^{p}\,dx \,dt \biggr), $$
where γ is a constant independent of \(t_{1}\), similar to the proof of Theorem 2.2 in [16], it follows from (3.16) that
$$ \psi _{l}\leq \frac{c}{(l-k)^{\frac{p(N+p)}{N}}}\psi _{k}^{ (1- \frac{1}{r} )\frac{N+p}{N}}, $$
(3.18)
where \(r>\frac{N+p}{N}\) is a constant, and so
$$ \biggl(1-\frac{1}{r} \biggr)\frac{N+p}{N}>1. $$
Therefore, thanks to the iteration lemma in [21], from (3.18), we eventually obtain that
$$ \psi _{(\|u_{0}\|_{L^{\infty }(\Omega )}+D)}=0, $$
where \(D>0\) is a constant depending only on p, N, \(t_{1}\), r, Ω. This proves that, for fixed λ validating Lemma 2.1,
$$ \bigl\Vert u(x,t) \bigr\Vert _{L^{\infty }(Q_{t_{1}})}\leq \Vert u_{0\varepsilon } \Vert _{L^{ \infty }(\Omega )}+D. $$
(3.19)
Finally, we partition the time interval \([0,T]\) into finite subintervals \([0,t_{1}],[t_{1},t_{2}], \ldots , [t_{n-1},T]\) such that the conditions similar to (3.17) are available for each subinterval \([t_{i},t_{i+1}]\), then we deduce an inequality of the form (3.19). Eventually, we have conclusion (3.9). □
Proof of Theorem 2.4
Multiplying (3.1) by \(u_{\varepsilon }\) and integrating it over \(Q_{T}\) yield
$$\begin{aligned}& \frac{1}{2} \int _{\Omega }u_{\varepsilon }^{2}\,dx+ \iint _{{Q_{T}}} \bigl[ \bigl(a(x)+ \varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{ \frac{p - 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2} \\& \qquad {}+ \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{ \frac{q- 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2} \bigr]\,dx\,dt \\& \qquad {}+\sum_{i=1}^{N} \iint _{Q_{T}} \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}} u_{ \varepsilon }\,dx\,dt \\& \quad =\frac{1}{2} \int _{\Omega }u_{\varepsilon 0}^{2}\,dx. \end{aligned}$$
(3.20)
Since \(f_{i}(s,x,t)\) is a Lipschitz function when \(|s|\leq c\), \(\frac{\partial f_{i}(s,x,t)}{\partial s}\) exists almost everywhere and is bounded. If \(\int _{\Omega }a(x)^{-\frac{2}{p-2}}\,dx<\infty \), then \(\int _{\Omega }a(x)^{-\frac{1}{p-1}}\,dx<\infty \), and
$$\begin{aligned} \biggl\vert \int _{\Omega } \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}} u_{ \varepsilon }\,dx \biggr\vert \leq& \int _{\Omega } \biggl\vert \frac{\partial f_{i}(s,x,t)}{\partial s}\bigg|_{s= u_{\varepsilon }}u_{ \varepsilon x_{i}} \biggr\vert \vert u_{\varepsilon } \vert \,dx+c \\ \leq& c \int _{\Omega } \biggl\vert \frac{\partial f_{i}(s,x,t)}{\partial s} \bigg|_{s= u_{\varepsilon }} u_{\varepsilon x_{i}} \biggr\vert \,dx+c \\ \leq& \frac{1}{4} \int _{\Omega }a(x) \vert \nabla u_{\varepsilon } \vert ^{p}\,dx+c \int _{\Omega }a(x)^{-\frac{1}{p-1}}\,dx+c \\ \leq& \frac{1}{4} \int _{\Omega }a(x) \vert \nabla u_{\varepsilon } \vert ^{p}\,dx+c. \end{aligned}$$
Or similarly, if \(\int _{\Omega }b(x)^{-\frac{2}{q-2}}\,dx<\infty \), we know that \(\int _{\Omega }b(x)^{-\frac{1}{q-1}}\,dx<\infty \) and
$$\begin{aligned} \biggl\vert \int _{\Omega } \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}} u_{ \varepsilon }\,dx \biggr\vert \leq& \int _{\Omega } \biggl\vert \frac{\partial f_{i}(s,x,t)}{\partial s}\bigg|_{s=u_{\varepsilon }}u_{ \varepsilon x_{i}} \biggr\vert \vert u_{\varepsilon } \vert \,dx+c \\ \leq& c \int _{\Omega } \biggl\vert \frac{\partial f_{i}(s,x,t)}{\partial s} \bigg|_{s= u_{\varepsilon }}u _{\varepsilon x_{i}} \biggr\vert \,dx+c \\ \leq& \frac{1}{4} \int _{\Omega }b(x) \vert \nabla u_{\varepsilon } \vert ^{q}\,dx+c \int _{\Omega }b(x)^{-\frac{1}{q-1}}\,dx+c \\ \leq& \frac{1}{4} \int _{\Omega }b(x) \vert \nabla u_{\varepsilon } \vert ^{q}\,dx+c. \end{aligned}$$
Accordingly, based on condition (2.10) or condition (2.10), by (3.20), we obtain
$$ \begin{aligned} & \int _{\Omega }u_{\varepsilon }^{2}\,dx+ \iint _{{Q_{T}}}a(x) \vert \nabla u_{\varepsilon } \vert ^{p}\,dx\,dt + \iint _{{Q_{T}}}b(x) \vert \nabla u_{ \varepsilon } \vert ^{q}\,dx\,dt \\ &\quad \leq \int _{\Omega }u_{\varepsilon }^{2}\,dx+ \iint _{{Q_{T}}} \bigl(a(x)+ \varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{ \frac{p - 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt \\ &\qquad {}+ \iint _{{Q_{T}}} \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q - 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt \\ &\quad \leqslant c. \end{aligned} $$
(3.21)
Let \(\Omega _{1}\subset \subset \Omega \). Then there exists a constant \(c(\Omega _{1})\) such that
$$ a(x)\geq c(\Omega _{1})>0, \qquad b(x)\geq c(\Omega _{1})>0. $$
By \(q\geq p>2\), (3.21) yields
$$ \begin{gathered} \int _{0}^{T} \int _{\Omega _{1}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt \\ \quad \leq c \biggl( \int _{0}^{T} \int _{\Omega _{1}} \vert \nabla u_{\varepsilon } \vert ^{p}\,dx\,dt \biggr)^{\frac{2}{p}} \\ \quad \leq c(\Omega _{1}) \biggl[ \biggl( \int _{0}^{T} \int _{\Omega _{1}}a(x) \vert \nabla u_{\varepsilon } \vert ^{p}\,dx\,dt \biggr)^{\frac{2}{p}}+ \biggl( \int _{0}^{T} \int _{\Omega _{1}}b(x) \vert \nabla u_{\varepsilon } \vert ^{q}\,dx\,dt \biggr)^{ \frac{2}{q}} \biggr] \\ \quad \leq c. \end{gathered} $$
(3.22)
Multiplying (2.9) by \(u_{\varepsilon t}\), we have
$$ \begin{gathered} \iint _{{Q_{T}}} \vert u_{\varepsilon t} \vert ^{2} \,dx\,dt \\ \quad = \sum_{i=1}^{N} \iint _{{Q_{T}}}\frac{\partial }{\partial x_{i}} \bigl[ \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+ \varepsilon \bigr)^{\frac{p - 2}{2}}u_{\varepsilon x_{i}} \\ \qquad {}+ \bigl(b(x)+ \varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{ \frac{q- 2}{2}}u_{\varepsilon x_{i}} \bigr] u_{\varepsilon t}\,dx\,dt \\ \qquad {}+\sum_{i=1}^{N} \iint _{{Q_{T}}}u_{\varepsilon t} \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}}\,dx\,dt . \end{gathered} $$
(3.23)
For every term in (1.7), firstly, we have
$$ \begin{aligned} &\sum_{i=1}^{N} \iint _{Q_{T}} \frac{\partial }{\partial x_{i}} \bigl( \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{p - 2}{2}}u_{ \varepsilon x_{i}} \bigr) u_{\varepsilon t}\,dx\,dt \\ &\quad = - \sum_{i=1}^{N} \iint _{Q_{T}} \bigl(a(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{p - 2}{2}}u_{ \varepsilon x_{i}} u_{\varepsilon x_{i} t}\,dx\,dt \\ &\quad = -\frac{1}{2}\sum_{i=1}^{N} \iint _{Q_{T}} \bigl(a(x)+\varepsilon \bigr) \frac{d}{dt} \int _{0}^{ \vert \nabla u_{\varepsilon } \vert ^{2}+ \varepsilon } s^{\frac{p - 2}{2}}\,ds \,dx\,dt \end{aligned} $$
(3.24)
and
$$ \begin{aligned} &\sum_{i=1}^{N} \iint _{Q_{T}} \frac{\partial }{\partial x_{i}} \bigl( \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q- 2}{2}}u_{ \varepsilon x_{i}} \bigr) u_{\varepsilon t}\,dx\,dt \\ &\quad = - \sum_{i=1}^{N} \iint _{Q_{T}} \bigl(b(x)+\varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+\varepsilon \bigr)^{\frac{q- 2}{2}}u_{ \varepsilon x_{i}} u_{\varepsilon x_{i} t}\,dx\,dt \\ &\quad = -\frac{1}{2}\sum_{i=1}^{N} \iint _{Q_{T}} \bigl(b(x)+\varepsilon \bigr) \frac{d}{dt} \int _{0}^{ \vert \nabla u_{\varepsilon } \vert ^{2}+ \varepsilon } s^{\frac{q - 2}{2}}\,ds \,dx\,dt. \end{aligned} $$
(3.25)
Secondly, if \(\int _{\Omega }a(x)^{-\frac{2}{p-2}}(x)\,dx<\infty \), by the Hölder inequality, we have
$$ \begin{gathered} \iint _{Q_{T}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt \\ \quad = c \iint _{Q_{T}} a(x)^{-\frac{2}{p}} a(x)^{\frac{2}{p}} \vert \nabla u_{ \varepsilon } \vert ^{2}\,dx\,dt \\ \quad \leq c \biggl( \iint _{Q_{T}} a(x)^{-\frac{2}{p- 2}}\,dx\,dt \biggr)^{ \frac{p- 2}{p}} \biggl( \iint _{Q_{T}} a(x) \vert \nabla u_{ \varepsilon } \vert ^{p}\,dx\,dt \biggr)^{\frac{2}{p}} \\ \quad \leq c. \end{gathered} $$
(3.26)
Similarly, if \(\int _{\Omega }b(x)^{-\frac{2}{q-2}}(x)\,dx<\infty \), we have
$$ \begin{gathered} \iint _{Q_{T}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt \\ \quad = c \iint _{Q_{T}} b(x)^{-\frac{2}{q}} b(x)^{\frac{2}{q}} \vert \nabla u_{ \varepsilon } \vert ^{2}\,dx\,dt \\ \quad \leq c \biggl( \iint _{Q_{T}} b(x)^{-\frac{2}{q- 2}}\,dx\,dt \biggr)^{ \frac{q- 2}{q}} \biggl( \iint _{Q_{T}} b(x) \vert \nabla u_{ \varepsilon } \vert ^{q}\,dx\,dt \biggr)^{\frac{2}{q}} \\ \quad \leq c. \end{gathered} $$
(3.27)
Thirdly, we have
$$ \begin{gathered} \sum_{i=1}^{N} \iint _{Q_{T}} u_{\varepsilon t} \frac{\partial f_{i}(u_{\varepsilon },x,t)}{\partial x_{i}}\,dx\,dt \\ \quad \leqslant \sum_{i=1}^{N} \iint _{Q_{T}} \bigl\vert f_{iu_{\varepsilon }}(u_{\varepsilon },x,t) \bigr\vert \vert u_{\varepsilon x_{i}} \vert \vert u_{\varepsilon t} \vert \,dx\,dt \\ \qquad {}+ \sum_{i=1}^{N}+ \iint _{Q_{T}} \bigl\vert f_{ix_{i}}(u_{\varepsilon }, x,t) \bigr\vert \vert u_{\varepsilon t} \vert \,dx\,dt \\ \quad \leqslant \frac{1}{2} \iint _{Q_{T}} \vert u_{\varepsilon t} \vert ^{2} \,dx\,dt + c \iint _{Q_{T}} \vert \nabla u_{\varepsilon } \vert ^{2}\,dx\,dt +c. \end{gathered}$$
(3.28)
Combining inequalities (3.24)–(3.28) with (3.23), we can extrapolate that
$$ \begin{aligned} & \iint _{{Q_{T}}} \vert u_{\varepsilon t} \vert ^{2} \,dx\,dt+ \iint _{{Q_{T}}} \bigl(a(x)+\varepsilon \bigr)\frac{d}{dt} \int _{0}^{ \vert \nabla u_{ \varepsilon } \vert ^{2}+\varepsilon }s^{\frac{p-2}{2}}\,ds \,dx\,dt \\ &\qquad {}+ \iint _{{Q_{T}}}b(x)\frac{d}{dt} \int _{0}^{ \vert \nabla u_{ \varepsilon } \vert ^{2}+\varepsilon }s^{\frac{q-2}{2}}\,ds \,dx\,dt \\ &\quad \leqslant c, \end{aligned} $$
and so
$$ \begin{aligned} & \iint _{{Q_{T}}} \vert u_{\varepsilon t} \vert ^{2} \,dx\,dt \\ &\quad \leq c + c \int _{\Omega } \bigl(a(x)+\varepsilon \bigr) \int _{0}^{ \vert \nabla u_{ \varepsilon 0} \vert ^{2}+\varepsilon }s^{\frac{p-2}{2}}\,ds \,dx \\ &\qquad {}+c \int _{\Omega } \bigl(b(x)+\varepsilon \bigr) \int _{0}^{ \vert \nabla u_{\varepsilon 0} \vert ^{2}+\varepsilon }s^{\frac{q-2}{2}}\,ds\,dx \\ &\quad \leq c. \end{aligned} $$
(3.29)
According to the weak convergence theory, by (3.20), (3.21), (3.22), and (3.29), there exist a function u and two N-dimensional vector functions \(\overrightarrow{\zeta }=(\zeta _{1}, \ldots , \zeta _{N})\) and \(\overrightarrow{\xi }=(\xi _{1}, \ldots ,\xi _{N})\) such that
$$\begin{aligned}& u \in L^{\infty }(Q_{T}),\qquad \vert \zeta _{i} \vert \in L^{\frac{p}{p-1}}(Q_{T}),\qquad \vert \xi _{i} \vert \in L^{\frac{q}{q-1}}(Q_{T}), \\& u_{\varepsilon }\rightarrow u,\quad \text{a.e. in } Q_{T}, \\& {u_{\varepsilon }} \rightharpoonup * u, \quad \text{in } {L^{\infty }(Q_{T})}, \\& f_{i}(u_{\varepsilon },x,t)\rightarrow f_{i}(u,x,t), \quad \text{a.e. in } Q_{T}, \\& a(x) \vert \nabla u_{\varepsilon } \vert ^{p-2}u_{\varepsilon x_{i}} \rightharpoonup \zeta _{i}, \quad \text{in } L^{\frac{p}{p-1}}(Q_{T}), \\& b(x) \vert \nabla u_{\varepsilon } \vert ^{q-2}u_{\varepsilon x_{i}} \rightharpoonup \xi _{i}, \quad \text{in } L^{\frac{q}{q-1}}(Q_{T}). \end{aligned}$$
At last, it is not difficult to show that
$$ \begin{aligned} &\lim_{\varepsilon \rightarrow 0} \iint _{Q_{T}} \bigl(a(x)+ \varepsilon \bigr) \bigl(a(x)+ \varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+ \varepsilon \bigr)^{\frac{p - 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2} \nabla u_{\varepsilon }\nabla \varphi \,dx\,dt \\ &\qquad {}+\lim_{\varepsilon \rightarrow 0} \iint _{Q_{T}} \bigl(b(x)+\varepsilon \bigr) \bigl(a(x)+ \varepsilon \bigr) \bigl( \vert \nabla u_{\varepsilon } \vert ^{2}+ \varepsilon \bigr)^{ \frac{q - 2}{2}} \vert \nabla u_{\varepsilon } \vert ^{2}\nabla u_{\varepsilon } \nabla \varphi \,dx\,dt \\ &\quad = \iint _{Q_{T}}(\overrightarrow{\zeta }+\overline{\xi }) \cdot \nabla \varphi \,dx\,dt \\ &\quad = \iint _{Q_{T}} \bigl[a(x) \vert \nabla u \vert ^{p-2} \nabla u+b(x) \vert \nabla u \vert ^{q-2} \nabla u \bigr]\nabla \varphi \,dx\,dt \end{aligned} $$
for any given \(\varphi \in C_{0}^{1} ({Q_{T}})\). So \(u\in L^{p}(0,T; W^{1,p}_{\mathrm{loc}}(\Omega ))\cap L^{q}(0,T; W^{1,q}_{\mathrm{loc}}( \Omega ))\), and (2.6) is true.
In addition, we can choose the test function \(\varphi (x,t)=\chi _{[t_{1},t_{2}]}\phi (x)\) in which \(\phi (x)\in C_{0}^{\infty }(\Omega )\) and \(\chi _{[t_{1},t_{2}]}\) is the characteristic function of \([t_{1}, t_{2}]\subset (0,T)\). Then
$$ \begin{gathered} \int _{t_{1}}^{t_{2}} \int _{\Omega } \Biggl[ \bigl(a(x) \vert \nabla u \vert ^{p-2} \nabla u+b(x) \vert \nabla u \vert ^{q-2}\nabla u \bigr)\nabla \phi +\sum_{i=1}^{N}f_{i}(x,t,u) \phi (x) \Biggr]\,dx\,dt \\ \quad = \int _{\Omega } \bigl(u(x,t_{2})-u(x,t_{1}) \bigr)\phi (x)\,dx. \end{gathered} $$
Let \(t=t_{2}\) and \(t_{1}\rightarrow 0\). Then we have (2.7). Moreover, by the following proposition, u can be defined as the trace on the boundary ∂Ω, u is a solution of equation (1.1) with the initial-boundary value conditions (1.7)–(1.8). Theorem 2.4 is proved. □
Proposition 3.3
If \(u(x,t)\) is a weak solution of equation (1.1) with the initial value condition (1.4) and one of the following conditions is true:
(i)
$$ \int _{\Omega }a(x)^{-\frac{1}{p-1}}\,dx< \infty $$
(3.30)
(ii)
$$ \int _{\Omega }b(x)^{-\frac{1}{q-1}}\,dx< \infty , $$
(3.31)
then
$$ \int _{\Omega } \vert \nabla u \vert \,dx\leq c(T). $$
(3.32)
Proof
If (i) is true, then
$$\begin{aligned} \int _{\Omega } \vert \nabla u \vert \,dx =& \int _{ \{ x\in \Omega :a(x)^{ \frac{1}{p-1}} \vert \nabla u \vert \leqslant 1 \} } \vert \nabla u \vert \,dx \\ &{}+ \int _{ \{ x\in \Omega :a^{\frac{1}{p-1}} \vert \nabla u \vert > 1 \} } \vert \nabla u \vert \,dx \\ \leqslant &c \int _{\Omega } a(x)^{-\frac{1}{p-1}}\,dx+ \int _{\Omega } a(x) \vert \nabla u \vert ^{p}\,dx+c \\ \leqslant &c . \end{aligned}$$
Similarly, if (ii) is true, we also have (3.32). □