- Research
- Open Access
- Published:
Poly-central factorial sequences and poly-central-Bell polynomials
Advances in Difference Equations volume 2021, Article number: 505 (2021)
Abstract
In this paper, we introduce poly-central factorial sequences and poly-central Bell polynomials arising from the polyexponential functions, reducing them to central factorials and central Bell polynomials of the second kind respectively when \(k = 1\). We also show some relations: between poly-central factorial sequences and power of x; between poly-central Bell polynomials and power of x; between poly-central Bell polynomials and the poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomials.
1 Introduction
The central factorial numbers of the first and second kinds consist of the same kind of reciprocity as the corresponding polynomials for the Stirling numbers of the first and second kinds [20]. They have appeared in many different contexts as follows: the approximation theory [2], algebraic geometry [6, 20], and spectral theory of differential operators [7, 18]. The poly-exponential functions were reconsidered by Kim [9] in view of an inverse to the polylogarithm functions which were first studied by Hardy [8]. Kim et al. showed that the degenerate Daehee numbers of order k expressed the degenerate polyexponential functions in [13]. Furthermore, recently, Kim and Kim introduced the poly-Bell polynomials and the poly-Lah–Bell polynomials arising from polyexponential functions respectively in [16, 17]. With this in mind, we introduce poly-central factorial sequences and poly-central Bell polynomials arising from the polyexponential functions, reducing them to central factorials and central Bell polynomials of the second kind respectively when \(k = 1\). We also show some relations: between poly-central factorial sequences and power of x; between poly-central Bell polynomials and power of x; between poly-central Bell polynomials and the poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomials.
First, definitions and preliminary properties required in this paper are introduced.
The central factorial \(x^{[n]}\) is defined by
The central factorial \(x^{[n]}\) is given by the generating function
For any nonnegative integer n, the central factorial numbers of the first kind are given by
By (3), we easily get
where \(t \in \mathbb{C}\) with \(\vert t \vert < 1 \).
Let \(f(t) = 2\log (\frac{t}{2}+\sqrt{1+\frac{t^{2}}{4}} )\). Then
which is the compositional inverse of the function \(f(t)\).
From (4) and (5), the central factorial numbers of the second kind are given by
Riordan showed that the central factorial numbers of the second kind \(T(n,k)\) are the coefficients in the expansion of \(x^{n}\) in terms of central factorials given by
Kim and Kim introduced the central Bell polynomials \(B_{n}^{(c)}(x)\) defined by
and the central Bell numbers \(B_{n}^{(c)}\) by \(B_{n}^{(c)}(1)\), so that
From (6) and (8), we note that the generating function for the central Bell polynomials is
where \(B^{(c)}_{n} (x) = \sum_{k=0}^{n}T(n,k)x^{k}\) are the central polynomials Bell polynomials and \(B^{(c)}_{n} = B^{(c)}_{n} (1)\) are the central Bell numbers.
For \(n\geq 0\), the Stirling numbers of the first kind \(S_{1}(n,l)\) are the coefficients of \(x^{l}\) in
From (10), it is easy to see that
In the inverse expression to (10), for \(n\geq 0\), the nth power of x can be expressed in terms of the Stirling numbers of the second kind \(S_{2}(n,l)\) as follows:
From (12), it is easy to see that
The nth Bell number \(B_{n} \) (\(n\geq 0\)) is the number of ways to partition a set with n elements into nonempty subsets. The Bell polynomials are natural extensions of the Bell numbers as follows:
It is well known that the generating function of the Bell polynomials is given by
Now, as well established within academia, the ordinary Bernoulli polynomials \(b_{n}(x)\) and the Euler polynomials \(E_{n}(x)\), (\(n\in \mathbb{N}\cup \{0\}\)) are respectively defined by their generating functions as follows (see [3, 5]):
When \(x=0\), \(b_{n}=b_{n}(0)\) and \(E_{n} =E_{n}(0)\) are respectively called the Bernoulli numbers and the Euler numbers.
For \(r \in \mathbb{R}\), the type 2 Bernoulli polynomials of the second kind with order r are defined by the generating function
When \(x=0\), \(b_{n}^{*(r)}(0)\) are called the type 2 Bernoulli numbers of the second kind order r.
Kim and Kim introduced the modified polyexponential function as
When \(k=1\), we see that \(\mathrm{Ei}_{1}(x) = e^{x} - 1\).
Recently, the poly-Bell polynomials were introduced by
and \(\mathit{bel}_{0}^{(k)}(x)=1\).
When \(k=1\), from (15), we note that
From (20), we have
2 Poly-central factorial sequences and poly-central-Bell polynomials
In this section, we define poly-central factorial sequences and poly-central-Bell polynomials respectively by using the degenerate polylogarithm functions and give explicit expressions and recurrence formula of poly-central Bell polynomials.
First, we consider the poly-central factorial sequences \(x^{[n](k)}\), which are derived from the polyexponential function to be
When \(k=1\), since \(J_{1}(x)=e^{x}-1\), we note that
Therefore, by (22), we have \(x^{[n](1)}=x^{[n]}\).
Second, we define the poly-central-Bell polynomials \(B_{n}^{(c,k)}(x)\), which arise from the polyexponential function to be
When \(k=1\), since \(J_{1}(x)=e^{x}-1\), we note that
By (24), we have \(B_{n}^{(c,1)}(x) = B_{n}^{(c)}(x)\).
First, we observe relations of poly-falling factorial sequences and powers of x.
Theorem 1
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
where \(t(n,l)\) is the central factorial numbers of the first kind.
Proof
By (4) and (21), we observe that
Combining (21) with (25), we get the desired result. □
In Theorem 1, when \(k=1\), we note that
Theorem 2
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
Proof
By replacing t with \(e^{\frac{t}{2}}-e^{-\frac{t}{2}}\) in (21), from (18), the left-hand side of (21) is
On the other hand, from (6), the right-hand side of (21) is
Comparing with the coefficients of (26) and (27), we have the desired result. □
In Theorem 2, when \(k=1\), we note that
Theorem 3
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
Proof
From (6) and (23), we observe that
Combining (23) with (28), we get
□
In Theorem 3, when \(k=1\), we note that
Theorem 4
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
Proof
From (13) and (23), we observe that
Combining (23) with (29), we have the desired result. □
In Theorem 4, when \(k=1\), we note that
Theorem 5
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
where \(\mathit{bel}_{n}^{(k)}(x)\) are the poly-Bell polynomials.
Proof
Combining (23) with (30), we have the desired result. □
Theorem 6
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
where \(b_{n}^{*(l)}\) are the order l type 2 Bernoulli polynomials of the second kind.
Proof
By replacing t with \(2\log (1+t)\) in (23), from (11) and (17), the left-hand side of (23) is
On the other hand, by (11), the right-hand side of (23) is
Since \(S_{1}(n,0)=0\) for \(n\geq 1\), by comparing with the coefficients of (31) and (32), we have the desired result. □
Theorem 7
For \(k \in \mathbb{Z}\) and \(n\geq 1\), we have
where \(b_{n}\) are the ordinary Bernoulli numbers and \(E_{n}\) are the ordinary Euler numbers.
Proof
Differentiating with respect to t in (23), the left-hand side of (23) is
On the other hand, the right-hand side of (23) is
Combining (33) with (34), we get
By (36), we have
By comparing with the coefficients of both sides of (37), we have the desired result. □
3 Further remark
Let \(r \in \mathbb{N}\cup \{0\}\), the r-Stirling numbers \(S_{2,r}(n,j)\) of the second kind are given by
In view of (14), the r-Bell polynomials are given by
From (38), it is easy to show that the generating function of degenerate r-Bell polynomials is given by
When \(x=1\), \(\mathit{bel}_{n}^{(r)}(\lambda ) = \mathit{bel}_{n}^{(r)}(1\vert \lambda )\) which are called the degenerate r-Bell numbers.
We can define the extended poly-Bell polynomials \(\mathfrak{Bel}_{n,\lambda }^{(k)}(x)\), which are derived from the polyexponential function to be
When \(x=1\), \(\mathfrak{Bel}_{n}^{(k)} = \mathfrak{Bel}_{n}^{(k)}(1)\) which are called the extended poly-Bell numbers.
When \(k=1\), we note that
In particular, when \(r=-\frac{1}{2}\), \(\mathfrak{Bel}_{n,-\frac{1}{2}}(x) = B_{n}^{(c)}(x)\).
Theorem 8
For \(n\geq 1\), we have
Proof
From (13) and (41), we observe that
4 Conclusion
To summarize, we introduced poly-central factorial sequences and poly-central Bell polynomials in terms of the polyexponential functions, reducing them to central factorials and central Bell polynomials of the second kind respectively when \(k = 1\). We derived relations between poly-central factorial sequences and power of x in Theorems 1, 2. We also obtained relations between poly-central Bell polynomials and power of x in Theorems 3, 4. In addition, we showed several identities between poly-central Bell polynomials and poly-Bell polynomials; between poly-central Bell polynomials and higher order type 2 Bernoulli polynomials of second kind; recurrence formula of poly-central Bell polynomials in Theorems 5, 6, 7.
To conclude, there are various methods for studying special polynomials and numbers, including: generating functions, combinatorial methods, umbral calculus, differential equations, and probability theory [2, 4–7, 18–20]. We are now interested in continuing our research into the application of ‘poly’ versions of certain special polynomials and numbers in the fields of physics, science, and engineering as well as mathematics.
Availability of data and materials
This paper does not use data and materials.
References
Bayad, A., Hamahata, Y.: Polylogarithms and poly-Bernoulli polynomials. Kyushu J. Math. 65(1), 15–24 (2012)
Butzer, P.L., Schmidt, M., Stark, E.L., Vogt, L.: Central factorial numbers; their main properties and some applications. Numer. Funct. Anal. Optim. 10(5–6), 419–488 (1989)
Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)
Charalambides, C.A.: Central factorial numbers and related expansions. Fibonacci Q. 19, 451–456 (1981)
Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974)
Eastwood, M., Goldschmidt, H.: Zero-energy fields on complex projective space. J. Differ. Geom. 94(1), 1–186 (2013)
Everitt, W.N., Kwon, K.H., Littlejohn, L.L., Wellman, R., Yoon, G.J.: Jacobi–Stirling numbers, Jacobi polynomials, and the left-definite analysis of the classical Jacobi differential expression. J. Comput. Appl. Math. 208, 29–56 (2007)
Hardy, G.H.: On a class analytic functions. Proc. Lond. Math. Soc. (2) 3(1), 441–460 (1905)
Kim, D.S., Kim, T.: A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 26(1), 40–49 (2019)
Kim, T.: A note on central factorial numbers. Proc. Jangjeon Math. Soc. 21, 575–588 (2018)
Kim, T., Kim, D.S.: A note on central Bell numbers and polynomials. Russ. J. Math. Phys. 27(1), 76–81 (2020)
Kim, T., Kim, D.S., Dolgy, D.V., Lee, S.-H., Kwon, J.: Some identities of the higher-order type 2 Bernoulli numbers and polynomials of the second kind. Comput. Model. Eng. Sci. 128(3), 1121–1132 (2021)
Kim, T., Kim, D.S., Kim, H.Y., Kwon, J.: Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 311 (2020)
Kim, T., Kim, D.S., Kwon, J.K., Lee, H.S.: Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 168 (2020)
Kim, T., Kim, D.S., Lee, H., Park, J.-W.: A note on degenerate r-Stirling numbers. J. Inequal. Appl. 2020, 225 (2020)
Kim, T., Kim, H.K.: Degenerate poly-Bell polynomials and numbers. Adv. Differ. Equ. 2021, 361 (2021)
Kim, T., Kim, H.K.: Degenerate poly-Lah Bell polynomials and numbers. https://doi.org/10.13140/RG.2.2.19672.83208
Loureiro, A.F.: New results on the Bochner condition about classical orthogonal polynomials. J. Math. Anal. Appl. 364, 307–323 (2010)
Riordan, J.: Combinatorial Identities. Wiley, New York (1968)
Shadrin, S., Spitz, L., Zvonkine, D.: On double Hurwitz numbers with completed cycles. J. Lond. Math. Soc. 86(2), 407–432 (2012)
Acknowledgements
The authors would like to thank Jangjeon Institute for Mathematical Science for the support of this research.
Funding
This work was supported by the Basic Science Research Program, the National Research Foundation of Korea (NRF-2021R1F1A1050151).
Author information
Authors and Affiliations
Contributions
TK and HKK conceived the framework and structured the whole paper; HKK wrote the whole paper. TK and HKK checked the results of the paper and completed the revision of the article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
The authors reveal that there is no ethical problem in the production of this paper.
Consent for publication
The authors want to publish this paper in this journal.
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Kim, H.K., Kim, T. Poly-central factorial sequences and poly-central-Bell polynomials. Adv Differ Equ 2021, 505 (2021). https://doi.org/10.1186/s13662-021-03663-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03663-8
MSC
- 11B73
- 11B83
- 05A19
Keywords
- Central factorials
- Central-Bell polynomials and numbers
- Modified polyexponential functions
- Stirling numbers of the first and second kind
- Type 2 Bernoulli polynomials of the second kind