Now we study the limit points of the sequences \(\{u_{n}\}\) and \(\psi (u_{n})\) as \(n\rightarrow \infty \).
Proposition 5.1
Suppose that (1.1), \((R)\), and (G) are satisfied. Let \(u_{n}\) be the solution of the approximating problem \((P_{n})\). Then there exist a subsequence \(\{u_{n_{k}}\}\subseteq \{ u_{n}\}\), \(v\in L^{2}((0,T),H^{1}_{0}(\Omega ))\cap L^{\infty }((0,T),H^{1}_{0}( \Omega ))\cap L^{\infty }(Q)\) and \(v_{t}\in L^{2}(Q)\) such that
$$\begin{aligned}& \psi (u_{n_{k}})\rightharpoonup v\quad \textit{in } L^{1}(Q), \end{aligned}$$
(5.1)
$$\begin{aligned}& \bigl[\psi (u_{n_{k}})\bigr]_{x}\rightharpoonup v_{x}\quad \textit{in } L^{2}(Q), \end{aligned}$$
(5.2)
$$\begin{aligned}& \bigl[\psi (u_{n_{k}})\bigr]_{t}\rightharpoonup v_{t}\quad \textit{in } L^{2}(Q), \end{aligned}$$
(5.3)
$$\begin{aligned}& \psi (u_{n_{k}})\rightarrow v\quad \textit{a.e. in } Q. \end{aligned}$$
(5.4)
Proof
By using Holder’s inequality
$$\begin{aligned} \int _{Q} \bigl\vert \bigl[\psi (u_{n}) \bigr]_{x} \bigr\vert \,dx\,dt&\leq \biggl[ \int _{Q} \frac{ \vert [\psi (u_{n})]_{x} \vert ^{2}}{(1+\psi (u_{n}))^{2}}\,dx\,dt \biggr]^{\frac{1}{2}} \biggl[ \int _{Q}\bigl(1+\psi (u_{n}) \bigr)^{2}\,dx\,dt \biggr]^{\frac{1}{2}} \\ &\leq C \biggl[ \int _{Q} \bigl\vert \bigl[\psi (u_{n}) \bigr]_{x} \bigr\vert ^{2}\,dx\,dt \biggr]^{ \frac{1}{2}}. \end{aligned}$$
From estimate (4.9), there exists a positive constant \(C>0\) such that
$$ \int _{Q} \bigl\vert \bigl[\psi (u_{n}) \bigr]_{x} \bigr\vert \,dx\,dt\leq C. $$
According to Proposition 4.2, assumption (G), and (4.8), we infer that
$$\begin{aligned}& \bigl\Vert \psi (u_{n}) \bigr\Vert _{BV(Q)}= \bigl\Vert \psi (u_{n}) \bigr\Vert _{L^{1}(Q)}+ \bigl\Vert \bigl[\psi (u_{n})\bigr]_{x} \bigr\Vert _{L^{1}(Q)} + \bigl\Vert \bigl[\psi (u_{n})\bigr]_{t} \bigr\Vert _{L^{1}(Q)}\leq C. \end{aligned}$$
By [43, Chap. 3, Sect. 3.1, Theorem 3.23, and Theorem 3.9], convergence (5.1) holds. However, convergence (5.2) is the consequence of estimate (4.9). By Proposition 4.2, the sequence \(\{ [\psi (u_{n})]_{t} \} \) is bounded in \(L^{2}((0,T),H^{-1}(\Omega ))+L^{1}(Q)\), then there exist a subsequence denoted again \(\{u_{n_{k}}\}\subseteq \{ u_{n}\}\) and \(v^{*}\in L^{2}((0,T),H^{1}_{0}(\Omega ))\cap L^{\infty }(Q)\) such that
$$ \psi (u_{n_{k}})\rightarrow v^{*}\quad \text{a.e. in } Q $$
(see [26, Proposition 4.2]). Furthermore, by [7, Proposition 5.1] (5.3) holds true, and then we have
$$ \psi (u_{n_{k}})\rightarrow v\quad \text{a.e. in } Q, $$
(5.5)
with \(v=v^{*}\), which leads to (5.4) being satisfied. □
Proposition 5.2
Assume that (1.1), \((R)\), and (G) are satisfied. Let \(u_{n}\) be the weak solution of problem \((P_{n})\). Then there exist a subsequence \(\{u_{n_{k}}\}\) and \(u\in L^{\infty }((0,T),\mathcal{M}^{+}(\Omega ))\) such that
$$ u_{n_{k}}\overset{*}{\rightharpoonup }u \quad \textit{in } \mathcal{M}^{+}(Q). $$
(5.6)
Moreover, there exists a decreasing sequence \(\{A_{k}\}\subset Q\) of Lebesgue measurable sets with \(| A_{k}| \rightarrow 0\) as \(k\rightarrow \infty \) such that
$$ u_{n_{k}}\chi _{Q\backslash A_{k}}\rightharpoonup u_{b}:= \int _{[0,+ \infty )}\lambda \,d\tau _{(x,t)}(\lambda )\quad \textit{in } L^{1}(Q), $$
(5.7)
where \(\tau \in \mathcal{Y}(Q,\mathbb{R})\) is the Young measure associated with \(\{u_{n_{k}}\}\) and
$$ u_{n_{k}}\overset{*}{\rightharpoonup }\mu :=u-u_{b}\quad \textit{in } \mathcal{M}^{+}(Q). $$
(5.8)
Proof
By (4.5) and Proposition 4.2, we apply the compactness theorem given by [27], then there exist \(u\in \mathcal{M}^{+}(Q)\) and a subsequence \(\{u_{n_{k}}\}\) such that \(u_{n_{k}}\overset{*}{\rightharpoonup }u \) in \(\mathcal{M}^{+}(Q)\). As argued in [1, 10, 28], we obtain \(u\in L^{\infty }((0,T),\mathcal{M}^{+}(\Omega ))\). Since (4.5) and the compactness result implies that \(\{u_{n_{k}}\}\) is bounded in \(L^{1}(Q)\). By Proposition 2.2, there exist a sequence of \(\{u_{n_{k}}\}\subseteq \{u_{n}\}\) and a Young measure \(\tau \in \mathcal{Y}(Q,\mathbb{R})\), and from Proposition 2.3 [Bitting Theorem], there exists a sequence of measure sets \(A_{k}\subseteq Q\), \(A_{k}\subseteq A_{k+1}\) and \(| A_{k}| \rightarrow 0\) such that
$$ u_{n_{k}}\chi _{Q\backslash A_{k}}\rightharpoonup u_{b}:= \int _{[0,+ \infty )}\lambda \,d\tau _{(x,t)}(\lambda )\quad \text{in } L^{1}(Q), $$
(5.9)
where \(u_{b}\in L^{1}(Q)\), \(u_{b}\geq 0\) is a barycenter of the limiting Young measure τ associated with the subsequence \(\{u_{n_{k}}\}\). Moreover, repeating the same proof, we show that \(\operatorname{supp} \tau _{(x,t)}\subseteq [0,+\infty )\) and \(\tau _{(x,t)}=\tau _{(x,t)}\llcorner [0,+\infty )\) for almost everywhere \((x,t)\in Q\), where \(\tau _{(x,t)}\) is the disintegration of the Young measure τ.
By (4.5) and the compactness result, the sequence \(\{u_{n_{k}}\chi _{Q\backslash A_{k}}\}\) is uniformly bounded in \(L^{1}(Q)\). Therefore, there exists a Radon measure \(\mu \in \mathcal{M}^{+}(Q)\) such that \(u_{n_{k}}\overset{*}{\rightharpoonup }\mu \) in \(\mathcal{M}^{+}(Q)\). Finally, the sequence \(u_{n_{k}}\) is of \(u_{n_{k}}=u_{n_{k}}\chi _{A_{k}}+u_{n_{k}}\chi _{Q\backslash A_{k}} \overset{*}{\rightharpoonup }\mu + u_{b}\) in \(\mathcal{M}^{+}(Q)\). Hence \(\mu :=u-u_{b}\) in \(\mathcal{M}^{+}(Q)\) holds true. □
Proposition 5.3
Let \(u_{n_{k}}\), \(u_{b}\in L^{\infty }((0,T),L^{1}(\Omega ))\) and \(\mu \in L^{\infty }((0,T),\mathcal{M}^{+}(\Omega ))\) be respectively the subsequence, function, and the measure given in Proposition 5.2. Then there exist a zero Lebesgue measure set \(\mathcal{N}\subset (0,T)\) and the subsequence (denoted again \(\{u_{n_{k}}\}\) such that, for any \(t\in (0,T)\backslash \mathcal{N}\), there holds
$$ u_{n_{k}}(\cdot ,t)\overset{*}{\rightharpoonup }\mu (\cdot ,t)+ u_{b}( \cdot ,t)\quad \textit{in } \mathcal{M}^{+}( \Omega ). $$
(5.10)
Moreover, we get
$$ u_{n_{k}}(\cdot ,t)\overset{*}{\rightharpoonup }u(\cdot ,t)\quad \textit{ in } \mathcal{M}^{+}(\Omega ), $$
(5.11)
where \(u(\cdot ,t)=\mu (\cdot ,t)+ u_{b}(\cdot ,t)\) for any \(t\in (0,T)\backslash \mathcal{N}\).
Proof
This proof is similar to [1, Proposition 7.4], we argue this proof in two steps:
Step 1. Assume that \(h\in C^{2}(\mathbb{R}_{+})\) is such that
$$ \textstyle\begin{cases} h(s)\geq 0 &\text{if} \ s\geq 0, \\ h(s)=s-\varphi (s) &\text{if}\ s\geq 1. \end{cases} $$
For every \(\rho \in C^{2}_{c}(\Omega )\), set
$$ U^{\rho }_{h,k}(t):= \int _{\Omega }h(u_{n_{k}}) (x,t)\rho (x)\,dx. $$
Let us prove that
$$ \lim_{k\rightarrow \infty } \int _{0}^{T} \biggl\vert U^{\rho }_{h,k}(t)- \int _{\Omega }h^{*}(x,t)\rho (x)\,dx - \bigl\langle \mu (\cdot ,t), \rho \bigr\rangle _{\Omega } \biggr\vert \,dt=0, $$
(5.12)
where \(h^{*}\in L^{\infty }((0,T),L^{1}(\Omega ))\) is defined by
$$ h^{*}(x,t)= \int _{[0,+\infty )}h(\lambda )\,d\tau _{(x,t)}(\lambda ) \quad \text{a.e.} (x,t)\in Q. $$
(5.13)
By (4.5), we obtain that
$$ \bigl\Vert U^{\rho }_{h,k}(t) \bigr\Vert _{L^{\infty }(0,T)}\leq C \Vert \rho \Vert _{L^{\infty }(\Omega )} \Vert u_{n_{k}} \Vert _{L^{\infty }((0,T),L^{1}(\Omega ))}. $$
(5.14)
The purpose of this step is to prove \(U^{\rho }_{h,k}\in W^{1,1}(0,T)\) for every k.
In fact, the weak derivative of \(U^{\rho }_{h,k}\) is given by
$$ \frac{d}{\,dt}U^{\rho }_{h,k}(t)=- \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[ \rho (x) h'(u_{n_{k}}) \bigr]_{x}\,dx+ \int _{\Omega }f(u_{n_{k}})h'(u_{n_{k}}) \rho (x) \,dx. $$
Hence, there holds
$$\begin{aligned} \int _{0}^{T} \biggl\vert \frac{d}{\,dt}U^{\rho }_{h,k}(t) \biggr\vert \,dt\leq{}& \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) h'(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt \\ &{}+ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}})h'(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt. \end{aligned}$$
(5.15)
Since \(h'\) is bounded and \(h''\) is compactly supported in \(\mathbb{R}_{+}\), by (4.8), (4.9), (4.11), and assumption (G), we may estimate each term of (5.15), then one has
$$\begin{aligned} \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) h'(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt\leq{}& \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert \bigl\vert h'(u_{n_{k}}) \bigr\vert \bigl\vert \rho '(x) \bigr\vert \,dx\,dt \\ &{}+ \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert ^{2} \frac{h''(u_{n_{k}})}{\psi '(u_{n_{k}})}\,dx\,dt. \end{aligned}$$
It follows that
$$\begin{aligned}& \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) h'(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt \\& \quad \leq \bigl\Vert h'(u_{n_{k}}) \bigr\Vert _{L^{\infty }( \mathbb{R}_{+})} \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert \bigl\vert \rho '(x) \bigr\vert \,dx\,dt \\& \qquad {}+C(\beta ) \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert ^{2} \frac{ \vert \psi ''(u_{n_{k}}) \vert }{\psi '(u_{n_{k}})}\,dx\,dt. \end{aligned}$$
(5.16)
By assumption (G)-(iii) and (4.9), there exists a positive constant \(C_{\rho }=C(\rho )\) such that
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) h'(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt\leq C_{\rho }. $$
(5.17)
On the other hand, we have
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}})h'(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt\leq L \Vert \rho \Vert _{L^{\infty }(\Omega )} \bigl\Vert h'(u_{n_{k}}) \bigr\Vert _{L^{\infty }(\mathbb{R}_{+})} \int _{Q}u_{n_{k}}\,dx\,dt. $$
Accordingly, there exists a positive constant \(\widetilde{C}_{\rho }=\widetilde{C}(\rho )\) such that
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}})h'(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt\leq \widetilde{C}_{\rho }. $$
(5.18)
In view of (5.15)–(5.18), the sequence \(\{U^{\rho }_{h,k}\}\) is uniformly bounded in \(W^{1,1}(0,T)\), whence relatively compact in \(L^{1}(0,T)\). In particular, there exists a subsequence \(\{U^{\rho }_{h,k_{j}}\}\) depending on ρ and h, where a function \(U^{\rho }_{h}\in L^{1}(0,T)\) is such that
$$ U^{\rho }_{h,k_{j}}\rightarrow U^{\rho }_{h} \quad \text{in } L^{1}(0,T) \quad \text{as}\ j \rightarrow \infty . $$
(5.19)
Since we have
$$ \varphi (s)=s-h(s)\quad (s\in \mathbb{R}_{+}), $$
(5.20)
where \(\varphi \in C(\mathbb{R}_{+})\cap L^{\infty }(\mathbb{R}_{+})\) (see assumption \((H)\)). By Proposition 2.2, we have
$$ \varphi (u_{n_{k}})\overset{*}{\rightharpoonup }\varphi ^{*}\quad \text{in } L^{\infty }(Q), $$
(5.21)
where \(\varphi ^{*}\) is defined by
$$ \varphi ^{*}(x,t)= \int _{[0,+\infty )}\varphi (\lambda )\,d\tau _{(x,t)}( \lambda )\quad \bigl(\text{a.e.}\ (x,t)\in Q\bigr). $$
(5.22)
In particular, combining (5.21) with (5.8), one has
$$ h(u_{n_{k}})=u_{n_{k}}-\varphi (u_{n_{k}})\overset{*}{\rightharpoonup }(u_{b}+ \mu )-\varphi ^{*}\quad \text{in } \mathcal{M}^{+}(Q), $$
where \(u_{b}\in L^{\infty }((0,T),L^{1}(\Omega ))\) and \(\mu \in L^{\infty }((0,T),\mathcal{M}^{+}(\Omega ))\) are respectively the function and measure in Proposition 5.2, and so
$$ u_{b}-\varphi ^{*}= \int _{[0,+\infty )} \bigl(\lambda -\varphi ( \lambda ) \bigr)\,d\tau _{(x,t)}(\lambda ) = \int _{[0,+\infty )}h( \lambda )\,d\tau _{(x,t)}(\lambda )=h^{*}(x,t)\quad \text{a.e.}\ (x,t) \in Q. $$
Moreover, we obtain
$$\begin{aligned} \lim_{k\rightarrow \infty } \int _{0}^{T}\xi (t)U^{\rho }_{h,k}(t)\,dt&= \lim_{k\rightarrow \infty } \int _{Q}h(u_{n_{k}})\rho (x)\xi (t)\,dx\,dt \\ &= \int _{Q}h^{*}(x,t)\rho (x)\xi (t)\,dx\,dt+ \langle \mu ,\rho \xi \rangle _{Q} \\ &= \int _{0}^{T}\xi (t) \biggl( \int _{\Omega }h^{*}(x,t)\rho (x)\,dx+ \bigl\langle \mu (\cdot ,t), \rho \bigr\rangle _{\Omega } \biggr)\,dt, \end{aligned}$$
whence by (5.19) there holds
$$ U^{\rho }_{h}(t)= \int _{\Omega }h^{*}(x,t)\rho (x)\,dx+ \bigl\langle \mu ( \cdot ,t),\rho \bigr\rangle _{\Omega } $$
(5.23)
for every \(t\in (0,T)\backslash \mathcal{N}\).
Step 2: Assume that, for every \(\rho \in C^{2}_{c}(\Omega )\), set
$$ U^{\rho }_{k}(t)= \int _{\Omega }u_{n_{k}}(x,t)\rho (x)\,dx\quad \text{a.e.}\ t\in (0,T). $$
(5.24)
For h given in (5.20), we infer that
$$ U^{\rho }_{k}(t)=U^{\rho }_{h,k}(t)+U^{\rho }_{\varphi ,k}(t), $$
(5.25)
where \(U^{\rho }_{h,k}\) and \(U^{\rho }_{\varphi ,k}\) are defined in (5.11) and
$$ U^{\rho }_{\varphi ,k}(t):= \int _{\Omega }\varphi (u_{n_{k}}) (x,t)\rho (x)\,dx \quad \text{a.e.}\ t\in (0,T). $$
(5.26)
Based on Proposition 5.2 with (5.25), we will show the following convergence:
$$ U^{\rho }_{k}\rightarrow U^{\rho }\quad \text{in}\ L^{1}(0,T), $$
(5.27)
where
$$ U^{\rho }(t)= \int _{\Omega }\bigl(h^{*}(x,t)+\varphi ^{*}(x,t)\bigr)\rho (x)\,dx+ \bigl\langle \mu (\cdot,t),\rho \bigr\rangle _{\Omega }. $$
From (5.20), there holds
$$ h^{*}(x,t)+\varphi ^{*}(x,t)= \int _{[0,+\infty )} \bigl(h(\lambda )+ \varphi (\lambda ) \bigr)\,d\tau _{(x,t)}(\lambda ) = \int _{[0,+ \infty )}\lambda \,d\tau _{(x,t)}(\lambda )=u_{b}(x,t) $$
for \(\text{a.e.} (x,t)\in Q\).
To prove (5.27), we consider for every \(\rho \in C_{c}(\Omega )\) and \(\{\rho _{k}\}\subseteq C^{2}_{c}(\Omega )\) be any sequence such that \(\rho _{k}\rightarrow \rho \) uniformly in Ω̅, then we get
$$\begin{aligned} \int _{0}^{T} \bigl\vert U^{\rho }_{k}(t)-U^{\rho }(t) \bigr\vert \,dt\leq{}& \int _{0}^{T} \bigl\vert U^{\rho }_{k}(t)-U^{\rho _{j}}_{k}(t) \bigr\vert \,dt + \int _{0}^{T} \bigl\vert U^{\rho _{j}}_{k}(t)-U^{\rho _{j}}(t) \bigr\vert \,dt \\ &{}+ \int _{0}^{T} \bigl\vert U^{\rho _{j}}(t)-U^{\rho }(t) \bigr\vert \,dt. \end{aligned}$$
By Step 1, one has
$$ \int _{0}^{T} \bigl\vert U^{\rho _{j}}(t)-U^{\rho }(t) \bigr\vert \,dt\leq \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{0}^{T} \mu (\cdot ,t) (\Omega )\,dt+ \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })} \int _{Q}u_{b}(x,t)\,dx\,dt. $$
Therefore, we obtain
$$\begin{aligned}& \int _{0}^{T} \bigl\vert U^{\rho }_{k}(t)-U^{\rho }(t) \bigr\vert \,dt \\& \quad \leq \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{Q}u_{n_{k}}(x,t)\,dx\,dt+ \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{0}^{T} \mu (\cdot ,t) (\Omega )\,dt \\& \qquad {}+ \int _{0}^{T} \bigl\vert U^{\rho _{j}}_{k}(t)-U^{\rho _{j}}(t) \bigr\vert \,dt+ \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{Q}u_{b}(x,t)\,dx\,dt. \end{aligned}$$
(5.28)
By (4.5) and (5.28), one has
$$\begin{aligned} \limsup_{k\rightarrow \infty } \int _{0}^{T} \bigl\vert U^{\rho }_{k}(t)-U^{ \rho }(t) \bigr\vert \,dt\leq{}& C \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })}+ \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })} \int _{Q}u_{b}(x,t)\,dx\,dt \\ &{}+ \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })} \int _{0}^{T}\mu (\cdot ,t) (\Omega )\,dt. \end{aligned}$$
By letting \(j\rightarrow \infty \) in the above inequality, assertion (5.27) holds true. Therefore, for every ρ, there exist a subsequence denoted again by \(\{u_{n_{k}}\}\) and a zero Lebesgue measure set \(\mathcal{N}\subset (0,T)\) such that we get
$$ \lim_{k\rightarrow \infty } \int _{\Omega }u_{n_{k}}(t)\rho (x)\,dt= \int _{ \Omega }u_{b}(x,t)\rho (x)\,dx + \bigl\langle \mu (\cdot ,t),\rho \bigr\rangle _{\Omega } $$
(5.29)
for any \(t\in (0,T)\backslash \mathcal{N}\) and every \(\rho \in C_{c}(\Omega )\), hence (5.10) and (5.11). □
Proposition 5.4
Suppose that (1.1), (1.4), \((R)\), and (G) hold. Let μ be given by Proposition 5.2. Then there holds
$$ \psi (u_{n_{k}})\overset{*}{\rightharpoonup }\psi ^{*}+ \alpha \mu \quad \textit{in } \mathcal{M}^{+}(Q), $$
(5.30)
and
$$ f(u_{n_{k}})\overset{*}{\rightharpoonup }f^{*}+f'(+ \infty )\mu \quad \textit{in }\mathcal{M}^{+}(Q), $$
(5.31)
where \(f^{*} ,\psi ^{*}\in L^{\infty }((0,T),L^{1}(\Omega ))\) is defined by
$$ \psi ^{*}(x,t)= \int _{[0,+\infty )}\psi (\lambda )\,d\tau _{(x,t)}( \lambda ) \quad \textit{and}\quad f^{*}(x,t)= \int _{[0,+\infty )}f(\lambda )\,d\tau _{(x,t)}(\lambda ) $$
(3.4)
for a.e. in Q.
The proof of Proposition 5.4 is argued as in [14, Proposition 5.2] or [1, Lemma 8.3], for this reason we omit this proof.
Proposition 5.5
Assume that (1.1), (1.4), \((R)\), and (G) hold. Let μ be given by Proposition 5.2. Then there exist a zero Lebesgue measure set \(\mathcal{N}\subset (0,T)\) and a subsequence of \(\{u_{n_{k}}\}\) such that, for any \(t\in (0,T)\backslash \mathcal{N}\), there holds
$$ \psi (u_{n_{k}})\overset{*}{\rightharpoonup }\psi ^{*}( \cdot ,t)+ \alpha \mu (\cdot ,t)\quad \textit{in } \mathcal{M}^{+}( \Omega ) $$
(5.32)
and
$$ f(u_{n_{k}})\overset{*}{\rightharpoonup }f^{*}(\cdot ,t)+f'(+\infty ) \mu (\cdot ,t)\quad \textit{in } \mathcal{M}^{+}(\Omega ). $$
(5.33)
Proof
Let \(\tau \in \mathcal{Y}(Q,\mathbb{R})\) and \(\{u_{n_{k}}\}\) be respectively the Young measure and the subsequence associated with the sequence of Young measure \(\{\tau ^{n}\}\). For every \(\rho \in C_{c}(\overline{\Omega })\),
$$ G^{\rho }_{k}(t)= \int _{\Omega }\psi (u_{n_{k}}) (x,t)\rho (x)\,dx ,\quad \text{a.e.}\ t\in (0,T). $$
To prove convergence (5.32), it is enough to show that
$$ \lim_{k\rightarrow +\infty } \int _{0}^{T}G^{\rho }_{k}(t) \xi (t)\,dt= \int _{0}^{T}G^{\rho }(t)\xi (t)\,dt $$
(5.34)
for every \(\xi \in C^{1}_{c}(0,T)\), with
$$ G^{\rho }(t)= \int _{\Omega }\psi ^{*}(x,t))\rho (x)\,dx+\alpha \int _{ \Omega }\mu (\cdot ,t)\rho (x)\,dx $$
(5.35)
and \(\mu (\cdot ,t)\in \mathcal{ M}^{+}(\Omega )\) and \(\psi ^{*}\in L^{\infty }(Q)\) given by (3.4). From assumption (G) and (1.1), the function \(\psi \in C^{2}(\mathbb{R}_{+})\), and for any \(\rho \in C^{1}_{c}(\Omega )\), for every \(k\in \mathbb{N}\), there holds
$$ \bigl\Vert G^{\rho }_{k} \bigr\Vert _{L^{\infty }(0,T)} \leq C \bigl\Vert \psi (u_{n_{k}}) \bigr\Vert _{L^{1}(Q)} \Vert \rho \Vert _{L^{ \infty }(\Omega )}. $$
(5.36)
Moreover, let us consider \(\rho \psi '(u_{n_{k}})\xi \). For every \(\xi \in C^{1}_{c}(0,T)\) as a test function in \((P_{n})\), there holds
$$\begin{aligned} \int _{0}^{T}\bigl[G_{k}^{\rho }(t) \bigr]_{t}\xi \,dx\,dt={}&{-} \int _{0}^{T}\xi (t) \biggl( \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) \psi '(u_{n_{k}}) \bigr]_{x}\,dx \biggr)\,dt \\ &{}+ \int _{0}^{T}\xi (t) \biggl( \int _{\Omega }f(u_{n_{k}}) \psi '(u_{n_{k}}) \rho (x) \,dx \biggr)\,dt, \end{aligned}$$
(5.37)
which leads to the fact that the weak derivation of \(G_{k}^{\rho }\in W^{1,1}(0,T)\) is such that
$$ \frac{d}{\,dt}G^{\rho }_{k}(t)=- \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[ \rho (x) \psi '(u_{n_{k}}) \bigr]_{x}\,dx+ \int _{\Omega }f(u_{n_{k}})\psi '(u_{n_{k}}) \rho (x) \,dx. $$
(5.38)
Since f, \(f'\), \(\psi '\), and \(\psi ''\) are continuous and uniformly bounded (see assumptions (G) and \((R)\)), then we have
$$\begin{aligned} \int _{0}^{T} \biggl\vert \frac{d}{\,dt}G^{\rho }_{k}(t) \biggr\vert \,dt\leq{}& \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) \psi '(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt \\ &{}+ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}}) \psi '(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt. \end{aligned}$$
(5.39)
By (4.8), (4.9), (4.11), and assumptions (G) and \((R)\), we may estimate each term of (5.39) as follows:
$$\begin{aligned} \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) \psi '(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt\leq{}& \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert \bigl\vert \psi '(u_{n_{k}}) \bigr\vert \bigl\vert \rho '(x) \bigr\vert \,dx\,dt \\ &{}+ \int _{Q} \bigl\vert \bigl[\psi (u_{n_{k}}) \bigr]_{x} \bigr\vert ^{2}\frac{\psi ''(u_{n_{k}})}{\psi '(u_{n_{k}})}\,dx\,dt. \end{aligned}$$
(5.40)
Therefore, there exists a positive constant \(C_{\rho }=C(\rho )\) such that
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }\bigl[\psi (u_{n_{k}}) \bigr]_{x}\bigl[\rho (x) \psi '(u_{n_{k}}) \bigr]_{x}\,dx \biggr\vert \,dt\leq C_{\rho }. $$
(5.41)
On the other hand, we have
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}})\psi '(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt\leq L \Vert \rho \Vert _{L^{\infty }(\Omega )} \bigl\Vert \psi '(u_{n_{k}}) \bigr\Vert _{L^{\infty }(\mathbb{R}_{+})} \int _{Q}u_{n_{k}}\,dx\,dt. $$
Accordingly, there exists a positive constant \(\widetilde{C}_{\rho }=\widetilde{C}(\rho )\) such that
$$ \int _{0}^{T} \biggl\vert \int _{\Omega }f(u_{n_{k}})\psi '(u_{n_{k}}) \rho (x)\,dx \biggr\vert \,dt\leq \widetilde{C}_{\rho }. $$
(5.42)
In view of (5.39)–(5.42), the sequence \(\{G^{\rho }_{h,k}\}\) is uniformly bounded in \(W^{1,1}(0,T)\), whence relatively compact in \(L^{1}(0,T)\). To achieve this proof, we consider for every \(\rho \in C_{c}(\Omega )\) and \(\{\rho _{k}\}\subseteq C^{2}_{c}(\Omega )\) be any sequence such that \(\rho _{k}\rightarrow \rho \) uniformly in Ω̅, then we get
$$\begin{aligned}& \int _{0}^{T} \bigl\vert G^{\rho }_{k}(t)-G^{\rho }(t) \bigr\vert \,dt \\& \quad \leq \int _{0}^{T} \bigl\vert G^{\rho }_{k}(t)-G^{\rho _{j}}_{k}(t) \bigr\vert \,dt + \int _{0}^{T} \bigl\vert G^{\rho _{j}}_{k}(t)-G^{\rho _{j}}(t) \bigr\vert \,dt + \int _{0}^{T} \bigl\vert G^{\rho _{j}}(t)-G^{\rho }(t) \bigr\vert \,dt \\& \quad \leq \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })} \int _{Q}\psi (u_{n_{k}}) (x,t)\,dx\,dt \\& \qquad {}+\alpha \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{0}^{T}\mu (\cdot ,t) (\Omega )\,dt+ \int _{0}^{T} \bigl\vert G^{\rho _{j}}_{k}(t)-G^{ \rho _{j}}(t) \bigr\vert \,dt. \end{aligned}$$
(5.43)
By (4.5) and (5.43), one has
$$\begin{aligned} \limsup_{k\rightarrow \infty } \int _{0}^{T} \bigl\vert G^{\rho }_{k}(t)-G^{ \rho }(t) \bigr\vert \,dt\leq{}& C \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })}+ \Vert \rho -\rho _{j} \Vert _{C( \overline{\Omega })} \int _{Q}\psi ^{*}(x,t)\,dx\,dt \\ &{}+\alpha \Vert \rho -\rho _{j} \Vert _{C(\overline{\Omega })} \int _{0}^{T}\mu (\cdot ,t) (\Omega )\,dt. \end{aligned}$$
By letting \(j\rightarrow \infty \) in the above inequality, assertion (5.32) holds true. We use a similar approach to prove convergence (5.33). Hence, we omit the proof of assertion (5.33). □
Remark 5.1
Since ψ is given in (1.1), assumption (H) and (5.8) hold, then there exists a subsequence of \(\{u_{n_{k}}\}\) (not relabeled) such that
$$ \psi (u_{n_{k}})\overset{*}{\rightharpoonup }\alpha u+\beta \varphi ^{*} \quad \text{in } \mathcal{M}^{+}(Q), $$
(5.44)
where \(\varphi ^{*}\) is defined by (5.22) and u is given in Proposition 5.2. Similarly, we get
$$ \psi (u_{n_{k}})\overset{*}{\rightharpoonup }\alpha u(\cdot ,t)+\beta \varphi ^{*}(\cdot ,t)\quad \text{in } \mathcal{M}^{+}(\Omega ), $$
(5.45)
where \(t\in (0,T)\backslash \mathcal{N}\).
Proposition 5.6
Suppose that (1.1), (1.4), \((R)\), and (G) hold. Let (5.8) be the Lebesgue decomposition of u. Then there holds
$$ u_{b}=u_{r}\quad \textit{a.e. in }Q ;\qquad \mu=u_{s}\quad \textit{a.e. in }\mathcal{M}^{+}(Q). $$
(5.46)
Moreover,
$$ \psi (u_{r})= \int _{[0,+\infty )}\psi (\lambda )\,d\tau _{(x,t)}( \lambda ) \quad \textit{and}\quad f(u_{r})= \int _{[0,+\infty )}f(\lambda )\,d\tau _{(x,t)}(\lambda ), $$
(5.47)
where \(u_{r}\in L^{\infty }((0,T),L^{1}(\Omega ))\) is the density of an absolutely continuous part of u.
Proof
Let us recall the definition of the weak solution to problem \((P_{n})\) with \(m\in \mathbb{N}\backslash \{0\}\) such that
$$ \int _{Q} \bigl\{ u_{n_{k}}^{m}\xi _{t}+\psi _{m}\bigl(u_{n_{k}}^{m} \bigr)\xi _{xx} \bigr\} \,dx\,dt+ \int _{Q}f_{m}\bigl(u_{n_{k}}^{m} \bigr)\xi \,dx\,dt= \bigl\langle u_{0n_{k}}^{m}, \xi (\cdot ,0) \bigr\rangle _{\Omega }, $$
(5.48)
whenever \(\psi _{m}(\lambda )=\psi (\lambda )\chi _{(-m,\frac{1}{m})}(\lambda )\) and \(f_{m}(\lambda )=f(\lambda )\chi _{(-m,\frac{1}{m})}(\lambda )\). From Proposition 5.2 – Proposition 5.4, the following assertions hold true:
$$\begin{aligned}& \lim_{n_{k}\rightarrow \infty } \int _{0}^{\overline{t}} \biggl\vert \int _{ \Omega }u_{n_{k}}^{m}\xi _{t}\,dx- \int _{\Omega }u_{b}^{m}\xi _{t}\,dx - \bigl\langle \mu (\cdot ,t),\xi _{t} \bigr\rangle _{\Omega } \biggr\vert \,dt=0, \end{aligned}$$
(5.49)
$$\begin{aligned}& \lim_{n_{k}\rightarrow \infty } \int _{0}^{\overline{t}} \biggl\vert \int _{ \Omega }\psi _{m}\bigl(u_{n_{k}}^{m} \bigr)\xi _{xx}\,dx- \int _{\Omega }\psi ^{*}_{m} \xi _{xx}\,dx - \bigl\langle \alpha \mu (\cdot ,t),\xi _{xx} \bigr\rangle _{\Omega } \biggr\vert \,dt=0, \end{aligned}$$
(5.50)
and
$$ \lim_{n_{k}\rightarrow \infty } \int _{0}^{\overline{t}} \biggl\vert \int _{ \Omega }f_{m}\bigl(u_{n_{k}}^{m} \bigr)\xi \,dx- \int _{\Omega }f^{*}_{m}\xi \,dx- \bigl\langle f'(+\infty )\mu (\cdot ,t),\xi \bigr\rangle _{\Omega } \biggr\vert \,dt=0, $$
(5.51)
where
$$\begin{aligned}& u_{b}^{m}(x,t)= \int _{[0,+\infty )}\lambda \chi _{(-m,\frac{1}{m})}( \lambda )\,d\tau _{(x,t)}(\lambda ) , \\& \psi ^{*}_{m}(x,t) = \int _{[0,+\infty )}\psi (\lambda )\chi _{(-m, \frac{1}{m})}(\lambda )\,d\tau _{(x,t)}(\lambda ), \end{aligned}$$
and
$$ f^{*}_{m}(x,t)= \int _{[0,+\infty )}f(\lambda )\chi _{(-m,\frac{1}{m})}( \lambda )\,d\tau _{(x,t)}(\lambda ) $$
belong to \(L^{\infty }((0,T),L^{1}(\Omega ))\). Since we assume that ξ is a solution to the backward parabolic equations \((\nu \cdot \alpha )\) such that \(\xi _{\nu }\in C(Q)\), we get
$$\begin{aligned}& \lim_{n_{k}\rightarrow \infty } \biggl[ \int _{\Omega \times (0, \overline{t})} \bigl\{ u_{n_{k}}^{m}\xi _{t}+\psi _{m}\bigl(u_{n_{k}}^{m} \bigr) \xi _{xx} \bigr\} \,dx\,dt + \int _{\Omega \times (0,\overline{t})}f_{m}\bigl(u_{n_{k}}^{m} \bigr) \xi \,dx\,dt \biggr] \\& \quad = \int _{\Omega \times (0,\overline{t})} \bigl\{ u_{b}^{m}(x,t) \xi _{t}(x,t)+ \psi _{m}^{*}(x,t)\xi _{xx}(x,t)+f_{m}^{*}(x,t)\xi (x,t) \bigr\} \,dx\,dt \\& \qquad{} + \int _{0}^{\overline{t}} \bigl\langle \mu (\cdot ,t),\xi _{\nu } \bigr\rangle _{\Omega } \end{aligned}$$
(5.52)
and
$$ \lim_{n_{k}\rightarrow \infty } \int _{\Omega }u^{m}_{0n_{k}}\xi ( \cdot ,0)\,dx= \int _{\Omega }u_{0r}\chi _{(-m,\frac{1}{m})}(u_{0r}) \xi ( \cdot ,0)\,dx + \int _{\Omega }u_{0s}\xi (\cdot ,0)\,dx. $$
(5.53)
Since, for all \(u\geq 0\), \(| \psi _{m}(u) | \leq (\alpha +\beta )u\chi _{(-m,\frac{1}{m})}(u)\) and \(| f_{m}(u) | \leq L u\chi _{(-m,\frac{1}{m})}(u)\), then \(| \psi _{m}^{*}(x,t) | \leq (\alpha +\beta )u_{b}^{m}\), where \(L:=\| f'(u) \| _{L^{\infty }(\mathbb{R}_{+})}\) and \(| f_{m}^{*}(x,t) | \leq L u_{b}^{m}\). Therefore, the following convergence holds: \(u_{b}^{m}\rightarrow 0\), \(\psi _{m}^{*}\rightarrow 0\), and \(f_{m}^{*}\rightarrow 0\) a.e. in Q as \(m\rightarrow \infty \). For all \(\overline{t}\in (0,T)\backslash \mathcal{N}\), with \(| \mathcal{N}| =0\). From (5.48)–(5.53), we deduce that
$$ \bigl\langle \mu (\cdot ,\overline{t}),\xi \bigr\rangle _{\Omega }= \int _{0}^{\overline{t}} \bigl\langle \mu (\cdot , \overline{t}),\xi _{ \nu } \bigr\rangle _{\Omega }\,dt+ \bigl\langle u_{0s},\xi (\cdot ,0) \bigr\rangle _{\Omega }. $$
Taking the test function \(\xi \in C([0,T],C_{0}^{1}(\Omega ))\) such that \(\xi _{\nu }=0\) in \(\Omega \times (0,\overline{t})\). Hence \(\mu (\cdot ,t)\) is singular with respect to the Lebesgue measure and \(\mu (\cdot ,t)=[\mu (\cdot ,t)]_{s}=u_{s}(\cdot ,\overline{t})\) for any \(\overline{t}\in (0,T)\backslash \mathcal{N}\). □