 Research
 Open Access
 Published:
On approximation of Bernstein–Chlodowsky–Gadjiev type operators that fix \(e^{2x}\)
Advances in Continuous and Discrete Models volume 2022, Article number: 2 (2022)
Abstract
that fix the function \(e^{2x} \) for \(x\geq 0 \). Then, we provide the approximation properties of these newly defined operators for different types of function spaces. In addition, we focus on the rate of convergence utilizing appropriate moduli of continuity. Then, we provide the Voronovskayatype theorem for these new operators. Finally, in order to validate our theoretical results, we provide some numerical experiments that are produced by a MATLAB complier.
1 Introduction
In approximation theory, the main target is to obtain the representation of an arbitrary function in terms of simpler and more useful functions. In 1912, Bernstein [12] gave the following definition, which was referred to by his name, for the proof of the Weierstrass approximation theorem. In more detail, Bernstein polynomials are defined as
for every bounded function on \([0,1] \), \(n\geq 1 \) and \(x\in [0,1] \). Bernstein polynomials have been an active study subject for more than a century with their useful structure and applications in many disciplines (physics, engineering sciences, computer technologies, etc.). In addition to these, a number of generalizations and modifications of Bernstein polynomials have been studied in the literature. Some of the main objectives in these generalizations and modifications can be said to move Bernstein polynomials over unbounded intervals, which allow us to approximate continuous functions on compact intervals, and to expand the class to which the desired function belongs. For example, Chlodowsky [16] moved polynomials from \([0,1] \) to \([0,p_{n}] \) \((p_{n}\rightarrow \infty , \frac{p_{n}}{n}\rightarrow 0) \) by obtaining a new modification of Bernstein polynomials. In detail, for \(n\geq 1 \) and \(x\geq 0 \), Chlodowsky introduced the following Bersteintype operators
where \((p_{n})_{n\geq 1} \) is a sequence of strictly positive real numbers such that
As can be seen, the operator given above is not a positive operator. For this reason, the following operators, called Berstein–Chlodowsky operators, are defined as
and were studied in [7, 11] in detail.
Another aim of the ongoing studies on Bernstein polynomials is to increase the speed of approximation and to decrease the number of errors that are the natural result of the approximation process. One of these studies was done by Gadjiev and Ghorbanalizadeh [17] in 2010. In this study, the authors defined the following operators
where \(\alpha _{1},\beta _{1}, \alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2} \leq \alpha _{1}\leq \beta _{2}\leq \beta _{1} \). In this study, the authors focused on the convergence properties of these operators in a moving interval as it enlarges to \([0,1] \). Motivating by this study, Aral and Acar [8] introduced a new interpretation of Bernstein–Chlodowsky–Gadjievtype linear positive operators as follows
where \(\alpha _{1},\beta _{1}, \alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2} \leq \alpha _{1}\leq \beta _{2}\leq \beta _{1} \), \(\alpha _{3}+\beta _{3}=1 \) and \(p_{n} \) are defined as above. Aral and Acar first studied the weighted approximation properties of these newly defined operators and showed their superior properties. Secondly, they focused on the derivative of these new operators and gave a weighted approximation theorem in Lipchits space.
On the other hand, King’s inspiration [25] made a tremendous impact on approximation theory and has been successfully applied to a number of wellknown sequences of operators. The main motivation of King was fixing the function \(x^{2} \) instead of function x for the classical Bernstein operators that approximate better compared to previous ones. Regarding King’s brilliant idea, the innovative papers presented by Acar et al. [1, 2], who introduced modified Szasz–Mirakyan operators preserving constants and \(e^{2ax}\), \(a>0 \). This idea has been the source of inspiration of a number of qualified papers in approximation theory and was successfully applied to several wellknown sequences of operators too. In more detail, in [13, 27], constant and \(e^{ax} \) for \(a>0 \), in [9, 10, 26], \(e^{ax} \) and \(e^{2ax} \) for \(a>0 \) have been preserved with modified version of some positive linear operators. Soon after, in [19, 20, 22], constant and \(e^{x} \), in [5, 19, 21], constant and \(e^{2x} \) were fixed in a similar manner. Regarding a similar motivation, the most recent paper is due to Acar et al. [4], who obtained a general class of linear positive approximation processes defined on bounded and unbounded intervals designed using an appropriate function and Voronovskayatype theorems.
This paper aims to introduce a modified version of Bernstein–Chlodowsky–GadjievType operators that preserve constant and \(e^{2x} \) for \(\alpha _{3}=0 \) and \(\beta _{3}=1 \). In the meantime, we present the approximation properties of these newly defined operators for both in spaces of continuous functions and in some weighted functions spaces. In addition to these, we provide a Voronoskayatype theorem for the newly defined Bernstein–Chlodowsky–GadjievType operator.
The overall structure of the paper takes the form of six sections including this section. The remainder of this work is organized as follows: In Sect. 2, the main facts and definitions are reviewed, while the new type Bernstein–Chlodowsky–GadjievType operators that fix the constant and \(e^{2x} \) are introduced in Sect. 3. In Sect. 4, the approximation properties of the newly define operators are provided. In Sect. 5, a Voronovskayatype theorem is given, while numerical experiments are given in Sect. 6. Some conclusions and further directions of research are discussed in Sect. 7.
2 Preliminaries
Throughout this and the next sections, we shall denote by \(\mathcal{S} \) the set of \([0,\infty ) \). We will use the notation \(C(\mathcal{S}) \) for the space of all continuous realvalued functions on \(\mathcal{S}\). In this manner, we shall use \(C_{b}(\mathcal{S}) \) for the space consisting of all bounded functions in \(C(\mathcal{S}) \). Additionally, let \(C_{*}(\mathcal{S}) \) and \(C_{0}(\mathcal{S}) \) be the Banach sublattices of all realvalued bounded continuous functions on \(\mathcal{S} \), (\(C_{b}(\mathcal{S}) \)), endowed with the natural order and the supremum norm \(\Vert \cdot \Vert _{\infty } \), which are
and
respectively.
Now, let us consider the weighted space
where \(\varpi _{k}(x)=\frac{1}{1+x^{k}}\) is the weight function for \(k\geq 1 \) and \(x\geq 0 \). It is clear that this weighted space is endowed with the norm
where \(f\in \Omega _{k}\) and its natural subspaces
and
It must be noted that \(C_{0}(\mathcal{S}) \) is dense in \(\Omega _{k}^{0} \) as a consequence of the Stone–Weierstrass theorem.
In addition, throughout this and the next sections, we consider a fixed real parameter \(\mu >0 \) and consider the exponential function \(f_{\mu } \) as
Additionally, as usual, we denote by \(e_{i} \) the polynomial functions defined by \(e_{i}(t)=t^{i} \) (\(t\geq 0 \), \(i\in \mathbb{N} \)).
Now, for convenience, to obtain the new operator for \(\alpha _{3}=0 \) and \(\beta _{3}=1 \), we need to deduce \(G^{\alpha ,\beta }_{n}(f_{\mu };x) \) for every \(n\geq 1 \) and \(x\leq p_{n} \), that is,
where \(\alpha _{1},\beta _{1},\alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2}\leq \alpha _{1} \leq \beta _{2}\leq \beta _{1} \). Hence, it can be easily deduced that for each \(f\in C_{*}(\mathcal{S}) \),
uniformly on \(\mathcal{S} \), under the given hypothesis,
3 Bernstein–Chlodowsky–Gadjievtype operators that fix \(e^{2x} \)
Now, we can introduce a general version of Bernstein–Chlodowsky–GadjievType operators that preserve the function \(f_{2} \). For that, first, we need to introduce a sequence \((s_{n})_{n\geq 1} \) of real functions such that the operators,
preserve the function \(f_{2}(x) \). Now, in order to construct a new operator that preserves \(f_{2}(x) \), we need to compute the \(s_{n}(x) \) with the help of (2.2), that is,
where \(\alpha _{1},\beta _{1},\alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2}\leq \alpha _{1} \leq \beta _{2}\leq \beta _{1} \), which yields,
for \(s_{n}(x) \leq p_{n} \). The point to be considered here is
Additionally, thanks to the fact that \(1e^{x}\leq x \) for \(x\geq \frac{p_{n}\alpha _{1}}{n+\beta _{1}} \), we can easily deduce that
and
where
for \(n\geq 1 \). In addition, with the help of (2.3), one can deduce that
Considering all of these, for each \(n\geq 1 \), \(x\geq 0 \) and \(f\in C_{*}(\mathcal{S})\), the new Bernstein–Chlodowsky–GadjievType Operators \((\mathcal{G}_{n}^{\alpha _{1},\beta _{1}})_{n\geq 1} \) can be defined as,
where \(\mathcal{I}_{n}= [p_{n}\frac{\alpha _{1}}{n+\beta _{1}},p_{n} \frac{n+\alpha _{1}}{n+\beta _{1}} ] \), \(\alpha _{1},\beta _{1}\in \mathbb{R} \) and \(0\leq \alpha _{1} \leq \beta _{1} \). The relation between the proposed operator and its classical counterpart is now observed as
Now, we can obtain the moments of the newly defined operators utilizing the abovementioned equalities.
Lemma 1
For each \(x\in I_{n}\) and \(n\in \mathbb{N} \), then the following identities hold:

(i)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(e_{0};x)=1 \),

(ii)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(e_{1};x)= \frac{p_{n}}{n+\beta _{1}} ( \alpha _{1}\alpha _{2}+s_{n}(x) \frac{n+\beta _{2}}{p_{n}} )=\frac{p_{n}}{n+\beta _{1}} (\alpha _{1}+n \frac{1e^{2p_{n} \alpha _{1}/n(n+\beta _{1})2x/n}}{1e^{2p_{n}/(n+\beta _{1})}} ) \),

(iii)
$$\begin{aligned} \mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(e_{2};x)={}& \biggl[2p_{n} \frac{\alpha _{1}}{n+\beta _{1}}+\frac{n1}{n} \biggl( \frac{n+\beta _{2}}{n+\beta _{1}} \biggr) \biggl(s_{n}(x)p_{n} \frac{\alpha _{2}}{n+\beta _{2}} \biggr)+p_{n}\frac{1}{n+\beta _{1}} \biggr] \\ &{}\times \biggl( \frac{n+\beta _{2}}{n+\beta _{1}} \biggr) \biggl(s_{n}(x)p_{n} \frac{\alpha _{2}}{n+\beta _{2}} \biggr) \\ &{}+ \biggl(p_{n}\frac{\alpha _{1}}{n+\beta _{1}} \biggr)^{2}, \end{aligned}$$
where \(\alpha _{1},\beta _{1}\in \mathbb{R} \) and \(0\leq \alpha _{1} \leq \beta _{1} \).
It can be easily seen that the results in (ii) and (iii) convergence to \(e_{1}(x) \) and \(e_{2}(x) \) in the limit case (\(n\rightarrow \infty \)), which shows that the new operators introduced in (3.3) preserve the Korovkin test functions.
All the results given so far and hereinafter were computed by MAPLE software that is a Computer Algebra System on attitudes towards mathematics. In addition, these results also show that the newly defined operator protects Korovkin test functions in the limit case.
In particular, if one considers the function described for each \(x\geq 0 \), as
we have the following lemma.
Lemma 2
For each \(x\in I_{n}\) and \(n\in \mathbb{N} \), then the following identities hold:

(i)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(E_{t}^{0};x)=0 \),

(ii)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(E_{t}^{1};x)= \frac{p_{n}}{n+\beta _{1}} (\alpha _{1}+n \frac{1e^{2p_{n} \alpha _{1}/n(n+\beta _{1})2x/n}}{1e^{2p_{n}/(n+\beta _{1})}} )x \),

(iii)
$$\begin{aligned} \mathcal{G}_{n}^{\alpha _{1},\beta _{1}}\bigl(E_{t}^{2};x \bigr)={}& \biggl(2p_{n} \frac{\alpha _{1}}{n+\beta _{1}}+\frac{n1}{n} \biggl( \frac{n+\beta _{2}}{n+\beta _{1}} \biggr) \biggl(s_{n}(x)p_{n} \frac{\alpha _{2}}{n+\beta _{2}} \biggr)+p_{n}\frac{1}{n+\beta _{1}} \biggr) \\ &{}\times \biggl(\frac{n+\beta _{2}}{n+\beta _{1}} \biggr) \biggl(s_{n}(x)p_{n} \frac{\alpha _{2}}{n+\beta _{2}} \biggr)+ \biggl(p_{n} \frac{\alpha _{1}}{n+\beta _{1}} \biggr)^{2} \\ &{}2x \frac{p_{n}}{n+\beta _{1}} \biggl( \alpha _{1}\alpha _{2}+s_{n}(x) \frac{n+\beta _{2}}{p_{n}} \biggr)+x^{2}, \end{aligned}$$
where \(\alpha _{1},\beta _{1}\in \mathbb{R} \) and \(0\leq \alpha _{1} \leq \beta _{1} \).
In conclusion, one can easily deduce the following equality for the exponential function given in (2.1),
It is clear that \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(f_{\mu };x)\rightarrow f_{ \mu } \) as \(n\rightarrow \infty \). As a result, \((\mathcal{G}_{n}^{\alpha _{1},\beta _{1}})_{n\geq 1} \) is an approximation process in \(C(\mathcal{S}) \); i.e., for every \(f\in C(\mathcal{S}) \),
uniformly on \(\mathcal{S} \).
In particular, if one considers the function described for each \(x\geq 0 \), as
then we can easily deduce the following lemma.
Lemma 3
For each \(x\in \mathcal{S}\) and \(n\in \mathbb{N} \), then the following identities hold:

(i)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(F_{t}^{0};x)=1 \),

(ii)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(F_{t}^{1};x)=e^{p_{n} \alpha _{1}/(n+\beta _{1})} [ 1 ( \frac{1e^{2p_{n} \alpha _{1}/n(n+\beta _{1})2x/n}}{1+e^{p_{n}/(n+\beta _{1})}} ) ]^{n}e^{x}\),

(iii)
\(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(F_{t}^{2};x)=2e^{2x}2e^{x}e^{p_{n} \alpha _{1}/(n+\beta _{1})} [ 1 ( \frac{1e^{2p_{n} \alpha _{1}/n(n+\beta _{1})2x/n}}{1+e^{p_{n}/(n+\beta _{1})}} ) ]^{n}\),
where \(\alpha _{1},\beta _{1}\in \mathbb{R} \) and \(0\leq \alpha _{1} \leq \beta _{1} \).
Now, let us focus on the properties of the function \(s_{n}(x) \).
Proposition 1
For each \(n\geq 1 \) and any \(x\in \mathcal{S}\), we have
where \(\alpha _{1},\beta _{1},\alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2}\leq \alpha _{1} \leq \beta _{2}\leq \beta _{1} \).
Proof
To begin with, for \(n\geq 1 \) we know that \(s_{n} \) is a convex down increasing function in \(\mathcal{I}_{n}\) since it is a function of \(f_{2/n}(x) \). In addition, since \(s_{n} ( p_{n}\frac{\alpha _{1}}{n+\beta _{1}} )=p_{n} \frac{\alpha _{2}}{n+\beta _{2}}\) and \(s_{n} ( p_{n}\frac{n+\alpha _{1}}{n+\beta _{1}} )=p_{n} \frac{n+\alpha _{2}}{n+\beta _{2}}\), we can easily deduce that \(s_{n}(x)\geq ( \frac{n+\beta _{1}}{n+\beta _{2}} )xp_{n} \frac{\alpha _{1}\alpha _{2}}{n+\beta _{2}} \) for \(x\in \mathcal{I}_{n}\), thus the proof is completed. □
Proposition 2
For \(\alpha _{1},\beta _{1},\alpha _{2},\beta _{2}\in \mathbb{R} \) and \(0\leq \alpha _{2}\leq \alpha _{1} \leq \beta _{2}\leq \beta _{1} \),
uniformly on compact subintervals of \(\mathcal{S}\).
Proof
It is clear that, \(\lim_{n \to \infty } s_{n} =e_{1}(x)\) pointwise on \(\mathcal{S}\). Additionally, each \(s_{n}(x) \) is concave and the convergence is indeed uniform on every compact interval of \(\mathcal{S}\). □
4 Approximation properties of \((\mathcal{G}_{n}^{\alpha _{1},\beta _{1}})_{n\geq 1} \)
Previously, we have provided the properties of the newly defined Bernstein–Chlodowsky–GadjievType operators that fix the function \(e^{2x} \). Now, we can introduce some approximation properties of these new operators for the different spaces of continuous functions. Additionally, we provide the rate of convergence of \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \).
Theorem 1
Let \(x>0 \) be fixed and \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \), \(n\geq 1 \), be the operator defined in (3.3). Then, \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \) is a linear positive operator from \(C_{*}(\mathcal{S}) \) into itself. In addition, \(\Vert \mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \Vert _{ C_{*}( \mathcal{S})} =1\).
Proof
It can be easily shown that for each \(n\in \mathbb{N} \), \(s_{n}(x) \) is an increasing and convex real continuous function satisfying
As an explicit consequence of equations (3.1) and (3.2), one can conclude that \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \) is a positive operator. Additionally, if \(f\in C_{*}(\mathcal{S}) \), one can say that \(B_{n,p_{n}}^{\alpha , \beta }(f)\in C_{*}(\mathcal{S}) \) resulting from (1.1), which yields \(B_{n,p_{n}}^{\alpha , \beta }(f)\in C(\mathcal{S}) \). Then, it can be easily seen that \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(f)\in C(\mathcal{S}) \) since \(s_{n}(x) \) satisfy the above properties and the relation (3.4). Moreover, it is obvious that \(\lim_{x\to \infty }\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(f)(x)= \lim_{x\to \infty }(f)(x)\in \mathbb{R} \). As a consequence, \(\Vert \mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \Vert _{C_{*}( \mathcal{S})}=\Vert \mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(e_{0}) \Vert _{\infty }=1 \) due to the positivity of each \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \). □
Theorem 2
For the same assumptions of Theorem 1, the following expression
holds.
Proof
From the direct consequence of Theorem 1 and \(\lim_{x\to \infty }\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(f)(x)= \lim_{x\to \infty }(f)(x)=0 \) whenever \(f\in C_{0}(\mathcal{S}) \), one can easily show the proof of the theorem. □
Theorem 3
For the fixed \(n \geq 1 \), consider the operators \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} \) defined by (3.3). Then,
if \(f\in C_{*}(\mathcal{S}) \).
Proof
In an attempt to prove the theorem we need to show that
for every \(\mu >0 \). In line with this objective, for every \(z>0 \), we use the following useful inequality given in [23, Lemma 3.1]
where \(\vartheta _{n}=\frac{1e^{z_{n}}}{z_{n}} \) and \((z_{n})_{n\geq 1} \) is a sequence of strictly positive real numbers. Then, by following the similar steps of the proof of [23, Corollary 3.4], we can obtain that
since \(\ln x\leq x1 \), \(\frac{[1e^{\mu p_{n}/(n+\beta _{1})}]}{\mu p_{n}/(n+\beta _{1})} \leq 1 \) for (2.3) and the inequality (3.6) holds. Then, using (4.2) for
we deduce that
and
for \(x\in \mathcal{S} \) and the proof of (4.1) is completed. Then, relying on the direct result of (4.1) and [14], we can prove the theorem. □
Theorem 4
For the same assumptions of Theorem 3, then
if \(f\in C_{b}(\mathcal{S}) \).
Proof
From the the results provided above, we note that
and
thereby, \(\lim_{n\to \infty }\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(\lbrace e_{0},e_{1},e_{2} \rbrace )=\lbrace e_{0},e_{1},e_{2} \rbrace \) uniformly on compact subsets of \(\mathcal{S}\), due to the fact that \(\lim_{n \rightarrow \infty }N_{n}=1 \). As a result, as \(\lbrace e_{0},e_{1},e_{2} \rbrace \subset \Omega _{2}^{*} \), the consequence follows from [6, Theorem 3.5]. □
In order to estimate the rate of convergence of \((\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}(f)) \) for \(n\geq 1 \) to f in Theorem 3, we need to increase our knowledge about the modulus of continuity. In this estimation, we will take advantage of the following definition of the modulus of continuity introduced in [23]:
Definition 1
Let \(f\in C_{*}(\mathcal{S}) \). Then, the modulus of continuity of a function, \(\omega ^{*} ( f,\delta ) \), is defined for \(\delta \geq 0 \) by
In other words, this modulus of continuity can be stated concerning the standard modulus of continuity by
where \(\mathbf{f}:C_{*}(\mathcal{S}) \rightarrow C(\mathcal{S}) \) is the continuous function defined by
Then, the following theorem would be helpful in order to express the next theorems.
Theorem 5
([23])
If \(Q_{n}: C_{*}(\mathcal{S}) \rightarrow C_{*}(\mathcal{S}) \) is a sequence of positive linear operators for \(n \geq 1 \) with
where \(\rho _{n}, \xi _{n}, \kappa _{n} \rightarrow 0 \) as \(n\rightarrow \infty \), then,
for \(f\in C_{*}(\mathcal{S}) \).
In this regard, it is clear that there is a close relation between \(\omega ^{*} ( f,\delta ) \) and the particular Korovkin subset chosen for the space \(C_{*}(\mathcal{S}) \), (see [23]). Then, we can state the following theorem with the help of the above.
Theorem 6
For every \(f\in C_{*}(\mathcal{S}) \) and \(n\geq 1 \),
under the same assumptions of Theorem 3.
Proof
It is obvious that, \(\rho _{n} \) and \(\kappa _{n} \) equal zero due to their definitions. On the other hand, it is easy to show that
from (4.3) with \(\lambda =1 \) for every \(n\geq 1 \). Hence, the proof is completed. □
5 Voronovksya type theorem
In this section, the pointwise convergence of the Bernstein–Chlodowsky–GadjievType operators that fix \(e^{2x} \) is provided. To present the convergence we present Voronovskajatype theorem in quantitative mean that allows us to find both the degree of aimed convergence and the upper bound for the error of approximation.
The quantitative Voronovskajatype theorem for the Bernstein–Chlodowsky–GadjievType operators acting on bounded intervals and unbounded intervals can be found in the papers [3, 15, 18, 24], respectively. Here, we consider the modulus of continuity given in (4.4). Now, we can present the theorem of this section.
Theorem 7
Let \(f,f^{\prime \prime }\in C_{*}(\mathcal{S})\). Then, the inequality
holds for any \(x\in \mathcal{S}\), \(\alpha _{1},\beta _{1}\in \mathbb{R} \) and \(0\leq \alpha _{1} \leq \beta _{1} \), where
Proof
With the help of a Taylor expansion of f at the point \(x\in \mathcal{S}\), one can easily deduce that
where
and ϵ is a number between x and t. Then, by applying the Bernstein–Chlodowsky–GadjievType operators \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}\) to both sides of equality (5.1) and utilizing \(\mathcal{G}_{n}^{\alpha _{1},\beta _{1}} ( e_{0} ) =e_{0}\), we immediately deduce that
Then, by rearranging the above inequality, one easily obtains that
For the sake of convenience, we shall denote by
and
From the consequences of Lemma 2, it is clear that \(\mathcal{A}_{n} \rightarrow 0 \) and \(\mathcal{B}_{n}(x)\rightarrow 0 \) as \(n\rightarrow \infty \) at any point \(x\in \mathcal{S} \). Hence, we have that
As a last step to finalize the proof of the theorem, we must estimate the last term \(\vert \frac{n}{p_{n}}\mathcal{G}_{n}^{\alpha _{1},\beta _{1}}( \Delta E_{t}^{2};x) \vert \). With the help of the inequality in Holhos’s paper [23], we obtain that
and
As a consequence, we have \(\vert \Delta ( t,x ) \vert \leq 2 ( 1+ \frac{ ( e^{x}e^{t} ) ^{2}}{\delta ^{2}} ) \omega ^{\ast } ( f^{\prime \prime };\delta ) \). With the help of this, we can easily obtain that
and applying the longfamiliar Cauchy–Schwarz inequality, we obtain
By choosing \(\delta =\frac{1}{\sqrt{n}}\) and denoting by \(\mathcal{C} _{n} ( x ) =\frac{n^{2}}{p_{n}}\sqrt{ \mathcal{G}_{n}^{\alpha _{1},\beta _{1}}( E_{t}^{4};x)}\sqrt{ \mathcal{G}_{n}^{\alpha _{1},\beta _{1}}( F_{t}^{4};x)}\), we deduce that
thus the proof is completed. □
Corollary 1
Let \(f,f^{\prime \prime }\in C_{*}(\mathcal{S})\). Then, the inequality
holds for any \(x\in \mathcal{S} \).
6 Numerical examples
In this part of the paper, we provide a series of numerical experiments for the newly defined operators. For this purpose, we present the graphical presentations for a classical Bernstein–Chlodowsky operator, a Bernstein–Chlodowsky–Gadjiev operator and our operators introduced above. In these experiments, we have used three different test functions and different parameters. All the implementations of the newly defined operators are performed in MATLAB.
Example 1
We shall now illustrate the convergence of the new type Bernstein–Chlodowsky–Gadjiev operator based on its classical counterparts. The new construction of the Bernstein–Chlodowsky–Gadjiev operator and its standard version algorithm is applied to the test function \(f(x):[0,1]\rightarrow \mathbb{R} \), where \(p_{n}=n^{1/2} \) and \(n=10 0\) with
such that \(\alpha _{2}=1 \), \(\alpha _{1}=2 \), \(\alpha _{3}=0 \), \(\beta _{1}=3 \), \(\beta _{2}=4 \) and \(\beta _{3}=1\).
In Fig. 1 we draw the results of standard Bernstein–Chlodowsky operators, a Bernstein–Chlodowsky–Gadjiev operator, the new construction of Bernstein–Chlodowsky–Gadjiev operators and a test function. Clearly, the proposed operator shows better convergence behavior than its classic counterparts.
Example 2
Secondly, we will show the convergence of the new type Bernstein–Chlodowsky–Gadjiev operator based on its classical counterparts. The new construction of the Bernstein–Chlodowsky–Gadjiev operator and its standard version algorithm is applied to the test function \(f(x):[0.1,2]\rightarrow \mathbb{R} \), where \(p_{n}=n^{1/2} \) and \(n=100\) with
such that \(\alpha _{2}=1 \), \(\alpha _{1}=2 \), \(\alpha _{3}=0 \), \(\beta _{1}=3 \), \(\beta _{2}=4 \) and \(\beta _{3}=1\).
Similarly, in Fig. 2, we draw the results of standard Bernstein–Chlodowsky operators, a Bernstein–Chlodowsky–Gadjiev operator, the new construction of Bernstein–Chlodowsky–Gadjiev operators and a test function. Clearly, the proposed operator shows better convergence behavior than its classic counterparts to the test function.
7 Concluding remarks
In this paper, we introduced a generalization of Bernstein–Chlodowsky–GadjievType operators that preserve constant and \(e^{2x} \) for \(x\geq 0\). In order to show the approximation properties of these newly defined operators, we used several different function spaces. Additionally, we provide the rate and convergence and a Voronovksyatype theorem for Bernstein–Chlodowsky–GadjievType operators.
Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Acar, T., Aral, A., CardenasMorales, D., Garrancho, P.: Szasz–Mirakyan type operators which fix exponentials. Results Math. 72, 1393–1404 (2017)
Acar, T., Aral, A., Gonska, H.: On Szasz–Mirakyan operators preserving \(e^{2ax}\), \(a>0 \). Mediterr. J. Math. 14(1), 6 (2017)
Acar, T., Aral, A., Rasa, I.: The new forms of Voronovskaya’s theorem in weighted spaces. Positivity 20, 25–40 (2016)
Acar, T., Aral, A., Rasa, I.: Positive linear operators preserving τ and \(\tau ^{2} \). Constr. Math. Anal. 2(3), 98–102 (2019)
Acar, T., Montano, M.C., Garrancho, P., Leonessa, V.: On Bernstein–Chlodovsky operators preserving \(e^{2x}\). Bull. Belg. Math. Soc. Simon Stevin 26, 681–698 (2019)
Altomare, F.: Korovkintype theorems and approximation by positive linear operators. Surv. Approx. Theory 5, 92–164 (2010)
Altomare, F., Campiti, M.: KorovkinType Approximation Theory and Its Applications. de Gruyter Studies in Mathematics, vol. 17. de Gruyter, Berlin (1994)
Aral, A., Acar, T.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev operatorsi. Filomat 27(2), 371–380 (2013)
Aral, A., CardenasMorales, D., Garrancho, P.: Bernsteintype operators that reproduce exponential functions. J. Math. Inequal. 12(3), 861–872 (2018)
Aral, A., Limmam, M.L., Ozsarac, F.: Approximation properties of SzaszMirakyan–Kantorovich type operators. Math. Methods Appl. Sci., 1–8 (2018). https://doi.org/10.1002/mma.5280
Attalienti, A., Campiti, M.: Bernsteintype operators on the half line. Czechoslov. Math. J. 52(127), 851–860 (2002)
Bernstein, S.: Demonstration du theoreme de Weierstrass, fondee sur le calculus des piobabilitts. Commun. Soc. Math., Kharkow 13, 1–2 (1913)
Bodur, M., Yilmaz, O.G., Aral, A.: Approximation by Baskakov–Szasz–Stancu operators preserving exponential functions. Constr. Math. Anal. 1(1), 1–8 (2018)
Boyanov, B.D., Veselinov, V.M.: A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum. 14(62), 9–13 (1970)
Butzer, P.L., Karsli, H.: Voronovskayatype theorems for derivatives of the Bernstein–Chlodovsky polynomials and the Szasz–Mirakyan operator. Comment. Math. 49, 33–58 (2009)
Chlodowsky, I.: Sur le developpement des fonctions deKnies dans un intervalle inKni en series de polynomes de M. S. Bernstein. Compos. Math. 4, 380–393 (1937)
Gadjiev, A.D., Ghorbanalizadeh, A.M.: Approximation properties of a new type Bernstein–Stancu polynomials of one and two variables. Appl. Math. Comput. 216, 890–901 (2010)
Gonska, H., Pitul, P., Rasa, I.: On Peano’s form of the Taylor remainder, Voronovskaja’s theorem and the commutator of positive linear operators. ClujNapoca, Proc. International Conf. Numer. Anal. Approx. Theory, 55–80 (2006)
Gupta, V., Acu, A.M.: On Baskakov–Szasz–Mirakyan type operators preserving exponential type functions. Positivity 22, 919–929 (2018)
Gupta, V., Aral, A.: A note on Szasz–Mirakyan–Kantorovich type operators preserving \(e^{x} \). Positivity 22, 415–423 (2018)
Gupta, V., Malik, N.: Approximation with certains Szasz–Mirakyan operators. Khayyam J. Math. 3(2), 90–97 (2017)
Gupta, V., Tachev, G.: On approximation properties of Phillips operators preserving exponential functions. Mediterr. J. Math. 14(4), 177 (2017)
Holhos, A.: The rate of approximation of functions in an infinite interval by positive linear operators. Stud. Univ. Babeş–Bolyai, Math. LV(2), 133–142 (2010)
Karsli, H.: A Voronovskayatype theory for the second derivative of the Bernstein–Chlodovsky polynomials. Proc. Est. Acad. Sci. 61, 9–19 (2012)
King, J.P.: Positive linear operators which preserve \(x^{2} \). Acta Math. Hung. 99(3), 203–208 (2003)
Ozsarac, F., Acar, T.: Reconstruction of Baskakov operators preserving some exponential functions. Math. Methods Appl. Sci., 1–9 (2018). https://doi.org/10.1002/mma.5228
Yilmaz, O.G., Gupta, V., Aral, A.: On Baskakov operators preserving the exponential function. J. Numer. Anal. Approx. Theory 46(2), 150–161 (2017)
Acknowledgements
The authors would like to thank the editor and the referees for their valuable comments and suggestions that improved the quality of our paper. The authors also extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant number R.G.P. 2/172/42.
Funding
No funding sources need to be declared.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tanberk Okumuş, F., Akyiğit, M., Ansari, K.J. et al. On approximation of Bernstein–Chlodowsky–Gadjiev type operators that fix \(e^{2x}\). Adv Cont Discr Mod 2022, 2 (2022). https://doi.org/10.1186/s1366202203675y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366202203675y
MSC
 41A36
 41A25
Keywords
 Linear positive operators
 Bernstein–Chlodowsky–Gadjievtype operators
 Exponential functions
 Approximation
 Voronovskayatype theorem